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Abstract: Simultaneous diagonal flips in plane triangulations are
investigated. It is proved that every triangulation with n ≥ 6 vertices has
a simultaneous flip into a 4-connected triangulation, and that the set of
edges to be flipped can be computed in O(n) time. It follows that every
triangulation has a simultaneous flip into a Hamiltonian triangulation. This
result is used to prove that for any two n-vertex triangulations, there
exists a sequence of O(logn) simultaneous flips to transform one into the
other. Moreover, � (log n) simultaneous flips are needed for some pairs of
triangulations. The total number of edges flipped in this sequence is O(n).
The maximum size of a simultaneous flip is then studied. It is proved that
every triangulation has a simultaneous flip of at least 1

3 (n − 2) edges. On
the other hand, every simultaneous flip has at most n − 2 edges, and there
exist triangulations with a maximum simultaneous flip of 6

7 (n − 2) edges.
© 2006 Wiley Periodicals, Inc. J Graph Theory
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1. INTRODUCTION

A (plane) triangulation is a simple planar graph with a fixed (combinatorial) plane
embedding in which every face is bounded by a triangle (i.e., a 3-cycle). So that
we can speak of the interior and exterior of a cycle, one face is nominated to be the
outerface, although the choice of outerface is not important for our results.

Letvwbe an edge of a triangulationG. Let (v, w, x) and (w, v, y) be the faces inci-
dent to vw. Then x and y are distinct vertices, unless G = K3. We say that x and y see
vw. Let G′ be the embedded graph obtained from G by deleting vw and adding the
edge xy, such that in the cyclic order of the edges incident to x (respectively, y), xy is
added between xv and xw (yw and yv). If G′ is a triangulation, then vw is (individu-
ally) flippable, and G is flipped into G′ by vw. This operation is called a (diagonal)
flip, and is illustrated in Figure 1. If G′ is not a triangulation and G �= K3, then xy

is already an edge of G; we say that vw is blocked by xy, and xy is a blocking edge.
In 1936, Wagner [34] proved that a finite sequence of diagonal flips transform a

given triangulation into any other triangulation with the same number of vertices.
Since then diagonal flips in plane triangulations [10–12,15,16,19,20,22,23,25,32]
and in triangulations of other surfaces [4,7,8,17,21,23,26,35] have been studied
extensively. It can be shown that for triangulations with n vertices, the number of
flips in Wagner’s proof is O(n2). Komuro [15] improved this bound to O(n). The
best known bound is max{6n − 30, 0} due to Mori et al. [19].

For labelled triangulations, Sleator et al. [32] proved that O(n log n) flips are
sufficient to transform one labelled triangulation with n vertices into any other,
and �(n log n) flips are sometimes necessary. The upper bound was independently
rediscovered by Gao et al. [10]. Note that the above-mentioned O(n) upper bound
in the unlabelled setting [15,19] can also be obtained by a careful analysis of the
proof by Sleator et al. [32].

Journal of Graph Theory DOI 10.1002/jgt
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FIGURE 1. Edge vw is flipped into xy.

Wagner [34] in fact proved that every n-vertex triangulation can be transformed
by a sequence of flips into the so-called standard triangulation �n, which is
illustrated in Figure 2 and is defined as the triangulation on n vertices with
two dominant vertices (adjacent to every other vertex). Clearly two n-vertex
triangulations each with two dominant vertices are isomorphic. To transform one
n-vertex triangulation G1 into another G2, first transform G1 into �n, and then
apply the flips to transform G2 into �n in reverse order. A similar approach is used
in this paper in the context of simultaneous flips in triangulations.

Let S be a set of edges in a plane triangulation G. The embedded graph obtained
from G by flipping every edge in S is denoted by G〈S〉. If G〈S〉 is a triangulation,
then S is (simultaneously) flippable in G, and G is flipped into G〈S〉 by S. This
operation is called a simultaneous (diagonal) flip. Note that it is possible for S to
be flippable, yet S contains non-flippable edges, and it is possible for every edge
in S to be flippable, yet S itself is not flippable. As far as the authors are aware,
simultaneous flips have previously been studied only in the more restrictive context
of geometric triangulations of a point set [9]. Individual flips have also been studied
in a geometric context [13,14].

In Section 2 we characterize flippable sets and give a number of introductory
lemmas. Our first main result states that every triangulation with at least six
vertices can be transformed by one simultaneous flip into a 4-connected (and hence
Hamiltonian) triangulation. Moreover, this flip can be computed in O(n) time for
n-vertex triangulations. These results are presented in Section 3. In Section 4,
we study simultaneous flips in maximal outerplanar graphs. We prove that for
any two n-vertex maximal outerplanar graphs, there exists a sequence of O(log n)
simultaneous flips to transform one into the other. The method used is the basis for
the main result in Section 5, which states that for any two n-vertex triangulations,

FIGURE 2. The standard triangulation and a Hamiltonian cycle.
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FIGURE 3. Obstacles to a flippable set. Dashed edges are flipped to create bold
edges. Shaded regions are faces.

there exists a sequence of O(log n) simultaneous flips to transform one into the
other. This result is optimal for many pairs of triangulations. For example, if one
triangulation has �(n) maximum degree and the other hasO(1) maximum degree,
then �(log n) simultaneous flips are needed, since one simultaneous flip can at
most halve the degree of a vertex. This also holds for diameter instead of maximum
degree. Finally in Section 6 the maximum size of a simultaneous flip is studied. It
is proved that every triangulation has a simultaneous flip of at least 1

3 (n − 2) edges.
On the other hand, every simultaneous flip has at most n − 2 edges, and there exist
triangulations with a maximum simultaneous flip of 6

7 (n − 2) edges.

2. BASICS

We start with a characterization of flippable sets that is used throughout the paper.
Two edges of a triangulation that are incident to a common face are consecutive. If
two consecutive edges are simultaneously flipped, then the two new edges cross,
as illustrated in Figure 3(a). Thus no two edges in a flippable set are consecutive.
Two edges form a bad pair if they are seen by the same pair of vertices. If a
bad pair of edges are simultaneously flipped, then the two new edges are parallel,
as illustrated in Figure 3(b). Thus no two edges in a flippable set form a bad
pair. If an edge vw is blocked by an edge pq as illustrated in Figure 3(c), then
vw is not individually flippable, but vw can be in a flippable set S as long as
pq is also in S. We now show that these three properties characterise flippable
sets.

Lemma 2.1. A set of edges S in a triangulation G �= K3 is flippable if and only
if:

(1) no two edges in S are consecutive,
(2) no two edges in S form a bad pair, and
(3) for every edge vw ∈ S, either vw is flippable or the edge that blocks vw is

also in S.

Journal of Graph Theory DOI 10.1002/jgt
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Proof. We have already seen that each condition is necessary for S to be
flippable. Now suppose that all three conditions are satisfied. Since no two edges
in S are consecutive, G〈S〉 is a graph embedded in the plane and every face is a
triangle. Suppose that two edges e1 and e2 are parallel in G〈S〉. Since G has no
parallel edges, e1 and e2 are both not in G. If exactly one of e1 and e2 is in G, then
condition (3) fails. If neither of e1 and e2 are in G, then the edges in S that flipped
to e1 and e2 form a bad pair. �

Note that condition (1) in Lemma 2 is equivalent to saying that the edges of the
dual G∗ that correspond to S form a matching. (The dual G∗ of G is the plane
graph with one vertex for every face of G, such that two vertices of G∗ are adjacent
whenever the corresponding faces in G are incident to a common edge.)

A cycle C in a triangulation G is separating if deleting the vertices of C from G

produces a disconnected graph.

Lemma 2.2. An edge in a separating triangle T of a triangulation is individually
flippable.

Proof. Consider an edge vw in T . Say vw is seen by p and q. Then one of p

and q is inside T , and the other is outside T . Thus pq is not an edge, and vw is
flippable. �

The next observation quickly follows from the Jordan Curve Theorem.

Lemma 2.3. Let vw be an edge of a triangulation that is seen by vertices p and
q. Suppose that p is inside some cycle C and q is outside C. Then vw ∈ C.

The next two results show that blocking edges are nearly always flippable, and
except for essentially one case, do not appear in a bad pair.

Lemma 2.4. A blocking edge is individually flippable in a triangulation G �= K4.

Proof. Let vw be an edge of G that is blocked by pq. Without loss of generality,
w is inside the triangle pvq. If pvq is a separating triangle, then pq is flippable by
Lemma 2.2. If pvq is not separating, then pwq must be a separating triangle since
G �= K4. Therefore, pq is flippable by Lemma 2.2. �

Lemma 2.5. Suppose that vw and xy are a bad pair in a triangulation G, both
seen by vertices p and q. Suppose that vw blocks some edge ab. Then xy and ab are
consecutive, and vw and xy are in a common triangle (amongst other properties).

Proof. Without loss of generality, w and x are inside the cycle (v, p, y, q), and
b is inside the triangle (v, a, w), as illustrated in Figure 4. Now (v, p, y, q) is a
separating 4-cycle with w in its interior. Since w is adjacent to a and b, both a and b

must be on the boundary of (v, p, y, q). It follows that p = b and y = a. If w �= x,
then the neighbours w and a are respectively on the inside and outside of the cycle
(p, x, q, v), which is not possible. Thus w = x. Hence xy and ab are consecutive,
and vw and xy are in a common triangle. �
Journal of Graph Theory DOI 10.1002/jgt
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FIGURE 4. The only case when a blocking edge vw is in a bad pair.

3. FLIPPING INTO A 4-CONNECTED TRIANGULATION

The main result in this section is that every triangulation with at least six vertices
has a simultaneous flip into a 4-connected (and hence Hamiltonian) triangulation.
It is well known that a triangulation is 4-connected if and only if it has no separating
triangle. Thus our focus is on flips that break separating cycles.

Lemma 3.1. Let S be a set of edges in a triangulation such that no two edges of
S are in a common triangle, and every edge in S is in a separating triangle. Then
S is flippable.

Proof. By Lemma 2.2, every edge in S is individually flippable. Thus, by
Lemma 2.1, it suffices to prove that no two edges in S form a bad pair. Suppose that
vw, xy ∈ S form a bad pair. Then vw and xy are seen by the same pair of vertices p

and q. Let T be a separating triangle containing vw. Then one of p and q is inside T ,
and the other is outside T . By Lemma 2.3, xy must be an edge of T , which implies
that vw and xy are in a common triangle. This contradiction proves that there is no
bad pair of edges both in S, and S is flippable. �
Lemma 3.2. Let G be a triangulation with n ≥ 6 vertices. Let S be a set of edges
in G that satisfy the conditions in Lemma 3.1, and suppose that every separating
triangle contains an edge in S. Then G〈S〉 is 4-connected.

Proof. Suppose on the contrary, that G〈S〉 contains a separating triangle T =
(u, v, w). Let S′ be the set of edges in G〈S〉 that are not in G. We proceed by case-
analysis on |T ∩ S′| (refer to Fig. 5). Since every separating triangle in G has an
edge in S, |T ∩ S′| ≥ 1.

Case 1. |T ∩ S′| = 1: Without loss of generality, vw ∈ S′, uv �∈ S′, and uw �∈
S′. Suppose xy was flipped to vw. Then xy is in a separating triangle xyp in G.
Any vertex adjacent to both v and w must be a vertex of the separating triangle
xyp. Thus p = u. Since G has at least six vertices, at least one of the triangles

Journal of Graph Theory DOI 10.1002/jgt
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FIGURE 5. Dashed edges are flipped to create a bold separating triangle. Shaded
regions are faces.

{(u, v, x), (u, v, y), (u, w, x), (u, w, y)} is a separating triangle. Thus at least one of
the edges in these triangles is in S. Since xy ∈ S, and no two edges of S appear in
a common triangle, {ux, uy, vx, vy, wx, wy} ∩ S = ∅. Thus uv or uw is in S. But
then uvw is not a triangle in G〈S〉, which is a contradiction.

Case 2. |T ∩ S′| = 2: Without loss of generality, uv ∈ S′, vw ∈ S′, and uw �∈ S′.
Suppose xy was flipped to uv, and rs was flipped to vw. Without loss of generality,
y and s are inside uvw in G〈S〉. Then in G, xy was in a separating triangle xyz, and
rs was in a separating triangle rst. By an argument similar to that in Lemma 3.1,
z = w and t = u. But then the subgraph of G induced by {u, v, w, x, y, r, s} is not
planar, or it contains parallel edges in the case that x = r and y = s.

Case 3. |T ∩ S′| = 3: Suppose xy was flipped to uv, rs was flipped to vw, and ab

was flipped to uw. Without loss of generality, y, s and b are inside uvw in G〈S〉. In G,
xy was in a separating triangle xyz, rs was in a separating triangle rst, and ab was in
a separating triangle (a, b, c). By an argument similar to that in Lemma 3.1, z = w,
t = u, and c = v. But then the subgraph of G induced by {u, v, w, x, y, r, s, a, b} is
non-planar, or contains parallel edges in the case that y = s = b and x = r = a.

In each case we have derived a contradiction. Therefore G〈S〉 has no separating
triangle, and thus is 4-connected. �

Observe that the restriction in Lemma 3.2 to triangulations with at least six
vertices is unavoidable. Every triangulation with at most five vertices has a vertex
of degree three, and is thus not 4-connected.

We now consider how to determine a set of edges that satisfy Lemma 3.2.

Lemma 3.3. Let e be an edge of an n-vertex triangulation G. Then G has a set
of edges S such that e ∈ S and every face of G has exactly one edge in S.

Proof. Biedl et al. [1] proved the following strengthening of Petersen’s match-
ing theorem [29]: every 3-regular bridgeless planar graph has a perfect matching
that contains a prespecified edge. The dual G∗ is a 3-regular bridgeless planar

Journal of Graph Theory DOI 10.1002/jgt
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graph with 2n − 4 vertices. A perfect matching in G∗ corresponds to the desired
set S. �

Lemma 3.3 only accounts for triangles of G that are faces. We account for
separating triangles as follows.

Lemma 3.4. Let e be an edge of an n-vertex triangulation G. Then G has a set
of edges S such that e ∈ S and every triangle of G has exactly one edge in S.

Proof. We proceed by induction on the number of separating triangles. The
result follows for a triangulation with no separating triangles by Lemma 3.3. Now
suppose G has k > 0 separating triangles, and the lemma holds for triangulations
with less than k separating triangles. Let T be a separating triangle of G. Let the
components of G \ T have vertex sets V1 and V2. Consider the induced subgraphs
G1 := G[V1 ∪ T ] and G2 := G[V2 ∪ T ]. Without loss of generality, the given edge
e is in G1. Both G1 and G2 have less than k separating triangles. By induction G1

has a set of edges S1 such that e ∈ S1, and every triangle of G1 has exactly one edge
in S1. Let e2 be the edge in S1 ∩ T . By induction, G2 has a set of edges S2 such that
e2 ∈ S2, and every triangle of G2 has exactly one edge in S2. Thus S := S1 ∪ S2 is
a set of edges of G such that e ∈ S, and every triangle of G has exactly one edge
in S. �

Theorem 3.5. Every triangulation G with n ≥ 6 vertices has a simultaneous flip
into a 4-connected triangulation that can be computed in O(n) time.

Proof. By Lemma 3.4, G has a set of edges S such that every separating triangle
of G has exactly one edge in S and no triangle of G contains two edges of S. By
Lemma 3.1, S is flippable. By Lemma 3.2, G〈S〉 is 4-connected. Biedl et al. [1]
proved that the set S in Lemma 3.4 can be computed inO(n) time. In [2] we proved
that the set S in Lemma 3.4 can be computed in O(n) time. �

We can obtain a stronger result at the expense of a slower algorithm. The
following consequence of the 4-colour theorem is essentially a Tait edge-colouring
[33].

Lemma 3.6. Every n-vertex planar graph G has an edge 3-colouring that can be
computed in O(n2) time, such that every triangle is trichromatic.

Proof. Robertson et al. [30] proved that G has a proper vertex 4-colouring that
can be computed in O(n2) time. Let the colours be {1, 2, 3, 4}. Colour an edge red
if its endpoints are coloured 1 and 2, or 3 and 4. Colour an edge blue if its endpoints
are coloured 1 and 3, or 2 and 4. Colour an edge green if its endpoints are coloured
1 and 4, or 2 and 3. Since the vertices of each triangle T are trichromatic, the edges
of T are also trichromatic. �

Theorem 3.7. Let G be a triangulation with n ≥ 6 vertices. Then G has three
pairwise disjoint flippable sets of edges S1, S2, S3 that can be computed in O(n2)
time, such that each G〈Si〉 is 4-connected.

Journal of Graph Theory DOI 10.1002/jgt
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Proof. By Lemma 3.6, G has an edge 3-colouring such that every triangle is
trichromatic. For any of the 3-colours, let S be the set of edges receiving that colour
and in a separating triangle. By Lemma 3.1, S is flippable. By Lemma 3.2, G〈S〉 is
4-connected. �

We have the following corollary of Theorems 3.5 and 3.7, since every
triangulation on at most five vertices (that is, K3, K4 or K5 \ e) is Hamiltonian, and
every 4-connected triangulation has a Hamiltonian cycle [36] that can be computed
in linear time [6].

Theorem 3.8. Every n-vertex triangulation G has a simultaneous flip into a
Hamiltonian triangulation that can be computed in O(n) time. Furthermore, G

has three disjoint simultaneous flips that can be computed inO(n2) time, such that
each transforms G into a Hamiltonian triangulation.

4. OUTERPLANE GRAPHS

A plane graph is outerplane if every vertex lies on the outerface. The other faces
are internal. An edge that is not on the boundary of the outerface is internal. Let
G be an (edge-)maximal outerplane graph G on n vertices. Every internal face
is a triangle, and G has 2n − 3 edges and n − 2 internal faces. The dual tree of
G, denoted by G∗, is the dual graph of G without a vertex corresponding to the
outerface. Observe that G∗ is a tree with n − 2 vertices and maximum degree at
most three.

The notions of diagonal flip and flippable set for triangulations are extended
to maximal outerplane graphs in the natural way, except that only internal edges
are allowed to be flipped. (It is not clear what it means to flip an edge of the
outerface since for n > 3, the outerface is not a triangle.) A flip in an outerplane
graph corresponds to a certain rotation in the dual tree; see [5,27,28,31]. This section
focuses on simultaneous flips in maximal outerplane graphs, which have previously
only been studied in a geometric setting [9].

Lemma 4.1. Every internal edge of a maximal outerplane graph is flippable.

Proof. Suppose that an internal edge vw is not flippable. Then vw is blocked
by some edge pq. Thus {v, w, p, q} induce K4. This is a contradiction since no
outerplane graph contains K4. �

Lemma 4.2. A set S of internal edges in a maximal outerplane graph G is flippable
if and only if the corresponding dual edges S∗ form a matching in G∗.

Proof. For S to be flippable it is necessary that there are no two consecutive
edges in S. This is equivalent to the condition that S∗ is a matching of G∗. By
Lemma 4.1, every edge in S is flippable. As in Lemma 2.1, the only obstruction
to S being flippable is a bad pair of edges, which cannot occur since a bad pair of
edges contains a subdivision of K4. �
Journal of Graph Theory DOI 10.1002/jgt
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Theorem 4.3. Every n-vertex maximal outerplane graph G has a flippable set
of at least 1

3 (n − 3) edges. Moreover, for infinitely many n, there is an n-vertex
maximal outerplane graph in which every flippable set has at most 1

3 (n − 3) edges.

Proof. First we prove the lower bound. Since G∗ is a tree with maximum degree
at most three, G∗ has a proper edge 3-colouring (by an easy inductive argument).
Now G∗ has n − 3 edges. Thus the largest colour class is a matching of at least
1
3 (n − 3) edges, which by Lemma 4.2, corresponds to a flippable set of at least
1
3 (n − 3) edges in G.

Now we prove the upper bound. By Lemma 4.2 it suffices to construct trees
T with maximum degree three, in which the maximum cardinality of a matching
equals one third the number of edges. We can then take the maximal outerplane
graph G for which G∗ = T . Let T be a tree rooted at a vertex r such that every
non-leaf vertex has degree three, and the distance between every leaf vertex and r

is odd. Obviously there are infinitely many such trees. Let K be the set of vertices
at even distance from r. Then K is a vertex cover of T (that is, every edge of T is
incident to a vertex in K). Since no edge of T has both its endpoints in K, and every
vertex in K has degree three, |K| equals one third the number of edges. Since T

has maximum degree three, K is a minimum vertex cover. König [18] proved that
the maximum cardinality of a matching in a bipartite graph equals the minimum
cardinality of a vertex cover. Thus the maximum cardinality of a matching equals
one third the number of edges, as desired. �

The following is the main result of this section. In the remainder of this paper
all logarithms have base 2, and c1 is the constant 2/ log 6

5 (≈ 7.6).

Theorem 4.4. Let G1 and G2 be (unlabelled) maximal outerplane graphs on n

vertices. There is a sequence of at most 4c1 log n simultaneous flips to transform
G1 into G2.

Theorem 4.4 is implied by the following lemma.

Lemma 4.5. For every maximal outerplane graph G on n vertices, there is a
sequence of at most 2c1 log n simultaneous flips to transform G into a maximal
outerplane graph that has a dominant vertex.

Proof of Theorem 4.4 assuming Lemma 4.5. Observe that two n-vertex
maximal outerplane graphs each with a dominant vertex are isomorphic. Let Dn

denote the n-vertex maximal outerplane graph with a dominant vertex. To transform
G1 into G2, first transform G1 into Dn, and then apply the flips to transform G2

into Dn in reverse order. �

The proof of Lemma 4.5 proceeds in two parts. In Lemma 4.6 we reduce the
diameter of the dual tree to c1 log n using at most c1 log n simultaneous flips. Then
in Lemma 4.7 a dominant vertex is introduced using at most a further c1 log n

simultaneous flips.

Journal of Graph Theory DOI 10.1002/jgt
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Lemma 4.6. Let G be a maximal outerplane graph on n vertices. Then G can
be transformed by a sequence of at most c1 log n simultaneous flips into a maximal
outerplane graph X such that the diameter of the dual tree X∗ is at most c1 log n.

Proof. We proceed by induction on n. The result holds trivially for n = 3.
Assume the lemma holds for graphs with less than n vertices, and let G be a
maximal outerplane graph on n vertices. By a theorem of Bose et al. [3], G has
an independent set I of at least n

6 vertices, and degG(v) ≤ 4 for every vertex v ∈ I.
Obviously degG(v) ≥ 2. For d ∈ {2, 3, 4}, let Id := {v ∈ I : degG(v) = d}.

For every vertex v ∈ I3 ∪ I4, add one internal edge incident to v to a set S.
Since I is independent, |S| = |I3| + |I4|. Suppose on the contrary that there are two
consecutive edges xu, xv ∈ S. Then x �∈ I3 ∪ I4, which implies that u, v ∈ I3 ∪ I4.
Since every internal face of G is a triangle, uv is an edge of G, which contradicts
the independence of I. Thus no two edges in S are consecutive. By Lemma 4.2, S

is flippable in G. Let G′ := G〈S〉. Every vertex v ∈ I2 ∪ I3 has degG′(v) = 2, and
every vertex v ∈ I4 has degG′(v) = 3.

Since I4 is an independent set of G, and any edge in G′ that is incident to a vertex
in I4 is also in G, I4 is an independent set of G′. Let S′ be the set of internal edges
of G′ incident to a vertex in I4. Thus |S′| = |I4|, and by the same argument used
for S, no two edges in S′ are consecutive in G′. By Lemma 4.2, S′ is flippable in
G′. Let G′′ := G′〈S′〉. Every vertex v ∈ I has degG′′(v) = 2.

Thus G can be transformed by two simultaneous flips into a maximal outerplane
graph G′′ containing at least n

6 vertices of degree two. Let G′′′ be the maximal
outerplane graph obtained from G′′ by deleting the vertices of degree two. Then
G′′′ has at most 5

6n vertices. By induction, G′′′ can be transformed by a sequence of
at most c1 log 5

6n simultaneous flips into a maximal outerplane graph X such that
the diameter of X∗ is at most c1 log 5

6n.
Consider a vertex v ∈ I. Since degG′′(v) = 2, there is one internal face incident

to v in G′′, which corresponds to a leaf in G′′∗. Thus the dual tree X∗ is obtained by
adding leaves to the dual tree G′′∗. Hence the diameter of X∗ is at most the diameter
of G′′∗ plus 2, which is 2 + c1 log 5

6n = c1 log n. We have used two simultaneous
flips, S and S′, to transform G into G′′, and then c1 log 5

6n simultaneous flips to
transform G′′ into X. The total number of flips is 2 + c1 log 5

6n = c1 log n. �
Lemma 4.7. Let G be a maximal outerplane graph on n vertices. Suppose that G∗

has diameter k. Let v be a fixed vertex of G. Then G can be transformed by at most
k simultaneous flips into a maximal outerplane graph X in which v is dominant.

Proof. As illustrated in Figure 6, let P be the set of internal faces incident with
v in G. In the dual tree G∗, the corresponding vertices of P form a path P∗. Define
the distance of each vertex x in G∗ as the minimum number of edges in a path from
x to a vertex in P∗. Since the diameter of G∗ is k, every vertex in G∗ has distance
at most k. No two vertices in G∗ both with distance one are adjacent, as otherwise
G∗ would contain a cycle. Each vertex of P∗ is adjacent to at most one vertex at
distance one, since G∗ has maximum degree at most three, and the endpoints of P∗
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FIGURE 6. Making v a dominant vertex in Lemma 4.7; the vertices of the dual
tree are drawn as squares.

correspond to faces with an edge on the outerface of G. Let S∗ be the set of edges
of G∗ incident to P∗ but not in P∗. Then S∗ is a matching between the vertices
at distance one and the vertices of P∗, such that all vertices at distance one are
matched. Let S be the set of edges of G corresponding to S∗ under duality. Note
that S is the set of internal edges that are seen by v. By Lemma 4.2, S is a flippable
set of edges of G. Let G′ := G〈S〉. In G′, the distance of each vertex not adjacent to
P∗ is reduced by one. Thus, by induction, at most k simultaneous flips are required
to reduce the distance of every vertex to zero, in which case v is adjacent to every
other vertex. �

Lemma 4.5 is implied by Lemmas 4.6 and 4.7 (with k = c1 log n).

5. SIMULTANEOUS FLIPS BETWEEN GIVEN TRIANGULATIONS

In this section we prove the following theorem, which is an analogue of Theorem
4.4 for outerplane graphs. Throughout, c1 is the constant 2/ log 6

5 (≈ 7.6) from
Section 4, and c2 is the constant 2/ log 54

53 (≈ 74.2).

Theorem 5.1. Let G1 and G2 be (unlabelled) triangulations on n vertices. There
is a sequence of at most 2 + 4(c1 + c2) log n simultaneous flips to transform G1

into G2.

Theorem 5.1 is implied by the following lemma using the approach of Wagner
described in Section 1.

Lemma 5.2. For every n-vertex triangulation G, there is a sequence of at most 1 +
2(c1 + c2) log n simultaneous flips to transform G into the standard triangulation
�n.

To prove Lemma 5.2 we first apply Theorem 3.8 to obtain a Hamiltonian
triangulation with one simultaneous flip. Thus it suffices to prove that a Hamiltonian
triangulation can be transformed into �n. A Hamiltonian cycle H of a triangulation
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G naturally divides G into two maximal outerplane subgraphs: an “inner” subgraph
consisting of H and the edges inside H , and an “outer” subgraph consisting of H

and the edges outside of H . Note that Mori et al. [19] and Sleator et al. [32] used a
similar approach for individual flips.

At this point, it is tempting to apply Lemma 4.5 twice, once on the inner subgraph
to obtain one dominant vertex, and then on the outer subgraph to obtain a second
dominant vertex, thus reaching the standard triangulation. However, Lemma 4.5
cannot be applied directly since we need to take into consideration the interaction
between these two outerplane subgraphs. The main problem is that an internal edge
in the inner subgraph may be blocked by an edge in the outer subgraph. The bulk
of this section is dedicated to solving this impasse.

First some definitions. A chord of a cycle C in a triangulation G is an edge of G

that is not in C and whose endpoints are both in C. A chord e of C is classified as
internal or external depending on whether e is contained in the interior or exterior
of C (with respect to the outerface of G). For the inductive step in Lemma 5.5 below
to work we need to consider a more general type of cycle than a Hamiltonian cycle.
A cycle C of a triangulation G is empty if the interior of C contains no vertices
of G. Obviously a Hamiltonian cycle is always empty. For an empty cycle C of a
triangulation G, let G{C} denote the subgraph of G whose vertices are the vertices
of C, and whose edges are the edges of C along with the internal chords of C. Then
G{C} is a maximal outerplane graph, and the boundary of the outerface of G{C} is
C.

Lemma 5.3. Let C be an empty cycle of a triangulation G �= K4. Let vw be an
internal chord of C that is blocked by some edge pq. Then pq is an external chord
of C that is flippable in G.

Proof. By Lemma 2.4, pq is a flippable edge of G. Since C is empty, p and q

are vertices of C. Now pq is not internal, as otherwise {p, q, v, w} would induce
K4 in the outerplane graph G{C}. Thus pq is external. �

Lemma 5.4. Let C be an empty cycle of a triangulation G. Let S be a set of
internal chords of C, no two of which are consecutive. Then there is a flippable set
T of edges in G such that:

(a) T ∩ C = ∅,
(b) |S ∩ T | ≥ 1

3 |S|, and
(c) every edge in T \ S is an external chord of C and |T \ S| ≤ |S ∩ T |.

Proof. Let S′ be the set of edges in S that are individually flippable in G. Let
S′′ := S \ S′. By Lemma 5.3, there is an external chord that blocks each edge e ∈ S′′.
Distinct edges e1, e2 ∈ S′′ are blocked by distinct external chords, as otherwise
e1 and e2 would be a bad pair, and the outerplane graph G{C} would contain a
subdivision of K4. Let B be this set of blocking external chords. Thus |B| = |S′′|.
By Lemma 3.6, B can be 3-coloured such that no two monochromatic edges in B
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are consecutive in G. (Note that since B forms an outerplane subgraph of G, this
3-colouring can be computed in O(n) time without using the 4-colour theorem.)
Let P be the largest set of monochromatic edges in B. Then |P | ≥ 1

3 |B|. Let Q

be the set of edges in S′′ that are blocked by edges in P . Then |Q| = |P |. Let
T := S′ ∪ P ∪ Q. Observe that T ∩ C = ∅. This proves (a).

To prove that T is flippable in G, we verify each of the conditions of Lemma 2.1.
T consists of internal chords S′ ∪ Q, and external chords P . Since S′ ∪ Q ⊆ S,
no two internal chords in T are consecutive. By the construction of P , no two
external chords in T are consecutive. Since the internal chords and external chords
are separated by C, no two edges in T are consecutive. Thus condition (1) of Lemma
2.1 is satisfied.

As in Lemma 4.2, there is no bad pair among the internal chords as otherwise
G{C} would contain a subdivision of K4. Similarly there is no bad pair among the
external chords. Suppose there is a bad pair of edges in T , one an internal chord xy

and the other an external chord vw. Then both vw and xy are seen by some pair of
vertices p and q. Since vw ∈ P ⊆ B, vw blocks some internal chord ab ∈ S′′. By
Lemma 2.5, ab and xy are consecutive, which is a contradiction since both edges
are in S. Thus there is no bad pair in T , and condition (2) of Lemma 2.1 is satisfied.

Each edge in P blocks some other edge, and is thus individually flippable by
Lemma 2.4. By definition, all the edges in S′ are individually flippable in G. While
each edge in Q is not individually flippable, the corresponding blocking edge is in
P ⊆ T . Thus condition (3) of Lemma 2.1 is satisfied. Therefore T is flippable in G.

Now T ∩ S = S′ ∪ Q. Since S′ ∩ Q = ∅, we have |T ∩ S| = |S′| + |Q| =
|S′| + |P | ≥ |S′| + 1

3 |B| ≥ 1
3 |S′| + 1

3 |S′′| = 1
3 |S|. This proves (b). Now T \ S = P ,

all of whose elements are external chords. Since |S ∩ T | = |S′| + |P |, we have
|P | ≤ |S ∩ T |. Since T \ S = P , we have |T \ S| ≤ |S ∩ T |. This proves (c). �

The following result extends Lemma 4.6 for outerplane graphs to the case of
triangulations.

Lemma 5.5. Let H be a Hamiltonian cycle of a triangulation G with n vertices.
Then G can be transformed by a sequence of at most c2 log n simultaneous flips into
a triangulation X in which H is a Hamiltonian cycle and the diameter of X{H}∗ is
at most c2 log n.

Proof. We proceed by induction on n with the following stronger hypothesis:
“Let G be a triangulation, and let C be an empty cycle of G with n vertices.

(G may have more than n vertices.) Then G can be transformed by a sequence of
at most c2 log n simultaneous flips into a triangulation X in which C is an empty
cycle and the diameter of X{C} is at most c2 log n. Moreover, every edge of G that
is incident to a vertex not in C remains in X.”

The lemma immediately follows since any Hamiltonian cycle is empty.
The hypothesis holds trivially for n = 3. Assume the hypothesis holds for all
triangulations with less than n vertices. Let G be a triangulation, and let C be
an empty cycle of G with n vertices.

Journal of Graph Theory DOI 10.1002/jgt



DIAGONAL FLIPS IN PLANE TRIANGULATIONS 15

By a theorem of Bose et al. [3], the outerplane graph G{C} has an independent
set I of at least n

6 vertices, and degG{C}(v) ≤ 4 for every vertex v ∈ I. Obviously
degG{C}(v) ≥ 2. For d ∈ {2, 3, 4}, let Id := {v ∈ I : degG{C}(v) = d}.

For every vertex v ∈ I3 ∪ I4, add one internal chord of C that is incident to
v to a set S. Since I is independent, |S| = |I3| + |I4|. Suppose on the contrary
that there are two consecutive edges xu and xv in S. Then x �∈ I3 ∪ I4, which
implies that u, v ∈ I3 ∪ I4. Since every face of G is a triangle, uv is an edge,
which contradicts the independence of I. Thus no two edges in S are consecutive.
By Lemma 5.4, there is a flippable set of edges T in G, such that T ∩ C = ∅ and
|S ∩ T | ≥ 1

3 |S| = 1
3 (|I3| + |I4|). Moreover, every edge in T \ S is an external chord

of C in G. For d ∈ {3, 4}, let I ′
d be the set of vertices in Id incident to an edge in

S ∩ T . Thus |I ′
3| + |I ′

4| ≥ 1
3 (|I3| + |I4|).

Let G′ := G〈T 〉. Since T ∩ C = ∅, C is an empty cycle of G′. Every vertex
v ∈ I2 ∪ I ′

3 has degG′{C}(v) = 2. Every vertex v ∈ I ′
4 has degG′{C}(v) = 3.

An edge in G′{C} that is incident to a vertex in I ′
4 is also in G{C}. Since I ′

4 is an
independent set of G{C}, it is also an independent set of G′{C}. Let S′ be the set
of internal chords of C in G′ that are incident to a vertex in I ′

4. Thus |S′| = |I ′
4|,

and by the same argument used for S, no two edges in S′ are consecutive in G′.
By Lemma 5.4, there is a flippable set of edges T ′ in G′, such that T ′ ∩ C = ∅ and
|S′ ∩ T ′| ≥ 1

3 |S′| = 1
3 |I ′

4|. Moreover, every edge in T ′ \ S′ is an external chord of
C in G′. Let I ′′

4 be the set of vertices in I ′
4 incident to an edge in S′ ∩ T ′. Thus

|I ′′
4 | ≥ 1

3 |I ′
4|.

Let G′′ := G′〈T ′〉. Since T ′ ∩ C = ∅, C is an empty cycle of G′′. Every vertex
v ∈ I2 ∪ I ′

3 ∪ I ′′
4 has degG′′{C}(v) = 2. Now |I2 ∪ I ′

3 ∪ I ′′
4 | ≥ |I2| + |I ′

3| + 1
3 |I ′

4| ≥
|I2| + 1

3 (|I ′
3| + |I ′

4|) ≥ |I2| + 1
9 (|I3| + |I4|) ≥ 1

9 (|I2| + |I3| + |I4|) = 1
9 |I| ≥ n

54 .
In summary, G can be transformed by two simultaneous flips into a triangulation

G′′ in which C is an empty cycle, and G′′{C} has an independent set L (= I2 ∪
I ′

3 ∪ I ′′
4 ) such that |L| ≥ n

54 and degG′′{C}(v) = 2 for every vertex v ∈ L. Consider a
vertex v ∈ L. Say (u, v, w) is the 2-edge path in C. Since L is independent, u �∈ L

and w �∈ L. Since degG′′{C}(v) = 2, uw is an internal chord of C in G′′. Let D be
the cycle of G obtained by replacing the the path (u, v, w) in C by the edge uw

(for all v ∈ L). Thus D is an empty cycle of G′′, and |D| = n − |L| ≤ 53
54n. By

induction applied to D and G′′, G′′ can be transformed by a sequence of at most
c2 log 53

54n simultaneous flips into a triangulation X in which D is an empty cycle
and the diameter of X{D}∗ is at most c2 log 53

54n. Moreover, every edge of G′′ that
is incident to a vertex not in D remains in X.

Consider a vertex v ∈ L. Say (u, v, w) is the 2-edge path in C. Since v is not in
D, the edges uv and vw of G are in X. Thus C is an empty cycle of X. Since uw is
an edge of D, uvw is a face of X. The vertex in the dual tree X{C}∗ that corresponds
to uvw is a leaf in X{C}∗. Thus X{C}∗ is obtained by adding leaves to the dual
tree X{D}∗. Hence the diameter of X{C}∗ is at most the diameter of X{D}∗ plus 2,
which is at most 2 + c2 log 53

54n = c2 log n. We have used two simultaneous flips,
T and T ′, to transform G into G′′, and then at most c2 log 53

54n simultaneous flips to
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transform G′′ into X. The total number of flips is at most 2 + c2 log 53
54n = c2 log n.

Since every edge in T is a chord of C in G, and every edge in T ′ is a chord of C in
G′, every edge of G that is incident to a vertex not in C remains in X. �

The following result is analogueous to Lemma 4.7 for outerplane graphs. The
key difference is that the choice of vertex v is no longer arbitrary.

Lemma 5.6. Let H be a Hamiltonian cycle of a triangulation G. Suppose that
G{H}∗ has diameter k. Let v be a vertex of G not incident to any external chords of H
in G. Then G can be transformed by at most k simultaneous flips into a triangulation
X in which H is a Hamiltonian cycle of X and v is dominant. Moreover, every edge
incident to v is in X{H}.

Proof. First note that there is such a vertex v since the subgraph of G consisting
of H and the external chords of H is maximal outerplane, and thus has a vertex
of degree two. Let P be the set of internal faces incident with v in G. In the dual
tree G{H}∗, the corresponding vertices of P form a path P∗. Define the distance
of each vertex x in G{H}∗ as the minimum number of edges in a path from x to a
vertex in P∗. Since the diameter of G{H}∗ is k, every vertex in G∗ has distance at
most k. No two vertices in G{H}∗ both with distance one are adjacent, as otherwise
G{H}∗ would contain a cycle. Each vertex of P∗ is adjacent to at most one vertex
at distance one, since G{H}∗ has maximum degree at most three, and the endpoints
of P∗ correspond to faces with an edge on the outerface of G{H}. Let S∗ be the set
of edges of G{H}∗ incident to P∗ but not in P∗. Then S∗ is a matching between
the vertices at distance one and the vertices of P∗, such that all vertices at distance
one are matched. Let S be the set of edges of G{H} corresponding to S∗ under
duality. Consider an edge xy ∈ S. Then xy is seen by v and some other vertex w.
If xy is not flippable, then by Lemma 5.3, vw is an external chord of H in G. Thus
xy is flippable, since by construction, v is not incident to any external chords of
H in G. Hence S is a set of individually flippable edges. No two edges in S are
consecutive, since every internal face of G{H} is a triangle. No two edges in G{H}
form a bad pair since G{H} is outerplane. By Lemma 2.1, S is flippable in G. Let
G′ := G〈S〉. Observe that S ∩ H = ∅. Thus H is a Hamiltonian cycle of G′. In
G′{H}, the distance of each vertex not adjacent to P∗ is reduced by one. Thus, by
induction, at most k simultaneous flips are required to reduce the distance of every
vertex to zero, in which case v is adjacent to every other vertex of G, and every
edge incident to v is in G{H}. �

Lemmas 5.5 and 5.6 imply:

Lemma 5.7. Let H be a Hamiltonian cycle of a triangulation G. Then G can be
transformed by at most 2c2 log n simultaneous flips into a triangulation X in which
H is a Hamiltonian cycle of X, and there is a vertex v adjacent to every other vertex,
and every edge incident to v is in X{H}.

We are now half way to transforming a given triangulation into the standard
triangulation. The second half is somewhat easier.
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Lemma 5.8. Let G be an n-vertex triangulation with a dominant vertex v. Then
there is a sequence of at most 2c1 log(n − 1) simultaneous flips to transform G into
the standard triangulation on n vertices.

Proof. Observe that G \ v is a maximal outerplane graph, in which the vertices
are ordered on the outerface according to the cyclic order of the neighbours of v. Let
C be the cycle bounding the outerface of G \ v. By Lemma 4.5 there is a sequence
of at most 2c1 log(n − 1) simultaneous flips to transform G \ v into a maximal
outerplane graph with a dominant vertex. Each of these flips is valid in G since C

has no internal chords (cf. Lemma 5.4). We obtain the standard triangulation. �

Observe that Lemmas 5.7 and 5.8 together prove Lemma 5.2, which in turn
proves Theorem 5.1. Although theO(log n) simultaneous flips in Theorem 5.1 may
each involve a linear number of edges, the total number of flipped edges is linear.

Theorem 5.9. Let G1 and G2 be triangulations on n vertices. There is a sequence
ofO(log n) simultaneous flips to transform G1 into G2, andO(n) edges are flipped
in total.

Proof. It suffices to prove that there are O(n) flips in Lemmas 5.5 and 5.6,
since at most n edges are flipped to make the graph Hamiltonian, and there are
constant times as many flips in Theorem 5.1 as there are in Lemmas 5.6 and 5.5. In
Lemma 5.6, each flipped edge becomes incident to v, and then remains incident to
v. Thus the number of flipped edges is at most n − 1. In Lemma 5.5, O(n) edges
are flipped to obtain a triangulation on at most 53

54n vertices. Therefore, the number
of flipped edges F (n) satisfies the recurrence F (n) = F ( 53

54n) +O(n), which solves
to O(n). �

6. LARGE SIMULTANEOUS FLIPS

In this section we prove bounds on the size of a maximum simultaneous flip in a
triangulation. Let msf(G) denote the maximum cardinality of a flippable set of edges
in a triangulation G. In related work, Gao et al. [10] proved that every triangulation
has at least n − 2 (individually) flippable edges, and every triangulation with
minimum degree four has at least 2n + 3 (individually) flippable edges. Galtier
et al. [9] proved that every geometric triangulation has a set of at least 1

6 (n − 4)
simultaneously flippable edges. The following is the main result of this section.

Theorem 6.1. For every triangulation G with n ≥ 4 vertices, msf(G) ≥
1
3 (n − 2).

Assume there is a counterexample to Theorem 6.1; that is, a triangulation G

with n ≥ 4 vertices and msf(G) < 1
3 (n − 2). A counterexample with the minimum

number of vertices is a minimum counterexample.

Lemma 6.2. A counterexample has n ≥ 7 vertices.
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FIGURE 7. 2-edge flip in (a) K4 and (b) K5 \ e.

Proof. If n = 4 then G = K4, which has a flippable set of 2 > 1
3 (4 − 2) edges,

as illustrated in Figure 7(a). If n = 5 then G = K5 \ e, which has a flippable set of
2 > 1

3 (5 − 2) edges.
If n = 6 then G is the octahedron illustrated in Figure 8(a), or G is the

triangulation illustrated in Figure 8(b). In both cases there is a flippable set of
3 > 1

3 (6 − 2) edges. �

Lemma 6.3. A minimum counterexample has no edge vw with deg(v) = 3 and
deg(w) = 4.

Proof. Let G be a minimum counterexample with n vertices. Suppose that G

has an edge vw with deg(v) = 3 and deg(w) = 4. Then the neighbours of v and w

form a triangle (x, y, z) with v adjacent to x and y, and w adjacent to x, y and z. Let
G′ := (G \ v) \ w. Then G′ is a triangulation with n − 2 vertices in which (x, y, z)
is a face. Since G is minimum, G′ is not a counterexample. Thus G′ has a flippable
set S′ of at least 1

3 (n − 4) edges. At most one of {xy, xz, yz} is in S′. If xz ∈ S′, then
let S := S′ ∪ {yw}. Otherwise let S := S′ ∪ {xw}. It is trivial to check that S is a
flippable set of G. Moreover, |S| = |S′| + 1 ≥ 1

3 (n − 4) + 1 > 1
3 (n − 2). Thus G

is not a counterexample. �
Lemma 6.4. A minimum counterexample has no edge vw with deg(v) = 4 and
deg(w) = 4.

Proof. Let G be a minimum counterexample with n vertices. Suppose that G

has an edge vw with deg(v) = 4 and deg(w) = 4. Let b and d be the vertices that
see vw. Then b �= d, as otherwise G = K3. Let a be the other neighbour of v. Let
c be the other neighbour of w. If a = c, then G = K5 \ e, in which case G is not
a counterexample by Lemma 6.2. Thus a �= c, and (a, b, c, d) is a 4-cycle whose
interior only contains v and w.

FIGURE 8. 3-edge flip in (a) the octahedron and (b) the other 6-vertex triangulation.
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At least one of ac and bd is not an edge of G, as otherwise G would contain
a subdivision of K5. If ac is not an edge of G, then let G′ be the graph obtained
from G by deleting v and w, and adding the edge ac. Otherwise, let G′ be the graph
obtained from G by deleting v and w, and adding the edge bd. In both cases, G′ is a
triangulation on n − 2 vertices. Since G is minimum, G′ is not a counterexample.
Thus G′ has a flippable set S′ of at least 1

3 (n − 4) edges. Initialize S := S′.
First suppose that ac is not an edge of G. Then ac is an edge of G′. If ab ∈ S′,

then let S := S ∪ {wb}. If bc ∈ S′, then let S := S ∪ {vb}. If cd ∈ S′, then let S :=
S ∪ {vd}. If ad ∈ S′, then let S := S ∪ {wd}.

Now suppose that ac is an edge of G. Then bd is an edge of G′. If ab ∈ S′,
then let S := S′ ∪ {vd}. If ad ∈ S′, then let S := S′ ∪ {vb}. If cd ∈ S′, then let
S := S′ ∪ {wb}. If bc ∈ S′, then let S := S′ ∪ {wd}.

If none of these cases occur, then let S := S ∪ {vb, wd}. If both vb and vd have
been added to S, then delete one from S. If both wb and wd have been added to S,
then delete one from S. It is easily seen that in each case, S is a flippable set, and
|S| ≥ |S′| + 1 ≥ 1

3 (n − 4) + 1 > 1
3 (n − 2). Thus G is not a counterexample. �

The following lemma is the key idea in the proof of Theorem 6.1.

Lemma 6.5. Let {E1, E2, E3} be an edge 3-colouring of a triangulation G such
that every triangle is trichromatic. For each 1 ≤ i ≤ 3, let Si be the set of edges in
Ei that are not in a bad pair with some other edge in Ei. Then Si is flippable in G.

Proof. Since every triangle is trichromatic, no two edges in Si are consecutive.
This is condition (1) in Lemma 2.1. Condition (2) in Lemma 2.1 holds by the
definition of Si. Suppose that an edge ab ∈ Si is blocked by an edge vw. To show
that condition (3) of Lemma 2.1 is satisfied, we need to prove that vw ∈ Si.

First suppose that vw �∈ Ei. Since (v, a, w) is a triangle, one of av and bv is
in Ei, which implies that this edge and ab are consecutive and both in Ei. This
contradiction proves that vw ∈ Ei. Now suppose that vw and some edge xy form
a bad pair. By Lemma 2.5, vw and xy are in a common triangle. Thus xy �∈ Ei and
vw does not form a bad pair with another edge in Ei. Therefore vw ∈ Si, as desired.
By Lemma 2.1, Si is flippable. �

An edge is bad if it is a member of a bad pair. An edge is good if it is not bad.

Lemma 6.6. If every edge in a face (u, v, w) of a triangulation G is bad, then at
least one of {u, v, w} has degree three or four.

Proof. Assume deg(u) ≤ deg(v) ≤ deg(w). If deg(u) = 3 then we are done.
Suppose that deg(u) ≥ 4. Let x, y, z be the other vertices that respectively see the
edges uv, vw, uw. Since each of u, v, w have degree at least four, x, y, z are distinct.
As illustrated in Figure 9 with an outerface of (u, v, w), there are edges ab, cd, and
ef such that {uv, ab}, {uw, ef }, {vw, cd} are all bad pairs. For planarity to hold, and
since deg(u) ≤ deg(v) ≤ deg(w), d = x and c = z, which implies that deg(u) = 4,
as desired. �
Journal of Graph Theory DOI 10.1002/jgt



20 JOURNAL OF GRAPH THEORY

FIGURE 9. Three bad edges uv, uw, and vw all on one face.

Lemma 6.7. Define S1, S2, S3 as in Lemma 6.5. Then every edge in a separating
triangle is in S1 ∪ S2 ∪ S3.

Proof. Consider an edge vw ∈ Ei that is in a separating triangle T . If vw is
good then vw ∈ Si and we are done. Otherwise vw is bad. By Lemma 2.3, the edge
e that forms a bad pair with vw is also in T . Since each triangle is trichromatic,
e �∈ Ei. Thus vw ∈ Si. �

Lemma 6.8. In a minimum counterexample, every edge seen by a degree-4 vertex
is good.

Proof. Let v be a degree-4 vertex in a minimum counterexample G. Let
(a, b, c, d) be the neighbours of v in cyclic order. Then X := {ab, bc, cd, ad} are
the edges seen by v. Suppose on the contrary that one edge in X, say ad, is bad.
Then ad forms a bad pair with another edge in X. Without loss of generality, either
{ab, ad} or {ad, bc} are this bad pair. If {ab, ad} is a bad pair, then to avoid parallel
edges, deg(a) = 4, which contradicts Lemma 6.4.

Now suppose that {ad, bc} is a bad pair. Let x be the other vertex seen by
these edges. Let G′ be the plane graph obtained from G by deleting v, deleting
the edges in the triangle (c, d, x), merging the vertices a and d, and merging the
vertices b and c. Then G′ is a triangulation on n − 3 vertices. Since G is minimum,
G′ is not a counterexample. Thus G′ has a flippable set S′ of at least 1

3 (n − 5)
edges. Let S := S′ ∪ {vd}. We claim that S is flippable in G. Now vd flips to ac,
which is not an edge of G as otherwise there would be a subdivision of K5. The
only edge that forms a bad pair with vd is vb, which by construction is not in S.
Thus S is flippable, and |S| = |S′| + 1 ≥ 1

3 (n − 5) + 1 = 1
3 (n − 2). Thus G is not a

counterexample. �
Proof of Theorem 6.1. Let G be a minimum counterexample with n vertices.

By Lemma 3.6, there is a 3-colouring {E1, E2, E3} of the edges of G such that
every triangle is trichromatic. Let Si be set of edges in Ei that are not in a bad pair
with another edge in Ei. By Lemma 6.5, Si is flippable.

The neighbours of a degree-3 vertex form a separating triangle. By Lemma 6.7,
every face incident to a degree-3 vertex has at least one edge in S1 ∪ S2 ∪ S3. By
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Lemma 6.8, every face incident to a degree-4 vertex has one good edge, which is in
S1 ∪ S2 ∪ S3. By Lemma 6.6, every face not incident to degree-3 or degree-4 vertex
has at least one good edge, which is in S1 ∪ S2 ∪ S3.

We conclude that every face has at least one edge in S1 ∪ S2 ∪ S3. There are
2(n − 2) faces and every edge is in two faces. Thus |S1 ∪ S2 ∪ S3| ≥ n − 2. For
some i, we have |Si| ≥ 1

3 (n − 2). Therefore G is not a counterexample, and since
G was minimum, there are no counterexamples. �

Now for some upper bounds on msf(G).

Lemma 6.9. For every n-vertex triangulation G, msf(G) ≤ n − 2.

Proof. Let S be a flippable set of edges of G. Every edge in S is incident to two
distinct faces, and no other edge on each of these faces is in S. (Otherwise there
would be two consecutive edges in S.) There are 2(n − 2) faces in a triangulation.
Thus |S| ≤ n − 2. �
Lemma 6.10. There exists an n-vertex triangulation G with msf(G) = 6

7 (n − 2)
for infinitely many n.

Proof. Let G0 be an arbitrary triangulation with n0 vertices. Let G be the
triangulation obtained from G0 by adding a triangle inside each face (u, v, w) of
G, each vertex of which is adjacent to two of {u, v, w}. Say G has n vertices. Then
n − 2 = n0 + 3(2n0 − 4) − 2 = 7(n0 − 2). Let S be a flippable set of edges of G.

There is at most one edge in S on the boundary of each face of G. Suppose on
the contrary that for some face (u, v, w) of G0, all seven of the corresponding faces
of G have an edge in S. Every edge in S is on the boundary of two faces of G. Thus
|S ∩ {uv, uw, vw}| = 1 or 3. Let (x, y, z) be the triangle of G inside (u, v, w), with
connecting edges {xv, xw, yu, yw, zu, zv}.
Case 1. |S ∩ {uv, uw, vw}| = 1: Without loss of generality S ∩ {uv, uw, vw} =
{uv}, as illustrated in Figure 10(a) and (b). Thus either (a) uy ∈ S or (b) zy ∈
S. If uy ∈ S, then xy �∈ S (as otherwise G〈S〉 would have parallel edges). Thus
{xz, xw} ∈ S, in which case G〈S〉 has parallel edges, a contradiction. If zy ∈ S,
then yw ∈ S, as otherwise no edge on (u, w, y) would be in S. In this case G〈S〉
has parallel edges.

Case 2. |S ∩ {uv, uw, vw}| = 3: Then zy is the only edge on the boundary of
the face (u, z, y) that can be flipped, as illustrated in Figure 10(c). Hence zy ∈ S.
This implies that no edge on the faces (z, v, x) and (x, y, w) can be flipped, a
contradiction.

Therefore for every face of G0, at least one of the seven corresponding faces
of G does not have an edge in S. Hence at least 2(n0 − 2) = 2

7 (n − 2) faces of
G do not have an edge in S. Every face of G has at most one edge in S. Thus
|S| ≤ 1

2 (2(n − 2) − 2
7 (n − 2)) = 6

7 (n − 2).
It remains to construct a flippable set of 6

7 (n − 2) edges in G. For each face of
G0, add the edges shown in Figure 10(d) to a set S. Clearly S is flippable. In every
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FIGURE 10. (a)–(c) For any number of flips in the outer triangle, at least one internal
face does not have an edge in S. (d) How to construct a flip set for G.

face of G0, exactly one of the corresponding seven faces of G does not have an edge
in S, and the remaining six faces each have exactly one edge in S. By the above
analysis, |S| = 6

7 (n − 2). �
An obvious open problem is to close the gap between the lower bound of 1

3 (n − 2)
and the upper bound of 6

7 (n − 2) in the above results. For 5-connected triangulations
we can improve the lower bound as follows.

Theorem 6.11. For every 5-connected triangulation G with n vertices, msf(G) =
n − 2.

Proof. Observe that every edge inG is flippable, as otherwiseGhas a separating
triangle (since G has at least five vertices). There is no bad pair in G, as otherwise
G has a separating 4-cycle. By Lemma 2.1, a set of edges S in a 5-connected
triangulation G is flippable if and only if no two edges in S are consecutive. By
Lemma 3.4, G has a set of edges S such that every triangle of G has exactly one
edge in S. Thus no two edges in S are consecutive. Hence S is flippable. By the
argument employed in Lemma 6.9, |S| = n − 2. Therefore msf(G) ≥ n − 2. By
Lemma 6.9, msf(G) ≤ n − 2. �
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