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1 Introduction

This paper pertains to the parametrized complexity of some geometric covering problems, many of whichare NP-hard. A prototype for these problems is the following Hyperplane-Cover problem: Given aset S of n points in Rd, does there exist a set of k hyperplanes such that each point of S is containedin at least one of the hyperplanes? It it known that Hyperplane-Cover is NP-hard, even in R2 (i.e.,covering points with lines) [17].
Parametrized complexity [6] is one of the recent approaches for �nding exact solutions to NP-hard problems. In a typical application of this approach, one tries to identify one or more natural(usually numerical) parameters of the problem which, if small, make the problem tractable.
With many problems, such as deciding if a graph with n vertices contains a clique of size k,it is easy to devise algorithms with running time of the form O(nk), so the problem is polynomialfor any constant k. While this is somewhat helpful, it is not completely satisfying since the degreeof the polynomial grows quickly as k grows. Fixed-parameter tractable algorithms have more strictrequirements. Namely, the running time must be of the form O(f(k)nc), where f is an arbitrarily fastgrowing function of k, and c is a constant not depending on k or n.
A typical example is the Vertex-Cover problem: Given a graph G = (V, E) with n vertices,does G have a subset V 0 � V of k vertices such that every edge is incident to at least one vertex of V 0?After much work on this problem, its running time has been reduced to O(1.2852k + kn) which, withcurrent computing technology allows for the e�cient solution of problem with values of k as large as200 and arbitrarily large n [5].
The current article is an attempt to apply the general techniques of parametrized complexityto geometric NP-hard problems. Indeed many geometric problems have natural parameters that can beused to limit their complexity. The most common of such a parameter is the geometric dimension ofthe problem.
This has been observed, for example, in the study of linear programming in Rd where theparameter is the dimension d. For this problem, there exists an algorithm with running time (e.g.)

O(d2n + eO(
p

d lnd)) [16], so the problem is �xed-parameter tractable. Another remarkable example ofthis phenomenon is k-piercing of rectangles : Given a set of n rectangles in the plane, is there a set of
k points such that each rectangle contains at least one of the points? This problem has O(n logn) timealgorithms for k = 1, . . . , 5 [14, 18, 20, 21], which makes it believable that it could admit an algorithmwith running time of the form O(f(k)n logn) for arbitrary values of k. For now, no such result is known,and the best known algorithm has running time nΩ(k).

In this paper we de�ne an abstract set covering problem called Dim-Set-Cover that includesHyperplane-Cover and many similar problems. As part of this de�nition, we introduce a new notion ofgeometric set system hierarchy, in many points similar to the range spaces of Vapnik and Chervonenkis[22], along with a concept of dimension for each set system, which is always at least as large as itsVC-dimension. We then give �xed-parameter tractable algorithms for Dim-Set-Cover. These arealgorithms that have running times of the form O(f(k, d)nc) where c is a constant, d is the combinatorialdimension of the problem and f(k, d) is an arbitrarily fast growing function of k and d.
We give three algorithms for Dim-Set-Cover. The �rst is deterministic and runs in O 0(kdkn)
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time. The second is deterministic and runs in O 0(kd(k+1) + nd+1) time. The third is a Monte-Carloalgorithm that runs in O 0(kd(k+1) + c2dkd(d+1)/2eb(d+1)/2cn logn) time and returns a correct answerwith probability at least 1 − n−c. Here and throughout, the O 0 notation is identical to the standard Onotation except that it hides factors that are polynomial in d.
The remainder of the paper is organized as follows. In Section 2 we introduce the Dim-Set-Cover problem. In Section 3 we give a deterministic algorithm for Dim-Set-Cover. In Section 4 wepresent two more algorithms for Dim-Set-Cover. In Section 5 we describe several covering problemsthat can be expressed in terms of Dim-Set-Cover. Finally, in Section 6 we summarize and concludewith open problems.

2 Abstract Covering Problems

In this section we present the abstract covering problem Dim-Set-Cover that models many geometricand non-geometric covering problems. Throughout this section we illustrate all concepts using theHyperplane-Cover example. Since these illustrations are deviations from the main text, we denotethem with vertical bars.
Let U be a (possiblity in�nite) universe and let S � U be a ground set of size n < ∞. Theuniverse U is covered by a set R of subsets of U. The goal of any covering problem is, given S, R andan integer k, to �nd r1, . . . , rk 2 R such that S � Sk

i=1 ri or report that no such r1, . . . , rk exist. Inour (geometric) setting, R is partitioned into d sets R0, . . . , Rd−1 with the property de�ned below. Forconvenience, we also de�ne R−1 = ; and Rd = {U}.
In our Hyperplane-Cover example, U is Rd and S is a set of n points in Rd. We say that an
i-at is the a�ne hull of i + 1 a�nely independent points [19]. The set Ri, 0 � i � d, is the setof all i-ats in Rd.

Given a set A � U we de�ne the dimension of A as
dim(A) = min{i : 9r 2 Ri such that A � r}

and we de�ne the cover of A as
cover(A) = {r 2 Rdim(A) such that A � r} .

Since Rd = {U}, it is clear that dim(A) and cover(A) are well de�ned and cover(A) is non-empty for any
A � U. We require that the sets R0, . . . , Rd−1 also satisfy the following property.
Property 1. [Intersection Reduces Dimension] For any r1 2 Ri and r2 2 Rj, 0 � i, j � d, such that
r1 6� r2 and r2 6� r1, dim(r1 \ r2) < min{i, j}.

In our Hyperplane-Cover example, the dimension dim(A) of a set A is the dimension of thea�ne hull of A. The set cover(A) is a singleton containing the unique dim(A)-at that contains
A. Property 1 says that the intersection of an i-at and a j-at, neither of which contains theother, is an l-at for some l < min{i, j}. (We consider the empty set to be a (−1)-at.)
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A k-cover of S is a set {r1, . . . , rk} � R such that S � Sk
i=1 ri.

Definition 1 (Dim-Set-Cover). Given S, R and R0, . . . , Rd having Property 1, the Dim-Set-Coverproblem is that of determining whether S has a k-cover.
Property 1 has some important implications. The following lemma says that cover(A) reallyonly contains one interesting set.

Lemma 1. For any A � U and any �nite S � U there is a set(A) 2 cover(A) such that r \ S �set(A) \ S for all r 2 cover(A).
Proof. Suppose, by way of contradiction, that there is no such set in cover(A). Then, there must existtwo sets r1, r2 2 cover(A) such that r1 \ S 6� r2 \ S and r2 \ S 6� r1 \ S. Then, it must be that r1 6� r2and r2 6� r1 so, by Property 1, dim(r1 \ r2) < dim(A). But this is a contradiction since A � r1 \ r2.

In our Hyperplane-Cover example, we could also have de�ned Ri as the set of all point setsin Rd whose a�ne hull has dimension i. Then Lemma 1 says that for any A � Rd whose a�nehull has dimension i, there exists one i-at F containing every point set whose a�ne hull hasdimension i and that contains A.
The following lemma says that we can increase the dimension of A by adding a single elementto A.

Lemma 2. For any A � U and p 2 U \ set(A), dim(A [ {p}) > dim(A).
Proof. By de�nition, dim(A[ {p}) � dim(A). Suppose therefore, by way of contradiction, that dim(A[
{p}) = dim(A). Then there is a set r 0 2 Rdim(A) that contains A [ {p}. But then r 0 2 cover(A) and byLemma 1, r 0 � set(A), contradicting p 2 U \ set(A).

In our Hyperplane-Cover example, Lemma 2 implies that if we have a set A whose a�ne hullis an i-at and take a point p not contained in the a�ne hull of A then A [ {p} is not containedin any i-at, i.e. the dimension of A [ {p} is greater than the dimension of A.
The next lemma says that for any A � S, set(A) has a basis consisting of at most dim(A) + 1elements.

Lemma 3. For any r 2 R such that r = set(A) for some A � U, there exists a basis A 0 � A suchthat r = set(A 0) and |A 0| � dim(A) + 1.
Proof. Any such set r can be generated as follows: Initially, set A 0 ← ;, so that dim(A 0) = −1. While,set(A 0) 6= set(A), repeatedly add an element of A \ set(A 0) to A 0. By Lemma 2, each such additionincreases the dimension of A 0 by at least 1, up to a maximum of dim(A). Therefore, A 0 contains atmost dim(A) + 1 elements and set(A 0) = r, as required.

In our Hyperplane-Cover example, Lemma 3 is equivalent to saying that any i-at is the a�nehull of some set of i + 1 points.
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Throughout this paper we assume, usually implicitly, that 2 � k < n, otherwise the problem isnot very interesting.
The sets U, R, and R0, . . . , Rd−1 may be in�nite, so they are usually represented implicitly. Weassume that any algorithm for Dim-Set-Cover accesses these sets using two operations. (1) Given aset r 2 Ri and an element p 2 S, the algorithm can query if p is contained in r. Such a query takes

O 0(1) time. (2) Given a set A � U, the algorithm can determine set(A) and dim(A) in O 0(|A|) time. Itfollows that the only sets accessible to an algorithm are those sets r 2 R such that r = set(S 0) for some
S 0 � S. We call such sets accessible sets. Throughout the remainder of this paper we consider only
k-covers that consist of accessible sets.

In our Hyperplane-Cover example, we can determine in O(d) = O 0(1) time if a point iscontained in an i-at. Given A � Rd, we can compute the a�ne hull of A in O 0(|A|) time byreducing a |A|� d matrix to row-echelon form.

3 A Deterministic Algorithm

Next we give a deterministic �xed-parameter tractable algorithm for Dim-Set-Cover. The algorithmis based on the bounded search tree method [6]. The algorithm works by trying to partition S into sets
S1, . . . , Sk such that dim(Si) < d for all 1 � i � k.

Initially, the algorithm sets S 0 ← S and S1 ← S2 ← � � � ← Sk ← ;. The algorithm alwaysmaintains the invariants that (1) S 0, S1, . . . , Sk form a partition of S and (2) dim(Si) < d for all 1 � i � k.At the beginning of every recursive invocation the algorithm checks if S 0 is empty and, if so, outputsyes, since set(S1), . . . , set(Sk) is a k-cover of S. Otherwise, the algorithm chooses an element p 2 S 0.For each 1 � i � k, if dim(Si [ {p}) < d the algorithm calls itself recursively on S 0 \ set(Si [ {p}), and
S1, . . . , S\ set(Si[ {p}), . . . , Sk. If none of the recursive calls gives a positive result the algorithm returnsno. This is described by the following pseudocode.
BST-Dim-Set-Cover(S 0, S1, . . . , Sk)1: if S 0 = ; then2: output yes and quit3: else4: choose p 2 S5: for i = 1, . . . k do6: if dim(Si [ {p}) < d then7: BST-Dim-Set-Cover(S 0 \ set(Si [ {p}), S1, . . . , S \ set(Si [ {p}), . . . , Sk)8: end if9: end for10: end if11: output no
Theorem 1. Algorithm BST-Dim-Set-Cover correctly solves the Dim-Set-Cover problem in
O 0(kdkn) time.
Proof. We begin by proving the correctness of the algorithm. To do this we consider a restriction ofthe problem. A Restricted-Set-Cover instance is a (k + 1)-tuple (S, S1, . . . , Sk) where Si � S and
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dim(Si) < d for each 1 � i � k. A solution to the instance consists of a k-cover {r1, . . . , rk} of S suchthat Si � ri for all 1 � i � k. The degree of freedom, of a Restricted-Set-Cover instance is de�nedas DF(S1, . . . , Sk) = (d − 1)k −
∑k

i=1 dim(Si). Note that Restricted-Set-Cover is equivalent toDim-Set-Cover when S1 = � � � = Sk = ;, in which case DF(S1, . . . , Sk) = dk.
We claim that a call to BST-Dim-Set-Cover(S, S1, . . . , Sk) correctly solves the Restricted-Set-Cover instance (S, S1, . . . , Sk). To prove this, we use induction on DF(S1, . . . , Sk). If

DF(S1, . . . , Sk) = 0 then dim(Si) = d − 1 for all 1 � i � n, and, by Lemma 2 the Restricted-Set-Cover instance has a solution if and only if S 0 is empty. Since line 1 of the algorithm checks thiscondition, the algorithm is correct in this case.
Next suppose that DF(S1, . . . , Sk) = m > 0. If S 0 is empty then S1, . . . , Sk form a partitionof S and line 1 ensures that the algorithm correctly answers yes. Otherwise, by construction, any

p 2 S 0 is not contained in any set(Si). If the answer to the Restricted-Set-Cover instance is yesthen, in a restricted k-cover {r1, . . . , rk}, p is contained in some set ri. Therefore, the Restricted-Set-Cover instance (S, S1, . . . , Si [ {p}, . . . , Sk) also has a solution. On the other hand, if the correctanswer is no, then none of the restrictions (S, S1, . . . , Si [ {p}, . . . , Sk) for any 1 � i � k have a solution.By Lemma 2, DF(S1, . . . , Si [ {p}, . . . , Sk) < m for all 1 � i � k so, by induction, a call to BST-Dim-Set-Cover(S1, . . . , Si[{p}, . . . , Sk) correctly solves the Restricted-Set-Cover instance (S1, . . . , Si[
{p}, . . . , Sk). Since the algorithm checks all these k Restricted-Set-Cover instances, it must answercorrectly.

Finally, we prove the running time of the algorithm. Each invocation of the procedure resultsin at most k recursive invocations and, by Lemma 2, each recursive call decreases the degree of freedomby at least one. Therefore, the recursion tree has at most kdk leaves and∑dk−1
i=0 ki = O(kdk−1) internalnodes. The work done at each leaf is O 0(k) and the work done at each internal node is O 0(kn). Thereforethe overall running time is O 0(kdkn), as required.

4 Kernelization

In this section we give two more algorithms for Dim-Set-Cover that have a reduced dependence on k.The �rst algorithm is deterministic and runs in O 0(kd(k+1) + nd+1) time. The second is a Monte-Carloalgorithm that runs in O 0(kd(k+1) + c2dkd(d+1)/2eb(d+1)/2cn logn) time and outputs a correct answerwith high probability. Both algorithms work by reducing the given Dim-Set-Cover instance to anequivalent kernel instance that has size O(kd) and then solving the new instance using the BST-Dim-Set-Cover algorithm. We begin with a structural lemma.
Lemma 4. Suppose |r \ S| � m for all r 2 Si−1

j=0 Rj and there exists an accessible set r 0 2 Ri suchthat |r 0 \ S| > km. Then any k-cover of S contains a set r 00 such that r 0 � r 00.1
Proof. By Property 1, any accessible set r 2 R that does not contain r 0 has dim(r\r 0) < i and therefore
|(r \ r 0) \ S| � m, i.e., r contains at most m elements of r 0 \ S. Therefore, k such sets contain at most
km < |r 0 \ S| elements of r 0 \ S. However, in a k-cover, all elements of r 0 \ S must be covered. Weconclude that any k-cover must contain a set r 00 such that r 0 � r 00.

1The reader is reminded that we are only considering k-covers consisting of accessible sets.
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Lemma 4 is the basis of our kernelization procedure. The procedure works by �nding sets in
R that contain many elements of S and grouping those elements of S together. Given a subset S 0 � S, agrouping of the Dim-Set-Cover instance S by S 0 creates a new Dim-Set-Cover instance as follows:(1) The elements of S 0 are removed from S and a new element s 0 is added to S. (2) For every set r 2 Rsuch that S 0 � r, the element s 0 is added to r.

It is clear that dim(A) for any A � S and Property 1 are preserved under the grouping operation,so that Property 1 holds for the new Dim-Set-Cover instance. Furthermore, Lemma 3 implies thatthe new element s 0 can be represented as a list of at most d elements of S. Thus, operations on groupedinstances of Dim-Set-Cover can be done with a runtime that is within a factor of d of non-groupedinstances, i.e., the overhead of working with grouped instances is O 0(1).
The following lemma shows that, if the group is chosen carefully, the new instance is equivalentto the old one.

Lemma 5. Suppose |r \ S| � m for all r 2 Si−1
j=0 Rj and there exists an accessible set r 0 2 Ri withsize |r 0 \ S| > km. Then the grouping of S by S 0 = r 0 \ S has a k-cover if and only if S has a

k-cover.
Proof. If S has a k-cover {r1, . . . , rk} then, by Lemma 4, there exists an rj such that r 0 � rj. Considerthe sets r 01, . . . , r 0k in the grouped instance that correspond to the sets r1, . . . , rk, respectively. For each
1 � i � k, ri � r 0i. Therefore, S \ S 0 � S � Sk

i=1 r 0i. Furthermore, r 0j contains s 0. Therefore {r 01, . . . , r 0k}is a k-cover for the grouped instance.
On the other hand, if the grouping of S by S 0 has a k-cover {r 01, . . . , r 0k}, then the correspondingsets r1, . . . , rk in the original instance also form a k-cover for S. This is due to the facts that, for each

1 � i � k, ri = r 0i \ {s 0}, s 0 /2 S and s 0 2 r 0i implies S 0 � ri.
The following procedure is used to reduce an instance of Dim-Set-Cover involving a set S ofsize n into a new instance with size at most kd.

Kernelize(S)1: for i = 0, . . . , d − 1 do2: while Ri contains an accessible set r such that |r \ S| > ki do3: group S by r \ S4: end while5: end for

Lemma 6. A call to Kernelize(S) produces a new instance of Dim-Set-Cover that has a k-coverif and only if the original instance has a k-cover.
Proof. By the time the procedure considers set Ri in lines 2{4, every r in Si−1

j=0 Rj has size |r\S| � ki−1.Therefore, by Lemma 5, any grouping operation performed in line 3 results in a Dim-Set-Coverinstance that has a k-cover if and only if the original Dim-Set-Cover instance has a k-cover.
After a call to Kernelize(S) we get a new instance of Dim-Set-Cover for which |r\S| � kd−1

for all r 2 R. One consequence of this is that, if the new instance has more than kd elements thatneed to be covered, then we can be immediately certain that it does not have a k-cover. Therefore, the
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instance that we have left to solve has size n 0 � kd and can be solved in time O 0(kd(k+1)) using theBST-Dim-Set-Cover algorithm.
Lemma 7. The Dim-Set-Cover problem can solved in O 0(kd(k+1)+K(n, k, d)) time where K(n, k, d)is the running time of the Kernelize procedure.

All that remains is to �nd an e�cient implementation of the Kernelize procedure. Lemma 3implies that any accessible set in Ri can be generated as set(S 0) where S 0 � S has size at most i + 1. Itfollows that all the accessible sets in Ri can be generated in O(ni+1) time, and each one can be checkedin O(n) time. This gives us the following brute force result.
Theorem 2. The Dim-Set-Cover problem can be solved in O 0(kd(k+1) + nd+1) time by a deter-ministic algorithm.

Although Theorem 2 implies a faster algorithm for some values of k, d and n, it is not entirelysatisfactory. In fact, if we parameterize by k adn d then it does not even satisfy the de�nition of �xed-parameter tractability since d appears in the exponent of n. To obtain a faster algorithm we make useof randomization.
De�ne a heavy covering set as an accessible set r 2 Ri such that |r \ S| > n/2kd−i. Considerthe following alternative implementation of Kernelize.

Halving-Kernelize(S)1: while |S| > 2kd do2: n← |S|3: for i = 0, . . . , d − 1 do4: while Ri contains a heavy covering set r do5: group S by r \ S6: end while7: end for8: if |S| > n/2 then9: output no10: end if11: end while

It is easy to verify, using Lemma 5, that each grouping operation results in an instance of Dim-Set-Cover that has a k-cover if and only if the original instance has a k-cover. Now, after each iterationof the outer while loop, |r \ S| � n/2k for all r 2 S. Therefore, if |S| is greater than n/2 we can be surethat S has no k-cover, so the algorithm only outputs no in line 9 when S has no k-cover. If this is notthe case, then |S| decreases by a factor of at least 2 during each iteration.
It seems that Halving-Kernelize is no easier to implement than the original Kernelizeprocedure. However, the di�erence between the two is that Halving-Kernelize attempts to �ndheavy covering sets, which contain relatively large fractions of S. This helps, because if we choose

i + 1 elements of S at random, there is a good chance that they will all belong a heavy covering set in
Ri, if a heavy covering set exists.

Suppose that |r \ S| � n/(2kd−j) for all r 2 Rj, j < i. Let r 2 Ri be a heavy covering setand consider the following experiment. Initially we set our sample S 0 equal to the empty set. Wethen repeatedly choose an element p from S at random and add it to our sample S 0. If p is contained
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in (r \ S) \ set(S 0) we are successful and we continue, otherwise we are unsuccessful and we stop.The experiment ends when we are either unsuccessful or set(S 0) = r. In the former case, we call theexperiment a failure. In the latter case we call it a success.
If dim(S 0) = −1, i.e., S 0 = ;, then the probability that we are successful is at least

|r \ S|

n
� 1

2kd−i

Otherwise, if 0 � dim(S 0) = j < i, then the probability that we are successful is at least
|r \ S| − |set(S 0) \ S|

n
� 1

2kd−i
−

1

2kd−j
=

ki − kj

2kd
,

and each successful step increases dim(S 0) by at least 1. Therefore, the probability that the entireexperiment is a success is at least
pi � 1

2kd−i
� i−1∏

j=0

�
ki − kj

2kd

� (1)
=

1

2i+1kd+di−i
� i−1∏

j=0

�
ki − kj

� (2)
=

ki2

2i+1kd+di−i
� i−1∏

j=0

�
1 − kj−i

� (3)
=

1

2i+1kd+di−i−i2 � i∏
j=1

�
1 − k−j

� (4)
� 1

2i+1kd+di−i−i2 � ∞∏
j=1

�
1 − k−j

� (5)
� 1

2i+3kd+di−i−i2 (6)
� 1

2d+2kd(d+1)/2eb(d+1)/2c . (7)
Inequality (6) follows from Euler's pentagonal number theorem [7, Chapter 16] (c.f., Andrews [2]). If werepeat the above experiment x times, then the probability that all of the experiments are failures is atmost

(1 − pi)
x

Setting x = 2d+2kd(d+1)/2eb(d+1)/2c, this probability is less than 1/2. If we repeat this procedure cx logntimes, the probability that all experiments are failures is no more than n−c. Thus, we have an algorithmthat runs in O 0(cxn logn) time and �nds r with probability at least 1 − n−c.
Lemma 3 implies that the total number of accessible sets in Ri, and hence the total number ofheavy covering sets in Ri is at most � n

i+1

� � ni+1. Thus, if we choose c = i + 1 + c 0 then the probabilitythat there exists a heavy covering set in Ri that is not found by repeating the above sampling experiment
cx logn times is at most n−c 0 . Therefore, one execution of line 4{6 of theHalving-Kernelize algorithmcan be implemented to run in O 0(c 0x|S| logn) time and fails with probability at most n−c 0 . Since |S| ishalved during each iteration of the outer loop, the entire algorithm runs in time O 0(c 0xn logn) and thealgorithm is correct with probability at least 1 − n−c 0

d logn. Choosing c 0 large enough yields our mainresult on randomized algorithms.
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Theorem 3. There exists a Monte-Carlo algorithm for the Dim-Set-Cover problem that runsin O 0(kd(k+1) + c2dkd(d+1)/2eb(d+1)/2cn logn) time and answers correctly with probability at least
1 − n−c.

5 Applications

In this section we present a number of covering problems, both geometric and non-geometric, thatcan be modeled as instances of Dim-Set-Cover and hence solved by the algorithms of the previoustwo sections. For the geometric applications, the value of d is closely related to the dimension of thegeometric space.

5.1 Covering points with hyperplanes and vice-versa.

Given a set S of n points in Rd, does there exist a set of k hyperplanes such that each point of S iscontained in at least one hyperplane?
This problem has received considerable attention in the literature and appears to be quitedi�cult. It is known to be NP-hard even when d = 2 [17]. The optimization problem of �nding thesmallest value of k for which the answer is yes has recently been shown to be APX-hard [3, 13], so unlessP = NP there does not exist a (1 + ε)-approximation algorithm. Algorithms for restricted versions andvariants of this problem have been considered by Agarwal and Procopiuc [1] and Hassin and Megiddo[9].
We have seen, in our running example, that this problem can be modelled as follows: U = Rd

and, for each 0 � i � d − 1, Ri is the set of i-ats embedded in Rd. To see that this �ts into our model,observe that the intersection of an i-at and a j-at, neither of which contains the other is an l-at, forsome l < min{i, j} so this system satis�es Property 1. Thus, this is a Dim-Set-Cover instance in whichthe parameter d is equal to the dimension of the underlying Euclidean space.
In a dual setting, we are given a set S of n hyperplanes in Rd and asked if there exists a set of kpoints such that each hyperplane in S contains at least one of the points. By a standard point-hyperplaneduality, this problem is equivalent to the previous problem and can be solved as e�ciently.
At this point we remark that in the plane, i.e., covering points with lines, it is possible toachieve a deterministic algorithm that performs slightly better than our randomized algorithm.2 Thisis achieved by replacing our randomized procedure for �nding heavy covering sets with an algorithm ofGuibas et al [8] that can �nd all lines containing at least m points of S in time O((n2/m) log(n/m)).Using this yields a deterministic algorithm with running time O(k2k+2 + kn).

2This result can be generalized to Rd when the point set S is restricted, i.e., no i + 1 elements of S lie on a common
i-at, for any 0 � i < d − 1. However, since any input that has a k-cover necessarily has many points on a common
(d − 1)-at, this does not seem like a reasonable assumption.
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5.2 Covering points with spheres.

Given a set S of n points in Rd, does there exist a set of k hyperspheres such that each point in S is onthe surface of at least one of the hyperspheres?
For this problem we take Rd+1 = U = Rd. The set Ri, 0 � i � d consists of all i-spheres, sothat R0 consists of points, R1 consists of pairs of points, R2 consists of circles, and so on. Again, theintersection of an i-sphere and a j-sphere, neither of which contains the other, is an l sphere for some

l < min{i, j}, so this system satis�es Property 1. This yields an instance of Dim-Set-Cover whosedimension is 1 greater than that of the underlying Euclidean space.

5.3 Covering points with polynomials.

Given a set S = {(x1, y1), . . . , (xn, yn)} of n points in R2 does there exist a set of k polynomial functions
f1, . . . , fk, each with maximum degree d, such that for each 1 � i � n, yi = fj(xi) for some 1 � j � k?In other words, is every point in S contained in the graph of at least one of the functions?

This problem is a generalization of the problem of covering points with lines. As such, it isNP-hard and APX-hard, even when d = 1.
We say that two points in R2 are x-distinct if they have distinct x-coordinates. For this problem,

R0 is the set of all points, R1 is the set of all x-distinct pairs of points, R2 is the set of all x-distincttriples of points, and so on, until Rd+1 which is the set of all degree d polynomials. Since there exists adegree d polynomial that contains any set of d + 1 or fewer x-distinct points, each set in R correspondsto points that can be covered by a degree d polynomial (possibly with some coe�cients set to 0).
The intersection of a �nite set of i points and a (possibly in�nite) set of j � i points, neitherof which contains the other results in a set of l < min{i, j} points. The intersection of two non-identicaldegree d polynomials is a set of at most d points. Therefore, the above system of sets satsi�es Property 1and can be solved with our algorithms.

5.4 Covering by sets with intersection at most d.

Given a set S of size n and a set C containing subsets of S such that no two elements of C have morethan d elements in common, is there a set of k elements in C whose union contains all the elements of
S?

This problem is a special case of the classic Set-Cover problem, which was one of the �rstproblems shown to be NP-hard [12]. The version when d = 1 is a generalization of covering pointsby lines and is therefore APX-hard. In fact, �nding an o(logn) approximation for the correspondingoptimization problem is not possible unless NP � ZTIME(nO(log logn)) [13]. On the other hand, Johnson[11] shows that, even with no restrictions on d, an O(logn)-approximation can be achieved with a simplegreedy algorithm.
To model this problem as a Dim-Set-Cover instance, we let Ri, 0 � i < d be all subsets of S of
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size i+1 that are contained in 1 element of C and we let Rd = C. It is easy to verify that these sets satisfyProperty 1 and hence we have an instance of Dim-Set-Cover that can be solved with our algorithms.If the sets are given explicitly, the Kernelize procedure runs in O(n 0) time where n 0 =
∑

r2C |r| is theinput size. Thus, for this case we obtain an algorithm that runs in time O(n 0 + kd(k+1)).

6 Conclusions

We have presented an abstract covering problem on sets that includes many NP-hard geometric and non-geometric covering problems. We have obtained �xed-parameter tractable algorithms for this problemthat yield �xed-parameter tractable algorithms for the concrete problems.
Our third algorithm is a Monte-Carlo algorithm that relies on randomization to �nd heavycovering sets. It seems feasible that the algorithm could be derandomized with the use of ε-nets [4, 10,15]. Indeed, setting ε = 1/2kd−i guarantees that an ε-net contains at least one element from each heavycovering set in Ri. However, we require a net that contains a basis for every heavy covering set in Ri.Perhaps such a net could be obtained by repeated applications of ε-nets.
One type of problem that can not be modelled by our abstraction is the class of k-piercingproblems, where we are given a set of objects, say rectangles in the plane, and asked to �nd a set of kpoints such that each rectangle contains at least one point. The main di�culty here seems to be that theintersection of two rectangles is another rectangle, so the resulting system does not satisfy Property 1.Nevertheless, O(n logn) time algorithms exist for k = 1, . . . , 5 [14, 18, 20, 21], so it is plausible that�xed-parameter tractable algorithms for piercing problems exist.
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