
Succinct Data Structures for Approximating
Convex Functions with Applications?

Prosenjit Bose,1 Luc Devroye2 and Pat Morin1

1 School of Computer Science, Carleton University, Ottawa, Canada, K1S 5B6,
{jit,morin}@cs.carleton.ca

2 School of Computer Science, McGill University, Montréal, Canada, H3A 2K6,
luc@cs.mcgill.ca

Abstract. We study data structures for providing ε-approximations of
convex functions whose slopes are bounded. Since the queries are efficient
in these structures requiring only O(log(1/ε)+log log n) time, we explore
different applications of such data structures to efficiently solve problems
in clustering and facility location. Our data structures are succinct using
only O((1/ε) log2(n)) bits of storage. We show that this is optimal by
providing a matching lower bound showing that any data structure pro-
viding such an ε-approximation requires at least Ω((1/ε) log2(n)) bits of
storage.

1 Introduction

We consider the problem of approximating convex functions of one variable
whose slopes are bounded. We say that a non-negative number y is an ε-approximation
to a non-negative number x if (1− ε)x ≤ y ≤ x.3 We say that a function g is an
ε-approximation to a function f if g(x) is an ε-approximation to f(x) for all x
in the domain of f .

Let f : R→ R+ be a convex function that is non-negative everywhere. In this
paper we show that, if the absolute value of the slope of f is bounded above by n,
then there exists a piecewise-linear function g that ε approximates f at all points
x except where the slope of f is small (less than 1) and that consists of O(logE n)
pieces, where E = 1/(1 − ε). The function g can be computed in O(K logE n)
time, where K is the time it takes to evaluate expressions of the form sup{x :
f ′(x) ≤ t} and f ′ is the first derivative of f . Once we have computed the function
g, we can store the pieces of g in an array sorted by x values so that we can
evaluate g(x) for any query value x in O(log logE n) time. Since we are interested
in the joint complexity as a function of ε < 1/2 and n ≥ 10, it is worth noting
that logEn = Θ((1/ε) log n) and thus that log logE n = Θ(log(1/ε) + log log n).

As an application of these results, we consider functions defined by sums
of Euclidean distances in d dimensions and show that that they can be ap-
proximated using the above results. To achieve this, we use a random rotation
? This research was partly supported by NSERC.
3 This definition is a bit more one-sided that the usual definition, which allows any y

such that |x− y| ≤ εx.

technique similar to the method of random projections [6]. We show that the
sum of Euclidean distances from a point to a set of n points can be closely ap-
proximated by many sums of Manhattan distances from the point to the set.
This technique is very simple and of independent interest.

The remainder of the paper is organized as follows. Section 2 presents our
result on approximating convex functions using few linear pieces. Section 3 dis-
cusses how these results can be interpreted in terms of data structures for approx-
imating convex functions. Section 4 gives lower bounds on the space complexity
of approximating convex function. Section 5 describes applications of this work
to facility location and clustering problems. Finally, Section 6 summarizes and
concludes the paper.

2 Approximating Convex Functions

Let h(x) = c + |nx|, for some c, n ≥ 0. Then, it is clear that the function g
such that g(x) = c + (1 − ε)|nx| is an ε-approximation of h. Furthermore, g is
an ε-approximation for any function h2 such that g(x) ≤ h2(x) ≤ h(x) for all
x ∈ R. (see Fig. 1). This trivial observation is the basis of our data structure for
approximating convex functions.

h(x) = |nx|

g(x) = |(1− ε)nx|
h2(x)

x
c

Fig. 1. The function g is an approximation of h and of h2.

Let f be a non-negative convex function and let f ′ be the first derivative of
f . Assume that f ′(x) is defined for all but a finite number of values of x and that
|f ′(x)| ≤ n for all x in the domain of f ′. For convenience, we define the right
derivative f∗(x) as follows: If f ′(x) is defined, then f∗(x) = f ′(x). Otherwise,
f∗(x) = limδ→0+ f ′(x + δ).

Let a be the largest value at which the slope of f is at most −(1− ε)n, i.e.,

a = max{x : f∗(x) ≤ −(1− ε)n} .

(Here, and throughout, we use the convention that max ∅ = −∞ and min ∅ =∞.)
Similarly, let b = min{x : f∗(x) ≥ (1 − ε)n}. Then, from the above discussion,
it is clear that the function

g(x) =

f(a) + (1− ε)(x− a)n if x ≤ a
f(b) + (1− ε)(b− x)n if x ≥ b
f(x) otherwise

(1)

is an ε-approximation of f (see Fig. 2).

f(x)

x
a b

g(x)

Fig. 2. The function g is a (1− ε) approximation of f .

Equation (1) tells us that we can approximate f by using two linear pieces
and then recursively approximating f in the range (a, b). However, in the range
(a, b), f∗ is in the range (−(1− ε)n, (1− ε)n). Therefore, if we recurse dlogE ne
times, we obtain a function g with O(logE n) = O((1/ε) log n) linear pieces that
approximates f at all points except possibly where f∗ is less than one.

Theorem 1 Let f and f∗ be defined as above. Then there exists a piecewise-
linear function g with O(logE n) pieces that is an ε-approximation to f at all
values except where |f∗(x)| ≤ 1.

3 Data Structures

In this section, we consider the consequences of Theorem 1 in terms of data
structures for approximating convex functions. By storing the pieces of g in an
array sorted by x values, we obtain the following.

Theorem 2 Let f and f∗ be defined as in Section 2. Then there exists a data
structure of size O((1/ε) log n) that can compute an ε-approximation to f(x) in
O(log(1/ε) + log log n) time for any query value x where |f∗(x)| ≥ 1.

Next, we consider a more dynamic model, in which the function f is updated
over time. In particular, we consider the following operations that are applied
to the initial function f(x) = 0, for all x ∈ R.

1. Query(x): Return an ε-approximation to f(x).
2. Insert(a): Increase the slope of f by 1 in the range (a,∞), i.e., set f(x)←

f(x) + x− a for all x ∈ [a,∞).
3. Delete(x): Decrease the slope of f by 1 in the range (x,∞). In order to

maintain convexity, the number of calls to Delete(x) may not exceed the
number of calls to Insert(x) for any value of x.

Note that a sequence of Insert and Delete operations can only produce a
monotonically increasing function f whose slopes are all integers. This is done
to simplify the exposition of the data structure. If an application requires that
f be allowed to decrease and increase then two data structures can be used and
their results summed.

The function f has some number m of breakpoints, where the slope of f
changes. We store these breakpoints in a balanced search tree T , sorted by x-
coordinate. With each breakpoint x, we also maintain the value ∆(x) by which
the slope of f increases at x. In addition, we link the nodes of T in a doubly-
linked list, so that the immediate successor and predecessor of a node can be
found in constant time. It is clear that T can be maintained in O(log n) time
per operation using any balanced search tree data structure.

In addition to the search tree T , we also maintain an array A of size O((1/ε) log n)
that contains the piecewise linear approximation of f . The ith element in this
array contains the value xi such that xi = min{x : f∗(x) ≥ Ei}, a pointer to the
node in T that contains xi, and the values of f(xi) and f∗(xi), i.e., the value of
f at xi and slope of f at xi. To update this array during an Insert or Delete
operation, we first update the values of f(xi) and f∗(xi) for each i. Since there
are only O((1/ε) log n) array entries, this can be done in O((1/ε) log n) time.

Next, we go through the array again and check which values of xi need to
be changed (recall that xi = min{x : f∗(x) ≥ Ei}). Note that, since Insert
or Delete can only change the value of f∗(x) by 1, if the value of xi changes
then it changes only to its successor or predecessor in T . Since the nodes of T
are linked in a doubly-linked list, and we store the values of f(xi) and f∗(xi) we
can detect this and update the value of xi, f(xi) and f∗(xi) in constant time.
Therefore, over all array entries, this takes O((1/ε) log n) time.

To evaluate an approximation to f(x), we do a binary search on A to find the
index i such that [xi, xi+1) contains x and then output f(xi) + (x − xi)f∗(xi).
By the choice of xi, this is a ε-approximation to f(x). We have just proven the
following:

Theorem 3 There exists a data structure of size O(n) that supports the op-
erations Insert, Delete in O((1/ε) log n) time and Query in O(log(1/ε) +
log log n) time, where n is the maximum slope of the function f being maintained.

4 A Lower Bound on Storage

In this section we prove an Ω((1/ε) log2 n) lower bound on the number of bits
required by any data structure that provides an ε-approximation for convex
functions. The idea behind our proof is to make m = Θ((1/ε) log n) choices from
a set of n elements. We then encode these choices in the form of a convex function
f whose slopes are in [0, n]. We then show that given a function g that is an
ε-approximation to f we can recover the m = Θ((1/ε) log n) choices. Therefore,
any data structure that can store an ε-approximation to convex functions whose
slopes lie in [0, n] must be able to encode

(
n
m

)
different possibilities and must

therefore store Ω((1/ε) log2 n) bits in the worst case.

Let x1, . . . , xn be an increasing sequence where x1 = 0 and each xi, 2 ≤ i ≤ n
satisfies

xi−1 + (1− ε)
(

xi − xi−1

1− 2ε

)
> xi−1 +

xi − xi−1

1− 2ε
, (2)

which is always possible since (1− ε)/(1− 2ε) > 1.
Let p1, . . . , pm be any increasing sequence of m = blogE′ nc integers in the

range [1, n], where E′ = 1/(1− 2ε). We construct the function f as follows:

1. For x ∈ [−∞, 0), f(x) = 0.
2. For x ∈ (xpi

, xpi+1), f(x) has slope 1/(1− 2ε)i.
3. For x > pm, f(x) has slope n.

The following lemma, illustrated in Fig. 3 allows us to decode the values of
p1, . . . , pm given an ε-approximation to f .

x

f(x)
(1− ε)f(x)

f(xpj) +
xpj+1 − xpj

(1− 2ε)j−1

xpj
xpj+1

Fig. 3. An illustration of Lemma 1.

Lemma 1 For the function f defined above and for any i such that i = pj for
some 1 ≤ j ≤ m,

(1− ε)f(xpj+1) > f(xpj
) +

xpj+1 − xpj

(1− 2ε)j−1
.

Proof. The lemma follows (with some algebra) from (2).

Suppose that g is an ε-approximation to f , i.e, for all x ∈ R, g(x) satisfies
(1− ε)f(x) ≤ g(x) ≤ f(x). Then Lemma 1 can be used to recover the values of
p1, . . . , pm from g. Suppose, that we have already recovered p1, . . . , pj and that
we now wish to recover pj+1. Note that, since we have recovered p1, . . . , pj we

can compute the exact value of f(xpj
). We then evaluate g(xpj

+ 1), g(xpj
+ 2),

and so on until encountering a value k such that

g(xpj + k) > f(xpj) +
xpj

+ k − xpj

(1− 2ε)j

Lemma 1 then guarantees that pj+1 = pj +k−1. In this way, we can reconstruct
the entire function f and recover the values of p1, . . . , pm.

Although in the above discussion the slopes used in the construction of f are
not always integral it is clear that carefully rounding values appropriately would
yield the same results using only integer valued slopes. Since we can encode

(
n
m

)
different choices of p1, . . . , pm in this manner and log

(
n
m

)
= Ω((1/ε) log2 n), we

conclude the following:

Theorem 4 Any data structure that can represent an ε-approximation to any
convex function whose slopes are integers in the range [0, n] must use Ω((1/ε) log2 n)
bits of storage in the worst case.

Remark 1 Some readers may complain that the function used in our lower
bound construction uses linear pieces whose lengths are exponential in n. How-
ever, one should take into account that the endpoints of these pieces have x-
coordinates that are integral powers of 2 and they can therefore be encoded in
O(log n) bits each using, e.g., a floating point representation.

Remark 2 Another easy consequence of Lemma 1 is that any piecewise linear
function that ε-approximates f has Ω((1/ε) log n) pieces.

5 Applications

Next, we consider applications of our approximation technique for convex func-
tions to the problem of approximating sums of distances in d dimensions. Let S
be a set of n points in d dimensions. The Fermat-Weber weight of a point q ∈ Rd

is
FW(p) =

∑
p∈S

‖pq‖ ,

where ‖pq‖ denotes the distance between points p and q. Of course, different def-
initions of distance (e.g., Euclidean distance, Manhattan distance) yield different
Fermat-Weber weights.

5.1 The 1-dimensional case

One setting in which distance is certainly well defined is in one dimension. In
this case,

‖pq‖ = |p− q| ,

so the Fermat-Weber weight of x is given by

FW(x) = f(x) =
∑
y∈S

|x− y| .

Note that the function f is convex (it is the sum of n convex functions) and has
slopes bounded below by −n and above by n, so it can be approximated using
the techniques Section 3. Furthermore, adding or removing a point p to/from S
decreases the slope of f by 1 in the range (−∞, p) and increases the slope of f
by 1 in the range (p,∞), so the dynamic data structure of the previous section
can be used to maintain an ε-approximation of f in O(logE n) = O((1/ε) log n)
time per update.

Given the set S, constructing the ε-approximation for f can be done in
O(n/ε) time by a fairly straightforward algorithm. Using a linear-time selection
algorithm, one finds the elements of S with ranks bεn/2c and d(1−ε/2)ne. These
are the values a and b in (1). Once this is done, the remaining problem has size
(1 − ε)n and is solved recursively. Although some care is required to compute
the values f(a) and f(b) at each stage, the deatails are not difficult and are left
to the interested reader.

Remark 3 A general result of Agarwal and Har-Peled [1] implies that the
Fermat-Weber weight of points in one dimension can actually be ε-approximated
by a piecewise-linear function with O(1/ε) pieces. However, it is not clear how
easily this approach can be made dynamic to handle insertion and deletions of
points.

5.2 The Manhattan case

The Manhattan distance between two points p and q in Rd is

‖pq‖1 =
d∑

i=1

|pi − qi| ,

where pi denotes the ith coordinate of point p. We simply observe that Man-
hattan distance is the sum of d one-dimensional distances, so the Fermat-Weber
weight under the Manhattan distance can be approximated using d one-dimensional
data structures.

5.3 The Euclidean case

The Euclidean distance between two points p and q in Rd is

‖pq‖2 =

(
d∑

i=1

(pi − qi)2
)1/2

.

A general technique used to approximate Euclidean distance is to use a poly-
hedral distance function, in which the unit sphere is replaced with a polyhedron

that closely resembles a sphere. For example, the Manhattan distance function
is a polyhedral distance function in which the unit sphere is replaced with a unit
hypercube. Although this technique works well when d is small, such metrics
generally require a polyhedron with a number of vertices that is exponential in
d, making them poorly suited for high dimensional applications.

Another technique, that works well when d is very large (greater than log n),
and for most distance functions, is that of random projections [6]. Here, a random
O(log n)-flat is chosen and the points of S are projected orthogonally onto this
flat. With high probability, all interpoint distances are faithfully preserved after
the projection, so the problem is reduced to one in which the dimension of the
point set is O(log n). The difficulty with this approach, when using Euclidean
distances, is that sums of Euclidean distances are difficult to deal with even when
d = 2 [2], thus the reduction in dimension does not help significantly.

Here we present a third approach that combines both of these techniques and
adds two new twists: (1) we obtain a polyhedral metric as the sum of several
Manhattan metrics and (2) our polyhedron is random. The first twist allows us
to apply approximate data structures for one-dimensional convex functions while
the second allows us to achieve approximation guarantees using an a number of
vertices that increases only linearly with d.

Let f(p) denote the Fermat-Weber weight of p under the Euclidean distance
function. Choose k independent random orientations of the coordinate axes.
Let fi(p) denote the Fermat-Weber weight of p under the Manhattan distance
function after rotating the axes according to the ith random orientation. Then
fi(p) may take on any value in the range [f(p),

√
df(p)]. In particular, fi(p) has

an expected value
E[fi(p)] = cdf(p) ,

where cd is a constant, dependent only on d, whose value is derived in Appendix A.
Consider the function

g(p) =
1

kcd
×

k∑
i=1

fi(p)

that approximates the Fermat-Weber weight under Euclidean distance.

Lemma 2 Pr{|g(p)− f(p)| ≥ εf(p)} = exp(−Ω(ε2k))

Proof. The value of g(p) is a random variable whose expected value is f(p)
and it is the sum of k independent random variables, all of which are in the
range [f(p),

√
df(p)]. Applying Hoeffding’s inequality [4] immediately yields the

desired result.

In summary, g(p) is an ε-approximation of f(p) with probability 1−e−Ω(ε2k).
Furthermore, g(p) is the sum of k Fermat-Weber weights of points under the
Manhattan distance function. Each of these Manhattan distance functions is
itself a sum of d Fermat-Weber weights in 1 dimension. These 1-dimensional
Fermat-Weber weights can be approximated using the results of Section 3 or the
results of Agarwal and Har-Peled [1].

5.4 Clustering and Facility Location

Bose et al [3] describe data structures for approximating sums of distances.
They show how to build a data structure in O(n log n) time that can (1 − ε)-
approximate the Fermat-Weber weight of any point in O(log n) time. However,
the constants in their algorithms depend exponentially on the dimension d.

The same authors also give applications of this data structure to a number
of facility-location and clustering problems, including evaluation of the Medoid
and AverageDistance clustering measures, the Fermat-Weber problem, the con-
strained Fermat-Weber problem, and the constrained obnoxious facility-location
problem. All of these applications also work with the data structure of Section 3,
many with improved running times. A summary of these results is given in Ta-
ble 1.

Problem Exact solution Previous ε-approx. Ref. New ε-approx.

Average distance O(n2) O(n)a O(n log n) [5, 3] O(n log log n)
Medoid (1-Median) O(n2) O(n)a O(n log n) [5, 3] O(n log log n)
Discrete Fermat-Weber O(n2) O(n)a O(n log n) [5, 3] O(n log log n)

Fermat-Weber – O(n)b O(n log n) [5, 3] O(n)

Constrained Fermat-Weber O(n2) O(n)b O(n log n) [5, 3] O(n)
Constrained OFL O(n2) O(n)a O(n log n) [5, 7, 3] O(n log log n)

a Refers to a randomized algorithm that outputs a (1−ε)-approximation with constant
probability.

b Refers to a randomized algorithm that outputs a (1 − ε)-approximation with high
probability, i.e., with probability 1− n−c, for some c > 0.

Table 1. Applications of the data structure for evaluating the Fermat-Weber weights
of points under the Euclidean distance function.

6 Summary and Conclusions

We have given static and dynamic data structures for approximating convex
functions of one variable whose slopes are bounded. These data structures have
applications to problems involving sums of distances in d dimensions under both
the Manhattan and Euclidean distance functions. In developing these applica-
tions we have arrived at a technique of independent interest, namely that of
approximating Euclidean distance as the sum of several Manhattan distances
under several different orientations of the coordinate system.

References

1. P. K. Agarwal and S. Har-Peled. Maintaining the approximate extent measures
of moving points. In Proceedings of the 12th Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 148–157, 2001.

2. C. Bajaj. The algebraic degree of geometric optimization problems. Discrete &
Computational Geometry, 3:177–191, 1988.

3. P. Bose, A. Maheshwari, and P. Morin. Fast approximations for sums of distances,
clustering and the Fermat-Weber problem. Computational Geometry: Theory and
Apllications, 24:135–146, 2002.

4. W. Hoeffding. Probability inequalities for sums of bounded random variables. Jour-
nal of the American Statistical Association, 58:13–30, 1963.

5. P. Indyk. Sublinear time algorithms for metric space problems. In Proceedings of
the 31st ACM Symposium on Theory of Computing (STOC’99), 1999.

6. P. Indyk. Algorithmic applications of low-distortion geometric embeddings. In
Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science,
pages 10–33, 2001.

7. J. Kleinberg. Two algorithms for nearest neighbour search in high dimensions.
In Proceedings of the 29th ACM Symposium on Theory of Computing (STOC’97),
pages 599–608, 1997.

8. D. S. Mitrinovic. Analytic Inequalities. Springer, New York, 1970.

A The value of cd

The value of cd is given by

cd = E

[
d∑

i=1

|Xi|

]
,

where (X1, . . . , Xd) is a point taken from the uniform distribution on the surface
of the unit ball in Rd. We observe that (X2

1 , . . . , X2
d) is distributed as(

N2
1

N2
, . . . ,

N2
d

N2

)
,

where N2 =
∑d

i=1 N2
i and (N1, . . . , Nd) are i.i.d. normal(0, 1). Clearly,

N2
1

N2
=

N2
1

N2
1 +

∑d
i=2 N2

i

L=
G(1

2)
G(1

2) + G(d−1
2)

where G(1
2), and G(d−1

2) are independent gamma(1
2) and gamma(d−1

2) random
variables, respectively. Thus, N2

1 /N is distributed as a beta(1
2 , d−1

2) random
variable, β(1

2 , d−1
2). We have:

E

[
d∑

i=1

|Xi|

]
= dE

[√
β

(
1
2
,
d− 1

2

)]

= d

∫ 1

0

x
1
2−1(1− x)

d−1
2 −1

B(1
2 , d−1

2)
·
√

x dx

= d ·
B(1, d−1

2)
B(1

2 , d−1
2)

=
2

B(1
2 , d+1

2)
,

where B(a, b) is the beta function.
¿From Mitrinovic [8, p. 286], we note:

2
B(1

2 , d+1
2)
≥
√

d

2
+

1
4

+
1

16d + 32
· 1
Γ (1

2)
(3)

= 2

√
d

2
+

1
4

+
1

16d + 32
· 1√

π
(4)

≥
√

2d + 1
π

. (5)

Furthermore,

E

[
d∑

i=1

|Xi|

]
= dE[|X1|]

≤ d + 1
√

π ·
√

d
2 + 3

4 + 1
16d+48

≤ 2(d + 1)
√

π ·
√

2d + 3

≤
√

2(d + 1)
π

.

In summary, √
2d + 1

π
≤ cd =

2Γ (d
2 + 1)

√
π · Γ (d+1

2)
≤
√

2(d + 1)
π

.

