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COMPUTING THE CENTER OF AREA OF A CONVEX POLYGON∗
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The center of area of a convex planar set X is the point p for which the minimum
area of X intersected by any halfplane containing p is maximized. We describe a simple

randomized linear-time algorithm for computing the center of area of a convex n-gon.
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1. Introduction

Let X be a convex planar set with unit area. The center of area of X is a point p∗

that maximizes the cut off area function

f(p) = min{area(h ∩X) | h is a halfplane that contains p} ,

and the value δ∗ = f(p∗) is known as Winternitz’s measure of symmetry.14 The
δ-level Γδ of X is defined as

Γδ = {p | f(p) = δ} .

∗This research was partly funded by Deutsche Forschungsgemeinschaft (DFG), grant BR 1465/5-2,
and by the IST Programme of the EU as a Shared-cost RTD (FET Open) Project under Contract
Number IST-2000-26473 (ECG - Effective Computational Geometry for Curves and Surfaces).
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It is known that Γδ is a closed convex curve and that Γδ1 is strictly contained in
Γδ2 if δ1 > δ2. From this it follows that p∗ is unique.

There is a long history of work on the center of area of convex sets. A classical
result of Winternitz,3 which has been rediscovered many times,12,16,18,19,21 is that
f(g) ≥ 4/9 where g is the centroid of X, with equality if and only if X is a triangle.
(In d dimensions, Ehrhart11 showed that f(g) ≥ dd/(d+1)d with equality if and only
if X is a pyramid on any (d-1)-dimensional convex base.) For centrally symmetric
sets, f(g) = 1/2, since any line through the point of symmetry cuts X into two
pieces of equal area. Thus, 4/9 ≤ f(g) ≤ 1/2 with f(g) = 4/9 for triangles and f(g)
close to 1/2 for highly symmetric sets.

Although much is known about the center of area, it is quite nontrivial to
determine the center of area for a given convex set. In a series of papers, Dı́az and
O’Rourke7,8,9 develop an O(n6 log2 n) time algorithm for finding the center of area
of a convex n-gon. The same authors give an approximation algorithm that runs
in O(GK(n + K)) time, where G is the bit-precision of the input polygon P and
K is the output bit-precision of the point p∗. Braß and Heinrich-Litan4 describe
an O(n2 log3 nα(n)) time algorithm for computing the center of area of a convex
n-gon. As an application of tools for searching in arrangments of lines, Langerman
and Steiger15 present an O(n log3 n) time algorithm for finding the center of area
of a convex n-gon. All of these algorithms are deterministic.

In this paper we give a simple randomized linear-time algorithm for finding
the center of area of a convex n-gon P , which also computes Winternitz’s measure
of symmetry for P . We proceed by first giving a linear-time algorithm for the
decision problem: Does there exist a point p such that f(p) > δ? We then apply a
randomized technique due to Chan5 to turn this decision algorithm into a linear-
time optimization algorithm. For convenience, our model of computation is the real
RAM,20 though we do not use any functions that are specific to this model. We
require only that it is possible to to compute the exact area of a convex polygon.

The remainder of the paper is organized as follows. Section 2 describes our
algorithm for the decision problem and Section 3 shows how to convert this decision
algorithm into an optimization algorithm. Section 4 summarizes and concludes with
directions for future research.

2. The Decision Algorithm

In this section, we give an O(n) time algorithm for the following decision problem:
Is there a point p such that f(p) ≥ δ? An alternative statement of this problem is:
is Γδ non-empty? In what follows, we show that Γδ can be computed in O(n) time.

A δ-cut of P is a directed line segment uv with endpoints u and v on the
boundary of P such that the area of P to the right of uv is at most δ. Note that, for
any δ-cut uv, the point p cannot be to the right of uv. On the other hand, if there is
no δ-cut uv with p on its right, then f(p) ≥ δ. Therefore, each δ-cut defines a linear
constraint on the location of p, which we call a δ-constraint. The answer to the
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decision problem is affirmative if and only if there is a point p that simultaneously
satisfies all δ-constraints. If such a point p exists, we call the constraints feasible,
otherwise we call them infeasible.

Unfortunately, every polygon has an infinite number of δ-cuts and hence an in-
finite number of δ-constraints. However, we will show that all constraints imposed
by these δ-cuts can be represented succinctly as O(n) non-linear (but convex) con-
straints that can be computed in O(n) time.

To generate a representation of all δ-constraints, we begin by choosing a point
u on the boundary of P and finding the unique point v so that uv is a δ-cut. Next,
we sweep the points u and v counterclockwise along the boundary of P maintaining
the invariant that uv has an area of exactly δ to its right. We continue this process
until we return to the original points u and v.

Observe that, as long as u and v do not cross a vertex of P , the intersection
of all δ-constraints belonging to an edge pair is a convex region whose boundary
consists of at most 2 linear pieces and 1 non-linear piece. (See Figure 1.) In fact,
this non-linear piece is a hyperbolic arc. This is due to the well known fact that a
line tangent to a hyperbola forms a triangle of constant area with the asymptotes of
the hyperbola. Furthermore, the description complexity of these pieces is constant,
since they are defined by a four-tuple of vertices of P . Thus, the intersection of
all these δ-constraints can be computed explicitly in constant time. Since u and v

sweep over each vertex exactly once, we obtain 2n such convex constraints whose
intersection is equal to the intersection of all δ-constraints.

Therefore, the decision problem reduces to determining if the intersection of
2n convex regions is empty. We can compute an explicit representation of this
intersection in O(n) time, as follows: Separately compute the intersection of all
δ-constraints that contain the point (0,+∞) and all δ-constraints that contain
the point (0,−∞) and then compute the intersection of the two resulting convex
regions. Since the δ-constraints are generated sorted by slope, the first step is easily
done in O(n) time using an algorithm similar to Graham’s Scan.1,13 Since the two
boundaries of the two resulting regions are x-monotone and upwards, respectively
downwards, convex, their intersection (step two) can be computed in O(n) time
using a left-to-right plane sweep.2

We have just proven:

Theorem 1. Let P be a convex n-gon and δ > 0 a real parameter. Then there
exists an O(n) time algorithm for the decision problem: Does there exist a point p

such that f(p) ≥ δ?

3. The Optimization Algorithm

In this section, we show how to use the decision algorithm of the previous section
along with a technique of Chan5 to solve the optimization problem: What is the
largest value of δ such that Γδ is non-empty? Chan’s technique requires only that
we be able to (1) solve the decision problem in D(n) = Ω(nε) time, ε > 0 and
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(2) generate a set of r > 1 subproblems each of size αn, α < 1, such that the
solution to the original problem is the minimum (or maximum) of the solutions to
the subproblems. Under these conditions, the optimization problem can be solved
by a randomized algorithm in O(D(n)) expected time.

To apply Chan’s technique, we need a suitable definition of subproblem. Let S

be a subset of edges of P . The S-induced δ-constraints are the set of all δ-constraints
uv, where u and v are both on edges of S. The type of subproblems we consider are
those of determining for a given set S and a value δ whether or not the S-induced
δ-constraints feasible. To obtain a linear-time algorithm, we must be able to solve
such subproblems in O(|S|) time.

For a given set S, computing a representation of the S-induced δ-constraints,
can be done using a modification of the sweep algorithm from the previous section
so that it only considers δ-cuts uv where u and v are on elements of S. The only
technical tool required for this modification is a data structure that, given two
points u and v on elements of S (the boundary of P ) tells us the area of P to the
right of uv in constant time. This data structure is provided by Czyzowicz et al6

who show that any convex n-gon can be preprocessed in O(n) time so that the area
of the polygon to the right of any chord uv can be computed in O(1) time. Using
this data structure, it is straightforward to generate a representation of S-induced
δ-constraints in O(|S|) time. Once we have computed these constraints, we can
test if they are feasible in O(|S|) time. Thus, Condition 1 required to use Chan’s
technique is satisfied with D(n) = Θ(n).

Next, we observe that Helly’s theorem in the plane (c.f., Eckhoff10) implies that
for any δ > δ∗ there exists a set of three δ-constraints whose intersection is empty.
In our context, this means that P contains 6 edges such that, for any δ > δ∗, the
δ-constraints induced by those edges are infeasible. Therefore, if a set S contains
those 6 edges, then the S-induced δ-constraints are feasible if and only if δ ≤ δ∗.

Therefore, we can solve our maximization problem as follows: Partition the
edges of P in 7 groups, E1, . . . , E7, each of size approximately n/7. Next, generate
subsets S1, . . . , S7, by taking all 7 6-tuples of E1, . . . , E7. Note that, for each Si,
the Si-induced δ-constraints are satisfiable if δ ≤ δ∗, since they are just a subset of
the original constraints. On the other hand, for the set Sj that contains the 6 edges
guaranteed by Helly’s theorem, the Sj-induced δ-constraints are not satisfiable for
any δ > δ∗. Therefore,

δ∗ = min {max {δ | Si-induced δ-constraints are satisfiable} | 1 ≤ i ≤ 7} .

Finally, observe that each Si is of size at most αn, for α = 6/7. Therefore, we have
satisfied the second condition required to apply Chan’s optimization technique.
This completes the proof of:

Theorem 2. There exists a randomized O(n) expected time algorithm for the op-
timization problem: What is the largest value δ∗ for which Γδ∗ is non-empty?

Of course, once δ∗ is known, an explicit representation of Γδ∗ can be computed
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in O(n) time. Alternatively, Chan’s technique can also be made to output a point
p∗ ∈ Γδ∗ .5

4. Conclusions

We have given a randomized linear-time algorithm for determining the center of area
of a convex n-gon. This algorithm is simple, implementable, and is asymptotically
faster than any previously known algorithm.

Although our algorithm is simple and easy to implement, the constants hidden
in the O-notation are enormous. A close examination of Chan’s technique reveals
that the number of subproblems generated in our application is actually r ≥

(
k
6

)
,

where k is an integer that satisfies ln
(
k
6

)
+ 1 < k/6. The smallest such value of k is

146, which leads to r =
(
146
6

)
= 12 122 560 164 subproblems. Reducing this constant

while maintaining the O(n) asymptotic running time remains an open problem. One
possible approach is to treat the problem as an LP-type problem and try to use the
Matoušek-Sharir-Welzl algorithm.17 The difficulty with this approach is that the
underlying LP-type problems consists of as many as

(
n
2

)
constraints (though only

O(n) apply to any given value of δ). A linear-time deterministic algorithm is also
an open problem. The current fastest deterministic algorithm runs in O(n log3 n)
time.15

Finally, we have not considered the problem of computing the center of area of a
non-convex polygon. There are two different versions of this problem, depending on
whether a cut is defined as a chord of P , which partitions P into two polygons, or a
line which may partition P into many polygons. Approximation algorithms for the
second case are considered by Dı́az and O’Rourke.7 To the best of our knowledge,
there are no exact algorithms for either version.
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Fig. 1. The intersection of all δ-constraints defined by a pair of edges makes a convex region whose
boundary consists of at most 3 pieces.


