
Nordic Journal of Computing

RANGE MODE AND RANGE MEDIAN QUERIES ON
LISTS AND TREES∗

DANNY KRIZANC
Wesleyan University, Mathematics Department

Middletown, CT 06459 USA
dkrizanc@wesleyan.edu

PAT MORIN and MICHIEL SMID
Carleton University, School of Computer Science

1125 Colonel By Drive, Ottawa, Ontario, Canada, K1S 5B6
{morin,smid}@cs.carleton.ca

Abstract. We consider algorithms for preprocessing labelled lists and trees so
that, for any two nodes u and v we can answer queries of the form: What is the
mode or median label in the sequence of labels on the path from u to v.

1. Introduction

Let A = a1, . . . , an be a list of elements of some data type. Many re-
searchers have considered the problem of preprocessing A to answer range
queries. These queries take two indices 1 ≤ i ≤ j ≤ n and require computing
F (ai, . . . , aj) where F is some function of interest.

When the elements of A are numbers and F computes the sum of its
inputs, this problem is easily solved using linear space and constant query
time. We create an array B where bi is the sum of the first i elements of A.
To answer queries, we simply observe that ai + · · ·+ aj = bj − bi−1. Indeed
this approach works even if we replace + with any group operator for which
each element x has an easily computable inverse −x.

A somewhat more difficult case is when + is only a semigroup operator,
so that there is no analogous notion of −. In this case, Yao [1982] and
Alon and Schieber [1987], show how to preprocess a list A using O(nαk(n))
space so that queries can be answered in O(k) time, for any integer k ≥ 1.
Here αk is a slow growing function at the (k/2)th level of the primitive
recursion hierarchy. To achieve this result the authors show how to construct
a graph G with vertex set V = {1, . . . , n} such that, for any pair of indices
1 ≤ i ≤ j ≤ n, G contains a path from i to j of length at most αk(n) that
visits nodes in increasing order. By labelling each edge (u, v) of G with the
sum of the elements au, . . . , av, queries are answered by simply summing

∗This work was partly funded by the Natural Sciences and Engineering Research Coun-
cil of Canada.

Received January 17, 2005.

2 D. KRIZANC, P. MORIN, M. SMID

the edge labels along a path. This result is optimal when F is defined by a
general semigroup operator [Yao 1985].

A special case of a semigroup operator is the min (or max) operator. In
this case, the function F is the function that takes the minimum (respec-
tively maximum) of its inputs. By making use of the special properties of
the min and max functions several researchers [Bender and Farach-Colton
2000][Berkman et al. 1989] have given data structures of size O(n) that can
answer range minimum queries in O(1) time. The most recent, and simplest,
of these is due to Bender and Bender and Farach-Colton [2000].

Range queries also have a natural generalization to trees, where they are
sometimes call path queries. In this setting, the input is a tree T with labels
on its nodes and a query consists of two nodes u and v. To answer a query,
a data structure must compute F (l1, . . . , lk), where l1, . . . , lk is the set of
labels encountered on the path from u to v in T . For group operators, these
queries are easily answered by an O(n) space data structure in O(1) time
using data structures for lowest-common-ancestor queries. For semi-group
operators, these queries can be answered using the same resource bounds as
for lists [Yao 1982][Yao 1985].

In this paper we consider two new types of range queries that, to the best
of our knowledge, have never been studied before. In particular, we consider
range queries where F is the function that computes a mode or median of
its input. A mode of a multiset S is an element of S that occurs at least as
often as any other element of S. A median of S is the element that is greater
than or equal to exactly b|S|/2c elements of S. Our results for range mode
and range median queries are summarized in Table I. Note that neither of
these queries is easily expressed as a group, semi-group, or min/max query
so they require completely new data structures.

The results in Table I can be compared with two easy lower bounds for
range mode and range median queries. For the range mode problem we
observe that a single range mode query on a list can be used to determine
whether or not every input element is distinct. In many models of compu-
tation, including the algebraic decision tree model [Ben-Or 1983] this im-
plies that the preprocessing time plus the time for one range mode query is
Ω(n log n). Thus, any reasonable data structure for range mode queries will
use Ω(n log n) preprocessing time. Setting ε = 1/2 in our range mode data
structure and using a careful implementation of the peprocessing algorithm
achieves this lower bound and gives a query time of O(

√
n log n).

For the range median problem we observe that a list of n elements can be
sorted using n range median queries on a list of length 4n. Given any list of
length n we can append n occurences of −∞ followed by 2n occurences of
+∞. To extract the elements of the original list in sorted order we then do
range median queries on the ranges (1, 2n), (1, 2n+2), (1, 2n+4), . . . , (1, 4n).
This implies that, under any model of computation having an Ω(n log n)
lower bound on sorting, the time to preprocess a list and perform n range
median queries is Ω(n log n). Our data structure for range median queries
is over this lower bound by a factor of only log n/ log log n.

RANGE MODE AND MEDIAN QUERIES 3

Range Mode Queries on Lists
§ Space Query Time Space × Time

2.1 O(n2−2ε) O(nε log n) O(n2−ε log n)
2.2 O(n2 log log n/ log n) O(1) O(n2 log log n/ log n)

Range Mode Queries on Trees
§ Space Query Time Space × Time

2.1 O(n2−2ε) O(nε log n) O(n2−ε log n)

Range Median Queries on Lists
§ Space Query Time Space × Time

4.2 O(n log2 n/ log log n) O(log n) O(n log3 n/ log log n)
4.3 O(n2 log log n/ log n) O(1) O(n2 log log n/ log n)
4.4 O(n logb n) O(b log2 n/ log b) O(nb log3 n/ log2 b)
4.4 O(n) O(nε) O(n1+ε)

Range Median Queries on Trees
§ Space Query Time Space × Time

5.1 O(n log2 n) O(log n) O(n log3 n)
5.2 O(n logb n) O(b log3 n/ log b) O(nb log4 n/ log2 b)
5.2 O(n) O(nε) O(n1+ε)

Table I: Summary of results in this paper.

A preliminary version of this paper appeared in the Proceedings of the
Fourteenth Annual International Symposium on Algorithms and Computa-
tion (ISAAC 2003) [Krizanc et al. 2003]. Since then, Bose et al. [2005] have
studied approximate versions of range mode and range median queries on
lists. An α-approximate mode is an element that occurs at least α times
the number of occurences of the true mode. An α-approximate median of
an n element set is an element whose rank is at least αn/2 and at most
(2 − α)n/2. Their approximate mode data structure uses linear space and
O(log log n) query time and their approximate median data structure uses
linear space and O(1) query time.

The remainder of this paper is organized as follows: In Section 2 we con-
sider range mode queries on lists. In Section 3 we discuss range mode queries
on trees. In Section 4 we study range median queries on lists. In Section 5
we present data structures for range median queries on trees. Finally, in
Section 6 we summarize and conclude with open problems.

The proofs of some lemmata used in this paper are fairly technical, and
this can distract from the presentation of the data structures. Therefore we
defer the proofs of all lemmata to Appendix A.

4 D. KRIZANC, P. MORIN, M. SMID

2. Range Mode Queries on Lists

In this section, we consider range mode queries on a list A = a1, . . . , an.
More precisely, our task is to preprocess A so that, for any indices i and
j, 1 ≤ i ≤ j ≤ n, we can return an element of ai, . . . , aj that occurs at
least as frequently as any other element. Our approach is to first preprocess
A for range counting queries so that, for any i, j and x we can compute
the number of occurrences of x in ai, . . . , aj . Once we have done this, we
will show how a range mode query can be answered using a relatively small
number of these range counting queries.

Throughout this section we will use the set union notation A∪B to denote
the union with multiplicity of multisets A and B. In other words the number
of occurrences of x in A ∪ B is equal to the number of occurrences of x in
A plus the number of occurences of x in B. We will also slightly abuse this
notation by applying it to lists and arrays. In this case, it denotes the union
of the underlying multisets.

To answer range counting queries on A we use a collection of sorted arrays,
one for each unique element of A. The array for element x, denoted Ax

contains all the indices 1 ≤ i ≤ n such that ai = x, in sorted order. Now,
simply observe that if we search for i and j in the array Ax, we find two
indices k and l, respectively, such that, the number of occurrences of x in
ai, . . . , aj is l − k + 1. Thus, we can answer range counting queries for x
in O(log n) time. Furthermore, since each position in A contributes exactly
one element to one of these arrays, the total size of these arrays is O(n),
and they can all be computed easily in O(n log n) time.

The remainder of our solution is based on the following simple lemma
about modes in the union of three sets.

Lemma 1. Let A, B and C be any multisets. Then, if a mode of A∪B ∪C
is not in A or C then it is a mode of B.

In the next two subsections we show how to use this observation to obtain
efficient data structures for range mode queries. In the first section we
show how it can be used to obtain an efficient time-space tradeoff. In the
subsequent section we show how to it can be used to obtain a data structure
with O(1) query time that uses subquadratic space.

2.1 A Time-Space Tradeoff

To obtain a time-space tradeoff, we partition the list A into b blocks, each
of size n/b. We denote the ith block by Bi. For each pair of blocks Bi and
Bj , we compute the mode mi,j of Bi+1 ∪ · · · ∪Bj−1 and store this value in a
lookup table of size O(b2). At the same time, we convert A into an array so
that we can access any element in constant time given its index. This gives
us a data structure of size O(n + b2).

To answer a range mode query (i, j) there are two cases to consider. In
the first case, j − i ≤ n/b, in which case we can easily compute the mode

RANGE MODE AND MEDIAN QUERIES 5

Bi′ Bj′−1

i j

. . .Bi′+1

mi′,j′

Bj′

Fig. 1: The mode of ai, . . . , aj is either an element of Bi′ , an element of Bj′ or is the
mode mi′,j′ of Bi′+1, . . . , Bj′−1.

of ai, . . . , aj in O((n/b) log n) time by, for example, sorting ai, . . . , aj and
looking for the longest run of consecutive equal elements.

The second case occurs when j − i > n/b, in which case ai and aj are
in two different blocks (see Fig. 1). Let Bi′ be the block containing i and
let Bj′ be the block containing j. Lemma 1 tells us that the answer to this
query is either an element of Bi′ , an element of Bj′ , or is the mode mi′,j′ of
Bi′+1 ∪ · · · ∪Bj′−1. Thus, we have a set of at most 2n/b + 1 candidates for
the mode. Using the range counting arrays we can determine which of these
candidates is a mode by performing at most 2n/b + 1 queries each taking
O(log n) time, for a query time of O((n/b) log n). By setting b = n1−ε, we
obtain the following theorem:

Theorem 1. For any 0 < ε ≤ 1/2, there exists a data structure of size
O(n2−2ε) that answers range mode queries on lists in time O(nε log n).1

2.2 A Constant Query-Time Subquadratic Space Solution

At one extreme, Theorem 1 gives an O(n) space, O(
√

n log n) query time
data structure for range mode queries. Unfortunately, at the other extreme
it gives an O(n2) space, O(log n) query time data structure. This is clearly
non-optimal since with O(n2) space we could simply precompute the answer
to each of the

(n
2

)
possible queries and then answer queries in constant time.

In this section we show that it is possible to do even better than this by
giving a data structure of subquadratic size that answers queries in constant
time.

Let k = n/b and consider any pair of blocks Bi′ and Bj′ . There are k2

possible range mode queries (i, j) such that i is in Bi′ and j is in Bj′ . Each
such query returns a result which is either an element of Bi′ , an element of
Bj′ or the mode of Bi′+1∪· · ·∪Bj′+1. Therefore, we could store the answers
to all such queries in a table of size k2, where each table entry is an integer
in the range 0, . . . , 2k that represents one of these 2k +1 possible outcomes.
1 The query time of Theorem 1 can be improved by observing that our range counting
data structure operates on the universe 1, . . . , n so that using complicated integer searching
data structures [van Emde Boas 1977][Thorup 1996][Willard 1983], the logarithmic term
in the query time can be reduced to a doubly-logarithmic term. We observed this but
chose not to pursue it because the theoretical improvement is negligible compared to the
polynomial factor already in the query time. The same remarks apply to the data structure
of Section 3.

6 D. KRIZANC, P. MORIN, M. SMID

The total number of such tables is (2k + 1)k2
and each table has size O(k2),

so the total cost to store all such tables is only O(k2(2k + 1)k2
). Therefore,

if we choose k =
√

log n/ log log n, the total cost to store all these tables is
only O(n2 log log n/ log n).

After computing all these tables, for each pair of blocks Bi′ and Bj′ we need
only store a pointer to the correct table and the value of the mode mi′,j′ of
Bi′+1∪· · ·∪Bj′−1. Then, for any range mode query with endpoints in Bi′ and
Bj′ we need only perform a table lookup and use the integer result to report
the mode either as an element of Bi′ an element of Bj′ or mi′,j′ . The total size
of this data structure is O(b2 + n) = O((n/k)2 + n) = O(n2 log log n/ log n).

To handle range mode queries (i, j) where i and j belong to the same block,
we simply precompute all solutions to all possible queries where i and j are
in the same block. The total space required for this is O(bk2) = O(n logc n)
which is much smaller than the space already used.

Theorem 2. There exists a data structure of size O(n2 log log n/ log n) that
can answer range mode queries on lists in O(1) time.

3. Range Mode Queries on Trees

In this section we consider the problem of range mode queries on trees. The
outline of the data structure is essentially the same as our data structure
for lists, but there are some technical difficulties which come from the fact
that the underlying graph is a tree.

We begin by observing that we may assume the underlying tree T is a
rooted binary tree. To see this, first observe that we can make T rooted by
choosing any root. We make T binary by expanding any node with d > 2
children into a complete binary tree with d leaves. The root of this little
tree will have the original label of the node we expanded and all other nodes
that we create are assigned unique labels so that they are never the answer
to a range mode query (unless no element in the range occurs more than
once, in which case we can correctly return the first element of the range).
This transformation does not increase the size of T by more than a small
constant factor.

To mimic our data structure for lists we require two ingredients: (1) we
should be able to answer range counting queries of the form: Given a label
x and two nodes u and v, how many times does the label x occur on the
path from u to v? and (2) we must be able to partition our tree into O(b)
subtrees each of size approximately n/b.

We begin with the second ingredient, since it is the easier of the two.
To partition T into subtrees we make use of the well-known fact (see, e.g.,
Chazelle [1982]) that every binary tree has an edge whose removal partitions
the tree into two subtrees neither of which is more than 2/3 the size of the
original tree. By repeatedly applying this fact, we obtain a set of edges
whose removal partitions our tree into O(b) subtrees none of which has size
more than n/b. For each pair of these subtrees, we compute the mode of the

RANGE MODE AND MEDIAN QUERIES 7

u

v

w

T

Fig. 2: The number of nodes labelled x on the path from u to v can be computed from
x(u), x(v) and x(w).

labels on the path from one subtree to the other and store all these modes
in a table of size O(b2). Also, we give a new data field to each node v of T
so that in constant time we can determine the index of the subtree to which
v belongs.

Next we need a concise data structure for answering range counting queries.
Define the lowest-common-ancestor (LCA) of two nodes u and v in a tree T
to be the node on the path from u to v that is closest to the root of T . Let
x(v) denote the number of nodes labelled x on the path from the root of T
to v, or 0 if v is nil. Suppose w is the LCA of u and v. Then it is easy to
verify that the number of nodes labelled x on the path from u to v in T is
exactly

x(u) + x(v)− 2x(w) +
{

1 if label of w is 1
0 otherwise

(see Fig. 2).
There are several data structures for preprocessing T for LCA queries

that use linear space and answer queries in O(1) time the simplest of which
is due to Bender and Farach-Colton [2000]. Thus all that remains is to
give a data structure for computing x(u) for any value x and any node u
of T . Consider the minimal subtree of T that is connected and contains
the root of T as well as all nodes whose label is x. Furthermore, contract
all degree 2 vertices in this subtree with the possible exception of the root
and call the resulting tree Tx (see Fig. 3). It is clear that the tree Tx has
size proportional to the number of nodes labelled x in the original tree.
Furthermore, by preprocessing Tx with an LCA data structure and labelling
the nodes of Tx with their distance to the root, we can compute, for any
nodes u and v in Tx, the number of nodes labelled x on the path from u to
v in T .

The difficulty now is that we can only do range counting queries between
nodes u and v that occur in Tx and we need to answer these queries for
any u and v in T . What we require is a mapping of the nodes of T onto
corresponding nodes in Tx. More precisely, for each node v in T we need to
be able to identify the first node labelled Tx encountered on the path from

8 D. KRIZANC, P. MORIN, M. SMID

x

x

x xx

x

T Tx

Fig. 3: The trees T and Tx and their interval labelling.

v to the root of T . Furthermore, we must be able to do this with a data
structure whose size is related to the size of Tx, not T .

To achieve this mapping, we perform an interval labelling of the nodes
in T (see Fig. 3): We label the nodes of T with consecutive integers by
an in-order traversal of T . With each internal node v of T , we assign the
minimum interval that contains all of the integer labels in the subtree rooted
at v. Note that every node in Tx is also a node in T , so this also gives an
interval labelling of the corresponding nodes in Tx (although the intervals
are not minimal). Consider a node v of T whose integer label is g. Then
it is easy to verify that the first node labelled x on the path from v to the
root of T is the node of Tx with the smallest interval label that contains g.
Next, observe that if we sort the endpoints of these intervals then in any
subinterval defined by two consecutive endpoints the answer to a query is
the same. Therefore, by sorting the endpoints of the intervals of nodes in Tx

and storing these in a sorted array we can answer these queries in O(log n)
time using a data structure of size O(|Tx|).

To summarize, we have described all the data structures needed to answer
range counting queries in O(log n) time using a data structure of size O(n).
To answer a range mode query (u, v) we first lookup the two subtrees Tu

and Tv of T that contain u and v as well as a mode mu,v of all the labels
encountered on the path from Tu to Tv. We then perform range counting
queries for each of the distinct labels in Tu and Tv as well as mu,v to de-
termine an overall mode. The running time and storage requirements are
identical to the data structure for lists.

Theorem 3. For any 0 < ε ≤ 1/2, there exists a data structure of size
O(n2−2ε) that answers range mode queries on trees in O(nε log n) time.

4. Range Median Queries on Lists

In this section we consider the problem of answering range median queries
on lists. To do this, we take the same general approach used to answer
range mode queries. We perform a preprocessing of A so that our range

RANGE MODE AND MEDIAN QUERIES 9

median query reduces to the problem of computing the median of the union
of several sets.

Throughout this section (and the proofs of Lemmata 2-4 in Appendix
A) we will assume that the input A = a1, . . . , an consists of n distinct
values. If this is not the case, we can easily make the elements distinct
by mapping the element ai onto the ordered pair (ai, i) and replacing the
standard comparison operator with lexigraphic comparison.

4.1 The Median of Several Sorted Sets

In this section we present three basic results that will be used in our range
median data structures.

An augmented binary search tree is a binary search tree in which each
node contains a size field that indicates the number of nodes in the subtree
rooted at that node. This allows, for example, determining the rank of the
root in constant time (it is the size of the left subtree plus 1) and indexing an
element by rank in O(log n) time. Suppose we have three sets A, B, and C,
stored in three augmented binary search trees TA, TB and TC , respectively,
and we wish to find the element of rank i in A∪B∪C. The following lemma
says that we can do this very quickly.

Lemma 2. Let TA, TB, and TC be three augmented binary search trees on
the sets A, B, and C, respectively. There exists an O(hA + hB + hC) time
algorithm to find the element with rank i in A ∪ B ∪ C, where hA, hB and
hC are the heights of TA, TB and TC , respectively.

Another tool we will make use of is a method of finding the median in the
union of many sorted arrays.

Lemma 3. Let A1, . . . , Ak be sorted arrays whose total size is O(n). There
exists an O(k log n) time algorithm to find the element with rank i in A1 ∪
· · · ∪Ak.

Finally, we also make use of the following fact which plays a role analogous
to that of Lemma 1.

Lemma 4. Let A, B, and C be three sets such that |A| = |C| = k and
|B| ≥ 2k. Then the median of A ∪ B ∪ C is either in A, in C or is an
element of B whose rank in B is in the range [b|B|/2c − k, d|B|/2e+ k].

4.2 A First Time-Space Tradeoff

To obtain our first data structure for range median queries we proceed in a
manner similar to that used for range mode queries. We partition our list A
into b blocks B1, . . . , Bb each of size n/b. We will create two types of data
structures. For each block we will create a data structure that summarizes

10 D. KRIZANC, P. MORIN, M. SMID

Bi′ Bj′−1

i j

. . .Bi′+1 Bj′

←−
T i′,x

−→
T j′,y

Ai′,j′

Fig. 4: The median of ai, . . . , aj can be computed from two persistent search trees.

that block. For each pair of blocks we will create a data structure that
summarizes all the elements between that pair of blocks.

To process each block we make use of persistent augmented binary search
trees. These are search trees in which, every time an item is inserted or
deleted, a new version of the tree is created. These trees are called persistent
because they allow accesses to all previous versions of the tree. The simplest
method of implementing persistent augmented binary search trees is by path-
copying [Krijnen and Meertens 1983][Myers 1982][Myers 1984][Reps et al.
1983][Swart 1985]. This results in O(log n) new nodes being created each
time an element is inserted or deleted, so a sequence of n update operations
creates a set of n trees that are represented by a data structure of size
O(n log n).2

For each block Bi′ = bi′,1, . . . , bi′,n/b, we create two persistent augmented
search trees −→T i′ and ←−T i′ . To create the tree −→T i′ we insert the elements
bi′,1, bi′,2, . . . , bi′,n/b in that order. To create←−T i′ we insert the same elements
in reverse order, i.e., we insert bi′,n/b, bi′,n/b−1, . . . , bi′,1. Since these trees are
persistent, this means that, for any j, 1 ≤ j ≤ n/b, we have access to
a search tree −→T i′,j that contains exactly the elements bi′,1, . . . , bi′,j and a
search tree ←−T i′,j that contains exactly the elements bi′,j , . . . , bi′,n/b.

For each pair of blocks Bi′ and Bj′ , 1 ≤ i′ < j′ ≤ n, we sort the elements of
Bi′+1∪· · ·∪Bj′−1 and store the elements whose ranks are within 2n/b of the
median in a sorted array Ai′,j′ . Observe that, by Lemma 4, the answer to a
range median query (i, j) where i = i′n/b+x is in block i′ and j = j′n/b+y

is in block j′, is in one of ←−T i′,x, Ai′,j′ or −→T j′,y (see Fig. 4). Furthermore,
given these two trees and one array, Lemma 2 allows us to find the median
in O(log n) time.

Thus far, we have a data structure that allows us to answer any range
median query (i, j) where i and j are in different blocks i′ and j′. The size
of the data structure for each block is O((n/b) log n) and the size of the
data structure for each pair of blocks is O(n/b). Therefore, the overall size
2 Although there are persistent binary search trees that require only O(n) space for n
operations [Driscoll et al. 1989][Sarnak and Tarjan 1986], these trees are not augmented
and thus do not work in our application. In particular, they do not allow us to make use
of Lemma 2.

RANGE MODE AND MEDIAN QUERIES 11

of this data structure is O(n(b + log n)). To obtain a data structure that
answers queries for any range median query (i, j) including i and j in the
same block, we build data structures recursively for each block. The size of
all these data structures is given by the recurrence

Tn = bTn/b + O(n(b + log n)) = O(n(b + log n) logb n) .

Theorem 4. For any 1 ≤ b ≤ n, there exists a data structure of size
O(n(b + log n) logb n) that answers range median queries on lists in time
O(log(n/b)).

At least asymptotically, the optimal choice of b is b = log n. In this case,
we obtain an O(n log2 n/ log log n) space data structure that answers queries
in O(log n) time. In practice, the choice b = 2 is probably preferable since it
avoids having to compute the Ai′,j′ arrays altogether and only ever requires
finding the median in two augmented binary search trees. The cost of this
simplification is only an O(log log n) factor in the space requirement.

4.3 A Constant Query Time Subquadratic Space Data Structure

Next we sketch a range median query data structure with constant query
time and subquadratic space. The data structure is essentially the same as
the range mode query data structure described in Section 2.2 modified to
perform median queries. The modifications are as follows: For each pair of
blocks Bi′ and Bj′ we need only consider the set of 6k elements that are
potential medians of queries with endpoints i and j in Bi′ and Bj′ . We can
also create a normalized version of these elements, so that each element is
a unique integer in the range 1, . . . , 6k. In this way, we only need to create
(6k)! different lookup tables, each of size O(k2).

To summarize, storing all the lookup tables takes O(k2(6k)!) space. For
each pair of blocks we must store a pointer to a lookup table as well as an
array of size 6k that translates ranks in the lookup table to elements of A,
for a total space of O(b2k). For each block we precompute and store all the
solutions to queries with both endpoints in that block using a table of size
O(bk2). The total space required by all the pieces of this data structure is

O(k2(6k)! + b2k + bk2) = O(k2(6k)! + n2/k + nk)

Setting k = c log n/ log log n for sufficiently small c, we obtain an overall
space bound of O(n2 log log n/ log n).

Theorem 5. There exists a data structure of size O(n2 log log n/ log n) that
can answer range median queries on lists in O(1) time.

12 D. KRIZANC, P. MORIN, M. SMID

i j

Fig. 5: Using range trees to perform range median queries. The median of ai, . . . , aj is
the median of the elements in the O(b logb n) shaded arrays.

4.4 A Data Structure Based on Range Trees

Next we describe a range median data structure based on the same principle
as Lueker and Willard’s range trees [Lueker 1978][Willard 1985]. This data
structure stores a1, . . . , an at the leaves of a complete b-ary tree T in the
order in which they appear in A. At each internal node v of this tree we
keep a sorted array containing all the elements of A that appear at leaves in
the subtree rooted at v. It is clear that this tree, including the arrays stored
at all the nodes, has size O(n logb n).

To use this tree to answer a range query (i, j), consider the two paths Pi

and Pj from the root of T to the leaf containing ai and the leaf containing
aj , respectively (see Fig. 5). These two paths share some nodes for a period
of time and then diverge. Observe that, after this point, by looking at the
sorted arrays at nodes to the right of Pi and to the left of Pj we obtain a
partition of ai, . . . , aj into a set of sorted arrays. The number of these arrays
is at most b logb n and their total size is at most n. Therefore, by Lemma 3
we can answer the range median query (i, j) in O(b log2 n/ log b) time.

Theorem 6. For any integer 1 ≤ b ≤ n, there exists a data structure of size
O(n logb n) that answers range median queries on lists in O(b log2 n/ log b)
time. In particular, for any constant ε > 0 there exists a data structure of
size O(n) that answers range median queries in O(nε) time.

5. Range Median Queries on Trees

Next we present two data structures for answering range median queries on
trees. As with range mode queries, we may assume that T is a binary tree
by converting nodes with d > 2 children into complete binary trees. In these
little trees we subdivide edges to ensure that the number of internal nodes
in any root to leaf path is even and label these nodes alternately with −∞,
+∞ so as not to affect the median on any path between two of the original
nodes of T .

RANGE MODE AND MEDIAN QUERIES 13

5.1 More Space, Faster Queries

Our method is simply the binary version of the basic method in Section 4.2
for lists. We first find a centroid edge (a, b) of T whose removal partitions
T into two subtrees Ta and Tb each of size at most 2/3 the original size of
T . For each node u in Ta, we would like to have access to an augmented
search tree that contains exactly the labels on the path from u to a. To
achieve this, we proceed as follows: To initialize the algorithm we insert the
label of a into a persistent augmented binary search tree, mark a and define
this new tree to be the tree of a. While some marked node u of Ta has an
unmarked child v, we insert the label of v into the tree of u, mark v, and
define this new tree to be the tree of v. Note that because we are using
persistent search trees, this leaves the tree of u unchanged. In this way, for
any node u in Ta, the tree of u contains exactly the labels of the nodes on
the path from u to a. We repeat the same procedure for Tb, and this creates
a data structure of size O(n log n).

To answer a range median query (u, v) where u is in Ta and v is in Tb,
we only need to find the median of all labels stored in the tree of a and the
tree of b. By Lemma 2 this can be done in O(log n) time. To answer range
median queries (u, v) where both u and v are in Ta (or Tb) we recursively
build data structures for range median queries in Ta and Tb. The total size
of all these data structures is

Tn = Tαn + T(1−α)n + O(n log n) = O(n log2 n) ,

where 1/3 ≤ α ≤ 2/3 and they can answer range median queries in O(log n)
time.

Theorem 7. There exists a data structure of size O(n log2 n) that can an-
swer range median queries in trees in O(log n) time.

It is tempting to try and shave a log log n factor off the storage require-
ment of Theorem 7 by using a log n-ary version of the above scheme as
we did in Section 4.2. However, the reason this worked for lists is that,
for any block, a query either extends to the left or right boundary of that
block, so only two persistent search trees are needed. However, if we try to
make a log n-ary partition of a tree we find that each subtree (block) can
have Ω(log n) vertices that share an edge with another subtree, which would
require Ω(log n) persistent search trees per subtree.

5.2 Less Space, Slower Queries

We now describe a data structure that uses less space. For any node u
of T , let size(u) denote the number of leaves in the subtree of u, and let
`(u) = blog size(u)c. Observe that `(u) is an integer in the range from
zero to blog nc. Moreover, on the path from any leaf to the root of T , the
`(u)-values form a non-decreasing sequence.

14 D. KRIZANC, P. MORIN, M. SMID

The values `(u) can be used to partition T into a collection of pairwise
disjoint paths: For any node u of T , let Pu be the subgraph of T consisting
of all nodes v for which (i) `(v) = `(u), and (ii) `(w) = `(u) for all nodes
w on the path in T between u and v. It is not difficult to see that Pu is a
path; we call this path a piece.

We extend the tree T by storing with each node u the value of size(u),
a pointer to the parent of u, and a pointer to the node gpar(u) of Pu that
is closest to the root. We call gpar(u) the group parent of u. Using these
pointers, we can walk from any node u to any other node v in O(log n) time.
During this walk, we visit only O(log n) pieces.

For each piece, we build the data structure of Section 4.4. Therefore,
the entire data structure has size O(n logb n). To answer a query (u, v), we
determine the O(log n) pieces encountered when walking in T from u to v.
The path in T between u and v visits a group of consecutive nodes on each
such piece. Using the data structure of such a piece, we partition this group
into O(b logb n) sorted arrays. Hence, overall, we have to find the median
in a sequence of O(b log2 n/ log b) sorted arrays which takes, by Lemma 3
O(b log3 n/ log b) time.

Theorem 8. For any integer 1 ≤ b ≤ n, there exists a data structure of size
O(n logb n) that can answer range median queries in trees in O(b log3 n/ log b)
time. In particular, for any constant ε > 0, there exists a data structure of
size O(n) that answers range median queries in O(nε) time.

6. Summary and Conclusions

We have given data structures for answering range mode and range median
queries on lists and trees. To the best of our knowledge, we are the first
to study these problems, which do not seem to admit the same techniques
used to develop optimal data structures for range queries involving group or
semigroup operators.

Essentially every result in this paper is an open problem. None of our data
structures match the obvious lower bounds and it seems unlikely that any of
our data structures are optimal. Thus, there is still a significant amount of
work to be done on these problems, either by improving these results and/or
showing non-trivial lower bounds for these problems.

Acknowledgement

The second author would like to thank Stefan Langerman for helpful dis-
cussions.

Appendix A. Proofs of Lemmata

Proof. (Lemma 1) Suppose, for the sake of contradiction, that the mode
x of A∪B ∪C does not appear in A or C and is not a mode of B. But then

RANGE MODE AND MEDIAN QUERIES 15

there is a mode y ∈ B of B that occurs more frequently in B than x. Since
x does not occur in A or C then y also occurs more frequently in A∪B ∪C
than x, so x is not a mode of A ∪B ∪ C, a contradiction. 2

The next three proofs deal with medians. For a set X and an element
x ∈ X, we define rankX(x) to be the rank of x in the set X, i.e., the
number of elements y ∈ X such that y ≤ x.
Proof. (Lemma 2) We describe an algorithm to find the element of rank
i in A ∪ B ∪ C using TA, TB and TC . Let rA, rB and rC denote the values
stored at the roots of TA, TB and TC and assume, without loss of generality
that rA < rB < rC . Let nA, nB and nC denote the sizes of the left subtrees
of TA, TB and TC respectively. There are three cases to consider:
(1) nA + nB + nC < i − 1. In this case, the rank of rA in A ∪ B ∪ C is

less than i and the ranks of all elements stored in the left subtree of
TA are also less than i. Therefore, we can safely proceed by searching
for the element of rank i − nA − 1 in the three trees TB, TC and the
right subtree of TA.

(2) nA + nB + nC = i − 1. In this case, the rank of rA in A ∪ B ∪ C is i,
and we are done searching.

(3) nA + nB + nC > i− 1. In this case, the rank of rC in A ∪B ∪ C is at
least nA + nB + nC + 2 > i + 1 and the same is true of all elements in
the right subtree of TC . Therefore, we can safely proceed by searching
for the element of rank i in the three trees TA, TB and the left subtree
of TC .

We can continue in this manner until one of TA, TB and TC is empty
in which case a slightly modified version of the above algorithm will find
the element of rank i in two trees. Each iteration of this algorithm takes
constant time and either finds the element of rank i or reduces the height of
one of the subtrees by 1, so the total running time is O(hA + hB + hC), as
required. 2

Proof. (Lemma 3) Let n1, . . . , nk denote the sizes of A1, . . . , Ak, respec-
tively, and let A = A1 ∪ · · · ∪ Ak. We are looking for an O(k log n) time
algorithm to find the element of rank i in A. Without loss of generality we
may assume that i ≤ n/2, otherwise we can reverse the roles of i and n− i
as well the roles of “greater than” and “less than.”

Consider the set S = {s1, . . . , sk} where sj is the element of Aj such that
rankAj (sj) = rj and

rj =
⌈
2
3
× nj

⌉
For ease of notation, we will assume that s1 < s2 < · · · < sk though our
algorithm will not make use of this assumption. Refer to Fig. 6.

Let j be the smallest index such that
∑j

`=1 r` > i so we are guaran-
teed that rankA(sj) > i. It is clear that such a value of j exists since∑k

`=1 rj ≥ 2n/3. Finding the index j is a weighted selection operation. This

16 D. KRIZANC, P. MORIN, M. SMID

s1 sk< s2 < · · · < sj < · · · <

A1 A2 Aj Ak

> i elements

Fig. 6: When searching for the element of rank i we can discard all elements in the shaded
area.

operation can be performed in O(k) time as follows: Find the median sbk/2c
of s1, . . . , sk in O(k) time using any linear-time median finding algorithm. If∑bk/2c

`=1 r` ≤ i then recursively search for sj in the set s1, . . . , sbk/2c−1. Oth-
erwise, recursively search for sj in the set sbk/2c, . . . , sk. The running time
of this algorithm is given by the classic reccurence Tk = O(k) + Tk/2 which
solves to O(k).

Observe that, since rankA(sj) > i, any element greater than or equal to
sj can be excluded from our search. This includes all the elements sj , . . . , sk

and parts of their respective arrays Aj , . . . , Ak (the shaded region in Fig. 6).
How much does this allow us to discard? We know that

∑j−1
`=1 r` < i, so

j−1∑
`=1

n` ≤
3
2

j−1∑
`=1

r` ≤ 3i/2 ≤ 3n/4 .

Therefore,
k∑

`=j

n` = n−
j−1∑
`=1

n` ≥ n/4 .

But from each array A`, j ≤ ` ≤ k we discard a piece of size at least

d` ≥ n` − r` + 1 ≥ n`/3 .

Therefore, the total amount we discard is at least

k∑
`=j

d` ≥
k∑

`=j

n`/3 ≥ n/12 .

Therefore, after iterating this process at most log 12
11

n we will have found
the element of rank i. Since each iteration takes O(k) time this results in a
total running time of O(k log n), as required. 2

Proof. (Lemma 4) Let b1 be the element of B such that rankB(b1) =
b|B|/2c−k and let b2 be the element of B such that rankB(b2) = d|B|/2e+k.

RANGE MODE AND MEDIAN QUERIES 17

Since A and C each contain only k elements, it follows that

rankA∪B∪C(b1) ≤ rankB(b1) + 2k = b|B|/2c+ k

and similarly

rankA∪B∪C(b2) ≥ rankB(b2) = d|B|/2e+ k .

Observe that the median m of A ∪B ∪ C satisfies

rankA∪B∪C(m) = b|B|/2 + kc .

However, if we choose any x ∈ B such that x < b1 then it follows that

rankA∪B∪C(x) < b|B|/2c+ k = b|B|/2 + kc .

Similarly, if x > b2 then

rankA∪B∪C(x) > d|B|/2e+ k > b|B|/2 + kc .

In either case, x is definitely not the median of A∪B∪C, so the only elements
of B that can be the median are those elements y such that b1 ≤ y ≤ b2, as
required. 2

References

Alon, N. and Schieber, B. 1987. Optimal Preprocessing for Answering On-Line Product
Queries. Tech. Report 71/87, Tel-Aviv University.

Ben-Or, M. 1983. Lower Bounds for Algebraic Computation Trees. In Proceedings of
the 15th ACM Symposium on the Theory of Computing (STOC’83), 80–86.

Bender, M. A. and Farach-Colton, M. 2000. The LCA Problem Revisited. In Pro-
ceedings of Latin American Theoretical Informatics (LATIN 2000), 88–94.

Berkman, O., Breslauer, D., Galil, Z., Schieber, B., and Vishkin, U. 1989. Highly
Parallelizable Problems. In Proceedings of the 21st Annual ACM Symposium on the
Theory of Computing , 309–319.

Bose, P., Kranakis, E., Morin, P., and Tang, Y. 2005. Approximate Range Mode
and Range Median Queries. In Proceedings of the 22nd Symposium on Theoretical
Aspects of Computer Science (STACS 2005).

Chazelle, B. 1982. A Theorem on Polygon Cutting with Applications. In In Proceedings
of the IEEE Symposium on Foundations of Computer Science, 339–349.

Driscoll, J. R., Sarnak, N., Sleator, D. D., and Tarjan, R. E. 1989. Making
Data Structures Persistent. Journal of Computer and System Sciences 38, 1 (Feb.),
86–124.

Krijnen, T. and Meertens, L. G. L. T. 1983. Making B-Trees Work for B. Tech. Re-
port 219/83, The Mathematical Center, Amsterdam.

Krizanc, D., Morin, P., and Smid, M. 2003. Range Mode and Range Median Queries
on Lists and Trees. In Proceedings of the Fourteenth Annual International Sympo-
sium on Algorithms and Computation (ISAAC 2003), Volume 2906 of Lecture Notes
in Computer Science, 517–526.

Lueker, G. S. 1978. A Data Structure for Orthogonal Range Queries. In Proceedings of
the 19th IEEE Symposium on Foundations of Computer Science, 28–34.

Myers, E. W. 1982. AVL Dags. Tech. Report 82-9, Department of Computer Science,
University of Arizona.

18 D. KRIZANC, P. MORIN, M. SMID

Myers, E. W. 1984. Efficient Applicative Data Structures. In Conference Record eleventh
Annual ACM Symposium on Principles of Programming Languages, 66–75.

Reps, T., Teitelbaum, T., and Demers, A. 1983. Incremental Context-Dependent
Analysis for Language-Based Editors. ACM Transactions on Programming Lan-
guages and Systems 5, 449–477.

Sarnak, N. and Tarjan, R. E. 1986. Planar point location using persistent search trees.
Communications of the ACM 29, 7 (July), 669–679.

Swart, G. 1985. Efficient Algorithms for Computing Geometric Intersections. Tech. Re-
port #85-01-02, Department of Computer Science, University of Washington, Seattle.

Thorup, M. 1996. On RAM Priority Queues. In Proceedings of the 7th ACM-SIAM
Symposium on Discrete Algorithms, 59–67.

van Emde Boas, P. 1977. Preserving Order in a Forest in Less than Logarithmic Time
and Linear Space. Information Processing Letters 6, 80–82.

Willard, D. E. 1983. Log-logarithmic Worst-Case Range Queries are Possible in Space
Θ(n). Information Processing Letters 17, 2, 81–84.

Willard, D. E. 1985. New Data Structures for Orthogonal Queries. SIAM Journal on
Computing ?, 232–253.

Yao, A. C. 1982. Space-Time Tradeoff for Answering Range Queries. In Proceedings of
the 14th Annual ACM Symposium on the Theory of Computing , 128–136.

Yao, A. C. 1985. On the Complexity of Maintaining Partial Sums. SIAM Journal on
Computing 14, 277–288.

