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Abstract

We consider three-dimensional grid-drawings of graphs with at most
one bend per edge. Under the additional requirement that the vertices be
collinear, we prove that the minimum volume of such a drawing is Θ(cn),
where n is the number of vertices and c is the cutwidth of the graph. We
then prove that every graph has a three-dimensional grid-drawing with
O(n3/ log2 n) volume and one bend per edge. The best previous bound
was O(n3).
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1 Introduction

We consider undirected, finite, and simple graphs G with vertex set V (G) and
edge set E(G). The number of vertices and edges of G are respectively denoted
by n = |V (G)| and m = |E(G)|.

Graph drawing is concerned with the automatic generation of aesthetically
pleasing geometric representations of graphs. Graph drawing in the plane is
well-studied (see [4, 17]). Motivated by experimental evidence suggesting that
displaying a graph in three dimensions is better than in two [21, 22], and applica-
tions including information visualisation [21], VLSI circuit design [18], and soft-
ware engineering [23], there is a growing body of research in three-dimensional
graph drawing.

A three-dimensional polyline grid-drawing of a graph, henceforth called a
polyline drawing, represents the vertices by distinct points in Z

3 (called grid-

points), and represents each edge as a polyline between its endpoints with bends
(if any) also at gridpoints, such that distinct edges only intersect at common
endpoints, and each edge only intersects a vertex that is an endpoint of that
edge. A polyline drawing with at most b bends per edge is called a b-bend

drawing. A 0-bend drawing is called a straight-line drawing.
A folklore result states that every graph has a straight-line drawing. Thus

we are interested in optimising certain measures of the aesthetic quality of such
drawings. The bounding box of a polyline drawing is the minimum axis-aligned
box containing the drawing. If the bounding box has side lengthsX−1, Y−1 and
Z − 1, then we speak of an X × Y ×Z polyline drawing with volume X · Y ·Z.
That is, the volume of a polyline drawing is the number of gridpoints in the
bounding box. This definition is formulated so that two-dimensional drawings
have positive volume. This paper continues the study of upper bounds on the
volume and number of bends per edge in polyline drawings. The volume of
straight-line drawings has been widely studied [1–3, 5, 6, 9, 11, 12, 14, 16, 20].
Only recently have (non-orthogonal) polyline drawings been considered [11, 13].
Table 1 summarises the best known upper bounds on the volume and bends per
edge in polyline drawings.

Cohen et al. [3] proved that the complete graph Kn (and hence every n-
vertex graph) has a straight-line drawing with O(n3) volume, and that Ω(n3)
volume is necessary. Dyck et al. [13] recently proved that Kn has a 2-bend
drawing with O(n2) volume. The same conclusion can be reached from the
O(qn) volume bound of Dujmović and Wood [11], since trivially every graph
has a (n−1)-queue layout. Dyck et al. [13] asked the interesting question: what
is the minimum volume in a 1-bend drawing of Kn? The best known upper
bound at the time was O(n3), while Ω(n2) is the best known lower bound.
(Bose et al. [1] proved that all polyline drawings have Ω(n+m) volume.)

In this paper we prove two results. The first concerns collinear polyline
drawings in which all the vertices are in a single line. Let G be a graph, and
let σ be a linear order of V (G). Let Lσ(e) and Rσ(e) denote the endpoints
of each edge e such that Lσ(e) <σ Rσ(e). For each vertex v ∈ V (G), the set
{e ∈ E(G) : Lσ(e) ≤σ v <σ Rσ(e)} is called the cut in σ at v. The cutwidth of σ
is the maximum size of a cut in σ. The cutwidth of G is the minimum cutwidth
of a linear order of V (G). Cutwidth is a widely studied graph parameter (see
[7]).
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Table 1: Volume of 3D polyline drawings of n-vertex graphs with m ≥ n edges.

graph family bends per edge volume reference
arbitrary 0 O(n3) Cohen et al. [3]
arbitrary 0 O(m4/3n) Dujmović and Wood [12]
maximum degree ∆ 0 O(∆mn) Dujmović and Wood [12]
bounded chromatic number 0 O(n2) Pach et al. [20]
bounded chromatic number 0 O(m2/3n) Dujmović and Wood [12]

bounded maximum degree 0 O(n3/2) Dujmović and Wood [12]
H-minor free (H fixed) 0 O(n3/2) Dujmović and Wood [12]
bounded treewidth 0 O(n) Dujmović et al. [9]
k-colourable q-queue 1 O(kqm) Dujmović and Wood [11]
arbitrary 1 O(nm) Dujmović and Wood [11]
cutwidth c 1 O(cn) Theorem 1

arbitrary 1 O(n3/ log2 n) Theorem 2
q-queue 2 O(qn) Dujmović and Wood [11]
q-queue (constant ε > 0) O(1) O(mqε) Dujmović and Wood [11]
q-queue O(log q) O(m log q) Dujmović and Wood [11]

Theorem 1. Let G be a graph with n vertices and cutwidth c. The minimum

volume for a 1-bend collinear drawing of G is Θ(cn).

Theorem 1 represents a qualitative improvement over the O(nm) volume
bound for 1-bend drawings by Dujmović and Wood [11]. Our second result
improves the best known upper bound for 1-bend drawings of Kn.

Theorem 2. Every complete graph Kn, and hence every n-vertex graph, has a

1-bend O(log n) ×O(n) ×O(n2/ log3 n) drawing with O(n3/ log2 n) volume.

It is not straightforward to compare the volume bound in Theorem 2 with the
O(kqm) bound by Dujmović and Wood [11] for k-colourable q-queue graphs (see
Table 1). However, since k ≤ 4q andm ≤ 2qn (see [10]), we have that O(kqm) ⊆
O(q3n), and thus the O(kqm) bound by Dujmović and Wood [11] is no more
than the bound in Theorem 2 whenever the graph has a O((n/ logn)2/3)-queue
layout. On the other hand, kqm ≥ m2/n. So for dense graphs with Ω(n2) edges
the O(kqm) bound by Dujmović and Wood [11] is cubic (in n), and the bound
in Theorem 2 is necessarily smaller. In particular, Theorem 2 provides a partial
solution to the above-mentioned open problem of Dyck et al. [13] regarding the
minimum volume of a 1-bend drawing of Kn.

2 Proof of Theorem 1

First we prove the lower bound in Theorem 1.

Lemma 1. Let G be a graph with n vertices and cutwidth c. Then every 1-bend

collinear drawing of G has at least cn/2 volume.

Proof. Consider a 1-bend collinear drawing of G in an X×Y ×Z bounding box.
Let L be the line containing the vertices. If L is not contained in a grid-plane,
then X,Y, Z ≥ n, and the volume is at least n3 ≥ cn.
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Now assume, without loss of generality, that L is contained in the Z = 0
plane. Let σ be a linear order of the vertices determined by L. Let B be the set
of bends corresponding to the edges in the largest cut in σ. Then |B| ≥ c. For
every line L′ parallel to L, there is at most one bend in B on L′, as otherwise
there is a crossing.

First suppose that L is axis-parallel. Without loss of generality, L is the
X-axis. Then X ≥ n. The gridpoints in the bounding box can be covered by
Y Z lines parallel to L. Thus Y Z ≥ |B| ≥ c, and the volume XY Z ≥ cn.

Now suppose that L is not axis-parallel. Thus X ≥ n and Y ≥ n. The
gridpoints in the bounding box can be covered by Z(X +Y ) lines parallel to L.
Thus Z(X+Y ) ≥ |B| ≥ c, and the volume XY Z ≥ XY c/(X+Y ) ≥ cn/2.

To prove the upper bound in Theorem 1 we will need the following lemma,
which is a slight generalisation of a well known result. (For example, Pach et al.

[20] proved the case X = Y ). We say two gridpoints v and w in the plane are
visible if the segment vw contains no other gridpoint.

Lemma 2. The number of gridpoints {(x, y) : 1 ≤ x ≤ X, 1 ≤ y ≤ Y } that are

visible from the origin is at least 3XY/2π2.

Proof. Without loss of generality X ≤ Y . Let N be the desired number of
gridpoints. For each 1 ≤ x ≤ X , let Nx be the number of gridpoints (x, y) that
are visible from the origin, such that 1 ≤ y ≤ Y . A gridpoint (x, y) is visible
from the origin if and only if x and y are coprime. Let φ(x) be the number of
positive integers less than x that are coprime with x (Euler’s φ function). Thus
Nx ≥ φ(x), and

N =

X
∑

x=1

Nx ≥

X
∑

x=1

φ(x) ≈
3X2

π2
.

(See [15] for a proof that
∑X

x=1
φ(x) ≈ 3X2/π2.) If X ≥ Y/2, then N ≥

3XY/2π2, and we are done. Now assume that Y ≥ 2X . If x and y are coprime,
then x and y + x are coprime. Thus Nx ≥ bY/xc · φ(x). Thus,

N ≥

X
∑

x=1

⌊

Y

x

⌋

· φ(x) ≥

(

Y −X

X

) X
∑

x=1

φ(x) ≈
3(Y −X)X

π2
≥

3XY

2π2

Now we prove the following strengthening of the upper bound in Theorem 1.

Lemma 3. Let G be a graph with n vertices and cutwidth c. For all integers

X ≥ 1, G has a 1-bend collinear X ×O(c/X) × n drawing with the vertices on

the Z-axis. The volume is O(cn).

Proof. Let σ be a vertex ordering of G with cutwidth c. For all pairs of distinct
edges e and f , say e ≺ f whenever Rσ(e) ≤σ Lσ(f). Then � is a partial order
on E(G). A chain (respectively, antichain) in a partial order is a set of pairwise
comparable (incomparable) elements. Thus an antichain in � is exactly a cut
in σ. Dilworth’s Theorem [8] states that every partial order with no (k + 1)-
element antichain can be partitioned into k chains. Thus there is a partition of
E(G) into chains E1, E2, . . . , Ec, such that each Ei = (ei,1, ei,2, . . . , ei,ki

) and
Rσ(ei,j) ≤σ Lσ(ei,j+1) for all 1 ≤ j ≤ ki − 1.
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By Lemma 2 with Y = d4π2c/3Xe, there is a set S = {(xi, yi) : 1 ≤ i ≤
c, 1 ≤ xi ≤ X, 1 ≤ yi ≤ Y } of gridpoints that are visible from the origin.
Position the ith vertex in σ at (0, 0, i) on the Z-axis, and position the bend for
each edge ei,j at (xi, yi, j). Edges in distinct chains are contained in distinct
planes that only intersect in the Z-axis. Thus such edges do not cross. Edges
within each chain Ei do not cross since no two edges in Ei are nested or crossing
in σ, and the Z-coordinates of the bends of the edges in Ei agrees with the order
of their endpoints on the Z-axis, as (imprecisely) illustrated in Figure 1. The
bounding box isX×d4π2c/3Xe×n, since each chain has at most n−1 edges.

X

Z

Y

Figure 1: Construction of collinear 1-bend drawing in Lemma 3.

The constants in Lemma 3 can be tweaked as follows.

Lemma 4. Let G be a graph with n vertices and cutwidth c. Then G has a

1-bend collinear 3×d(c−2)/2e×n drawing. The volume is at most 3(c−1)n/2.

Proof. Let S = {(−1, 0), (1, 0)} ∪ {(x, y) : y ∈ {−1, 1},−1 ≤ x ≤ d(c − 6)/2e}.
Then S consists of at least c gridpoints that are visible from the origin. The
result follows from the proof of Lemma 3.

Since the cutwidth of Kn is n2/4 we have:

Corollary 1. The minimum volume for a 1-bend collinear drawing of the com-

plete graph Kn is Θ(n3). For all X ≥ 1, Kn has a 1-bend collinear X ×
O(n2/X) × n drawing with the vertices on the Z-axis. Furthermore, Kn has a

1-bend collinear 3 × dn2/8e × n drawing with volume at most 3n3/8.
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3 Proof of Theorem 2

Let P = d 1

2
log4 ne and Q = dn/P e. Let V (Kn) = {va,i : 1 ≤ a ≤ P, 1 ≤ i ≤ Q}.

Position each vertex va,i at

(2a, aQ+ i, 0) .

For each 1 ≤ a ≤ P , the set of vertices {va,i : 1 ≤ i ≤ Q} induces a complete
graph KQ, which is drawn using Corollary 1 (with the dimensions permuted) in
the box

[2a, 2a+ P ] × [aQ+ 1, (a+ 1)Q] × [0,−cQ2/P ] ,

for some constant c. For all 1 ≤ a < b ≤ P , orient each edge e = (va,i, vb,j), and
position the bend for e at

re = (2a+ 1, bQ+ j, 4P−aQ− i) ,

as (imprecisely) illustrated in Figure 2. We say va,ire is an outgoing segment at
va,i, and revb,j is an incoming segment at vb,j .

X

Z

Y

Figure 2: Construction of 1-bend drawing of Kn in Theorem 2.
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Thus the bounding box is O(P )×O(n)×O(4PQ+Q2/P ), which is O(log n)×
O(n) ×O(n3/2/ logn + n2/ log3 n), which is O(log n) ×O(n) × O(n2/ log3 n).
Hence the volume is O(n3/ log2 n). It remains to prove that there are no edge
crossings. By Corollary 1 all edges below the Z = 0 plane do not cross. We now
only consider edges above the Z = 0 plane.

Each point in an outgoing segment at va,i has anX-coordinate in [2a, 2a+1].
Thus an outgoing segment at some vertex va1,i1 does not intersect an outgoing
segment at some vertex va2,i2 whenever a1 6= a2. Clearly an outgoing segment
at va,i1 is not coplanar with an outgoing segment at va,i2 whenever i1 6= i2, and
thus these segments do not cross. Since each bend is assigned a unique gridpoint,
any two outgoing segments at the same vertex va,i do not cross. Thus no two
outgoing segments cross.

Each point in an incoming segment at vb,j has a Y -coordinate of bQ + j.
Thus incoming segments at distinct vertices do not cross. Since each bend is
assigned a unique gridpoint, any two incoming segments at the same vertex do
not cross. Thus no two incoming segments cross.

To prove that an incoming segment does not cross an outgoing segment,
we claim that in the projection of the edges on the Y = 0 plane, an incoming
segment does not cross an outgoing segment. In the remainder of the proof we
work solely in the Y = 0 plane, and use (X,Z) coordinates.

The projection in the Y = 0 plane of an outgoing segment at a vertex va,i

is the segment
s1 = (2a, 0) → (2a+ 1, 4P−aQ− i) .

The projection in the Y = 0 plane of the incoming segment of an edge (vc,k, vd,`)
is the segment

s2 = (2c+ 1, 4P−cQ− k) → (2d, 0).

For there to be a crossing clearly we must have c < a < d. To prove that
there is no crossing it suffices to show that the Z-coordinate of s2 is greater
than the Z-coordinate of s1 when X = 2a+ 1. Now s2 is contained in the line

Z =
4P−cQ− k

2c+ 1 − 2d
(X − 2d) .

Thus the Z-coordinate of s2 at X = 2a+ 1 is at least

4P−cQ−Q

2c+ 1 − 2d
(2a+ 1 − 2d) .

Thus it suffices to prove that

4P−cQ−Q

2c+ 1 − 2d
(2a+ 1 − 2d) > 4P−aQ . (1)

Clearly (1) is implied if it is proved with a = c+ 1 and d = c+ 2. In this case,
(1) reduces to

4P−c − 1

3
> 4P−c−1 .

That is, 4P−c−1 > 1, which is true since c ≤ P − 2. This completes the proof.
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