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Abstract

We develop a number of space-efficient tools including an approach to simulate
divide-and-conquer space-efficiently, stably selecting and unselecting a subset from
a sorted set, and computing the kth smallest element in one dimension from a
multi-dimensional set that is sorted in another dimension. We then apply these
tools to solve several geometric problems that have solutions using some form of
divide-and-conquer. Specifically, we present a deterministic algorithm running in
O(n log n) time using O(1) extra memory given inputs of size n for the closest pair
problem and a randomized solution running in O(n log n) expected time and using
O(1) extra space for the bichromatic closest pair problem. For the orthogonal line
segment intersection problem, we solve the problem in O(n log n + k) time using
O(1) extra space where n is the number of horizontal and vertical line segments
and k is the number of intersections.

1 Introduction

Researchers have studied space-efficient algorithms since the early 1970’s. Ex-
amples include merging, (multiset) sorting, and partitioning problems; see,
for example, references [9,12,13]. Brönnimann et al. [5] were the first to con-
sider space-efficient geometric algorithms and showed how to compute the
convex hull of a planar set of n points in O(n log h) time using O(1) extra
space, where h denotes the size of the output (the number of extreme points).
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Recently, Chen and Chan [6] addressed the problem of computing all the in-
tersections among a set of n line segments, giving an algorithm that runs
in O((n + k) log2 n) time using O(log2 n) extra space where k is the number
of intersections and an algorithm that runs in O((n + k) log n) time using
O(1) extra space but the initial input is destroyed. Brönnimann, Chan, and
Chen [4] developed some space efficient data structures and used them to solve
a number of geometric problems such as 3-dimensional convex hull, Delaunay
triangulation and nearest neighbour queries. Brönnimann and Chan [3] de-
scribe O(1) extra-memory algorithms for computing the convex hull of simple
(open or closed) polygonal chains.

In this paper, we develop a number of space-efficient tools outlined in Section 2
that are of interest in their own right. We then apply these tools to several ge-
ometric problems that have solutions using some form of divide-and-conquer.
Specifically, we address the problems of closest pairs, bichromatic closest pairs
and orthogonal line segment intersection.

1.1 The Model

The goal is to design algorithms that use very little extra space over and above
the space used for the input to the algorithm. The input is assumed to be stored
in an array of size n, thereby allowing random access. The specifics of the
input are outlined with each problem addressed. We assume that a constant
size memory can hold a constant number of words. Each word can hold one
pointer, or an O(log n) bit integer, and a constant number of words can hold
one element of the input array. The extra memory used by an algorithm is
measured in terms of the number of extra words. In certain cases, the output
may be much larger than the size of the input. For example, given a set of n
line segments, if the goal is to output all the intersections, there may be as
many as Ω(n2). In such cases, we consider the output memory to be write-
only space usable for output but cannot be used as extra storage space by the
algorithm. This model has been used by Chen and Chan [6] for variable size
output, space-efficient algorithms and accurately models algorithms that have
output streams with write-only buffer space. Equivalently the algorithm could
report the output one item at a time by calling some user-defined subroutine
for each item.

The remainder of the paper is organized as follows. In Section 2, we outline
the space-efficient tools that will be useful in the solution of the geometric
problems addressed. In Section 3, we present an O(n log n) time algorithm to
solve the closest pair problem using only O(1) extra memory. In the follow-
ing subsection, we solve the bichromatic closest pair problem in O(n log n)
expected time using only O(1) extra memory. The solution is randomized but
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the extra memory used is still O(1) in the worst case. Section 4 presents a
solution to the orthogonal line segment intersection problem in O(n log n+ k)
time using O(log n) extra space where n is the number of line segments, and k
is the number of intersections. Conclusions and open problems are in Section
5. The details of an O(1) extra memory algorithm for orthogonal line segment
intersection appear in Appendix B.

2 Space-Efficient Tools

In this section, we outline a number of algorithmic tools that will be useful
in the sequel. We begin with a general scheme for implementing divide-and-
conquer algorithms and then present tools for selecting subsets and finding
the element of a given rank without disturbing the input array.

2.1 Space-Efficient Divide-and-Conquer

In this subsection, we describe a simple scheme for space-efficiently performing
divide-and-conquer. In a standard recursive procedure, prior to each recursive
call, the current state of the procedure (i.e. the state of the variables, pro-
gram counter, etc.) that is invoking the recursive call is saved on a stack. The
variables making up the current state are often referred to as the activation
frame and the stack is usually called the recursion stack. Thus, in the standard
recursive approach, the amount of extra space needed for the recursion stack
is directly proportional to the height of the recursion tree times the number
of local variables.

A template for recursive divide-and-conquer algorithms that partition into 2
subproblems of equal size is presented as Algorithm 1 (Recursive). It oper-
ates on an array A[0, . . . , n− 1]. The algorithm makes calls to 4 subroutines:
Base-Code is used to solve small instances, Pre-Code is executed before
any recursive calls, Mid-Code is executed after the first recursive call but be-
fore the second, and Post-Code is executed after the second recursive call.
Normally, the functions Pre-Code and Post-Code perform the divide step
and the conquer step, respectively. If the functions Pre-Code, Mid-Code
and Post-Code all run in O(e− b) time then the total running time of a call
to Recursive(A, 0, n) is O(n log n).

To develop in-place divide-and-conquer algorithms, we must do two things:
(1) We must use a stack of size O(1) and (2) we must implement the functions
Pre-Code, Mid-Code and Post-Code using only O(1) extra space. Note
that, if we use Algorithm 1 directly then the stack space required is Ω(log n)
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Algorithm 1 Recursive(A, b, e): Standard template recursive divide-and-
conquer

1: if e− b ≤ 2h0 where s is the size of the recursion base. then
2: Base-Code(A, b, e) {Code for solving small instances}
3: else
4: Pre-Code(A, b, e) {Computations to setup Subproblem 1 in

A[b, . . . , be/2c − 1]}
5: Recursive(A, b, be/2c) {First recursive call}
6: Mid-Code(A, b, e) {Computations to setup Subproblem 2 in

A[be/2c, . . . , e− 1]}
7: Recursive(A, be/2c, e) {Second recursive call}
8: Post-Code(A, b, e) {Computations to merge Subproblems 1 and 2 in

A[b, . . . , e− 1]}
9: end if

since the recursion tree has depth Θ(log n). In the remainder of this section
we show how this stack space can be reduced to O(1).

The main idea is to perform a stackless traversal of the binary recursion tree.
Algorithms for stackless traversals of trees date back at least to Knuth [14,
Section 2.3.2]. The algorithm for traversing a binary tree without a stack is
quite simple; it maintains a pointer to the current node u and a state s that
keeps track of whether the algorithm has already visited 0 (pre), 1 (mid) or
2 (post) of u’s children. Using four simple rules, the algorithm then decides
whether the next node visited will be the parent, the left child of u, or the
right child of u and also decides on the next state.

In our case, the binary tree we are traversing is implicit. For simplicity, we
assume that n is a power of 2, so that all leaves of the recursion tree are at
the same level. The algorithm, which is described by the pseudocode given in
Algorithm 2 uses a dlog2 ne-bit integer u to keep track of the path from the
root to the current node. Here, and throughout, we use the notation uh to
denote the hth most significant bit of u. (This bit represents 2h.) The integer
u represents the path as a sequence of 0’s and 1’s (0 for a left turn and 1
for a right turn). The algorithm also maintains an integer h to keep track of
the height (distance to the leaves) of u. In this way, the length of the path
from u to the root of the tree is log2 n− h. With this representation the pair
(u, h) represents a subproblem of size 2h that begins at position u, i.e., the
subarray A[u, . . . , u + 2h − 1]. It is an easy exercise [8, Exercise 10.4-5] to see
that if n is a power of 2 then Algorithm 2 performs exactly the same calls
to Base-Code, Pre-Code, Mid-Code, and Post-Code, and in the same
order as Algorithm 1. Furthermore, this transformation does not increase the
overall running time by more than an additive linear term.

Theorem 1 For n a power of two, Algorithm 2 performs the same computa-
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Algorithm 2 Stackless-Recursive(A): Stackless simulation of
Recursive(A, 0, n)

1: u← 0 {The current node}
2: h← log2 n {The height of the current node}
3: s← pre {The current state}
4: while h ≤ log2 n do
5: if h = h0 {u is a leaf} then
6: Base-Code(A, u, u + 2h)
7: {Next we visit the parent of u}
8: s← mid or post (depending on whether uh is 0 or 1, respectively)
9: uh ← 0

10: h← h + 1
11: else if s = pre then
12: Pre-Code(A, u, u + 2h)
13: {Next we visit left child of u}
14: s← pre
15: h← h− 1
16: uh ← 0
17: else if s = mid then
18: Mid-Code(A, u, u + 2h)
19: {Next we visit right child of u}
20: s← pre
21: h← h− 1
22: uh ← 1
23: else if s = post then
24: Post-Code(A, u, u + 2h)
25: {Next we visit parent of u}
26: s← mid or post (depending on whether uh is 0 or 1, respectively)
27: uh = 0
28: h← h + 1
29: end if
30: end while

tions as Algorithm 1 using only O(1) extra space beyond what is used by the
functions Base-Code, Pre-Code, Mid-Code, and Post-Code. Further-
more, if the running time of Algorithm 1 is T (n) then the running time of
Algorithm 2 is T (n) +O(n).

Remark: Theorem 1 only addresses the case when n is a power of 2. The
general case can be handled by traversing the recursion tree for a problem of
size 2dlog2 ne and simply adding checks to Algorithm 2 to make sure that it
does not access any non-existent array elements.

We now have the first ingredient required for O(1) extra-memory recursive
algorithms: a constant-size simulation of the recursion stack. In the next few
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sections, we develop some tools that help with the second ingredient required
for in-place divide-and-conquer algorithms. In particular, these tools help to
implement the functions Pre-Code, Mid-Code and Post-Code usingO(1)
extra space.

2.2 Sorted Subset Selection

In this subsection, we introduce a simple yet surprisingly powerful algorithm,
called SubsetSelection. The algorithm provides a way of selecting a subset
of the elements and moving them to the front of the array without changing
their relative order. What makes this algorithm so powerful is that, if the
array is initially sorted according to some total order < then it is possible
(in fact very easy) to undo the effects of the algorithm to restore the original
sorted order. We note that stable partitioning algorithms and stable merging
algorithms could achieve the same effect, but these algorithms are an order of
magnitude more complicated than the code given here.

The SubsetSelection algorithm, given in pseudocode as Algorithm 3, stably
moves to the front of the array all elements in A[b, . . . , e − 1] for which the
given (0, 1)-valued selection function f returns the value 1.

Algorithm 3 Algorithm SubsetSelection(A, b, e, f) for selecting a subset
from a sorted array A[b, . . . , e− 1].

Require: Array A[b, . . . , e−1] is sorted and f is a (0, 1)-valued function that
can be evaluated in constant time.

Ensure: A[b, . . . , m − 1] contains all entries for which f is one, and these
entries are still sorted.

1: i← b, j ← b and m← b + 1.
2: while i < e and j < e do
3: while i < e and f(A[i]) = 1 do
4: i← i + 1. {Move index i such that f(A[i]) = 0.}
5: end while
6: j ← i + 1;
7: while j < e and f(A[j]) = 0 do
8: j ← j + 1. {Move index j such that f(A[j]) = 1.}
9: end while

10: if j < e then
11: swap A[i]↔ A[j].
12: end if
13: end while
14: Return i.

Algorithm 3 clearly uses only O(1) extra space and runs in linear time. The
correctness of the algorithm follows from the loop invariant that is maintained:
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A[b, . . . , i− 1] stably contains all selected elements from A[b, . . . , e− 1] whose
rank is at most i − b. The effects of this algorithm can be reversed by Algo-
rithm 4.

Algorithm 4 Algorithm UndoSubsetSelection(A, b, e, i) for restoring the
total order after applying the SubsetSelection-Algorithm 3

Require: Array A[b, . . . , e− 1] contains the result of running Algorithm 3 on
array A[b, . . . , e− 1] that was sorted

Ensure: Array A[b, . . . , e− 1] is sorted
1: i← i− 1 and j ← e− 1
2: while i 6= j and i ≥ b do
3: if A[j] < A[i] then
4: swap A[i]↔ A[j]
5: j ← j − 1
6: end if
7: i← i− 1
8: end while

There is one important property to note: Algorithm 4 does not require knowl-
edge of the selection function f , but only needs to know the three indices b,
e and i. It uses only comparisons to recover the state prior to the invocation
of SubsetSelection. This is a key property that is useful particularly if the
selection function f is unknown or cannot be easily reconstructed. In the fol-
lowing subsection, we show how useful SubsetSelection and its counterpart
UndoSubsetSelection are.

2.3 Selecting the k-th smallest element

In designing in-place geometric algorithms, the ability to undo operations
such as selection turns out to be extremely useful. In this section, we show
how we can select the kth smallest element according to some total order <x

in an array that is sorted according to some other total order <y. Once the
kth smallest element is found, the original (<y) sorted order of the array is
restored. Our algorithm is a modification of Hoare’s Find algorithm [11].

The original Find algorithm selects a random pivot and partitions the array
A into the subset of elements that are less than or equal to the pivot and the
subset of elements that are greater than the pivot and then searches recursively
in one of these two parts. The partitioning and undoing of the partitioning
can be accomplished using Algorithms 3 and 4. However, for Algorithm 4 to
work it needs to know the sizes of each of the two parts of the array (remem-
bering the pivot element also works). Unfortunately, remembering these sizes
for each recursive invocation of the algorithm produces a stack of expected
size Θ(log n). To get around this problem, we force the algorithm to always
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partition the current array into two parts of size exactly b3n/4c and dn/4e.

This idea is implemented as Algorithm 5 (Select). Suppose without loss of
generality that k ≤ n/2. Then we find an element p whose rank is between
n/2 and 3n/4. Since there are at least bn/4c such elements, with only an
expected constant number of random selections, we can find such an element.
Computing the rank of a given element takesO(n) time, thus inO(n) expected
time, we can find p. Note that if we partition the array with p, then at least
n/4 elements can be eliminated. The key is to eliminate precisely n/4 elements.
This way, when it comes time to undo the operation, we know exactly where
the partition boundaries occur. This is where the stack S comes into play.
Each time through the loop, we reduce the size of the array to b3n/4c. To
undo this operation, we need to record the actual remainder from the division
by 3/4. Two bits are sufficient to record this since the remainder can only
be one of {0, 1, 2, 3}. For example, suppose that the current instance has an
array of size 37. Since 3 × 37/4 = 27 + 3/4, the next instance has size 27
and we push the remainder 3 on the stack. In the undo step, if the current
instance is of size 27, to recover the size of the array at invocation, we note
that (4× 27 + 3)/3 = 37 which is the computation used to recover the indices
required for the Undo operation.

In the final loop where the steps are undone, the only information we require
are the three indices 0, D and M . We do not need to remember the particular
element p that was used in the SubsetSelection step. Comparisons of Y -
coordinates are sufficient to recover the original order.

Since at each iteration through the while loop, we eliminate a quarter of the
elements, the number of iterations through the loop is O(log n). At each itera-
tion, two bits are pushed on the stack, so the total number of bits ever stored
in the stack is O(log n) which implies that only O(1) extra space is used. The
running time of the algorithm is given by the following recurrence:

T (n) = T (3n/4) +O(n)

which resolves to O(n).

This algorithm can be made to run in O(n) deterministic time. The only step
where randomization is used is in the selection of the partition element p.
In the deterministic version, we use techniques from the algorithm by Blum
et al. [2]. Instead of selecting an element at random, we select the partition
element by first decomposing the array into n/5 groups of 5 elements and
computing the median of the medians of the groups. The idea is simple and
similar to the above algorithm except some of the details are quite tedious, so
we outline the details in Appendix A.
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Algorithm 5 Algorithm Select(A, 0, e, k) Select the kth smallest element
in A[0, . . . , e− 1] according to the total order <x.

Require: Array A[0, . . . , e− 1] is sorted according to <y

Ensure: The k-th smallest element according to <x is placed at A[0], and
A[1, . . . , e− 1] is sorted by <y

1: n← e. {n is the current size of the array being processed.}
2: while n > 42 do
3: if k < n/2 then
4: Pick a random element p whose rank is between n/2 and 3n/4
5: Use SubsetSelection to move all elements <x p and a sufficient

number >x p to fill A[0, . . . , b3n/4c − 1]
6: Push 4(3n/4− b3n/4c) on stack S
7: n← b3n/4c
8: else
9: Pick a random element p whose rank is between n/4 and n/2

10: Use SubsetSelection to move all elements >x p and a sufficient
number <x p to fill A[0, . . . , b3n/4c − 1]

11: Push 4(3n/4− b3n/4c) on stack S
12: k ← k − dn/4e
13: n← b3n/4c
14: end if
15: end while
16: Find k-th smallest element q in A[0, . . . , n− 1] by brute force
17: M ← n
18: R← pop(S)
19: D ← (4M + R)/3
20: while D < e do
21: UndoSubsetSelection(A, 0, D, M)
22: M ← D.
23: R← pop(S)
24: D ← (4M + R)/3
25: end while
26: Find q in A[0, . . . , e− 1] and move it stably to A[0]

3 Closest Pair Problems

3.1 Closest Pair

Given a set P of n points in the plane stored in an array A[0, . . . , n − 1],
a closest pair is a pair of points in P whose Euclidean distance is smallest
among all pairs of points. We modify an algorithm by Bentley and Shamos [1]
to compute the closest pair in O(n log n) time using only O(1) extra space.
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Algorithm 6 gives pseudocode for a slightly modified version of the Bentley-
Shamos divide-and-conquer algorithm for finding the closest pair. The algo-
rithm works by drawing an imaginary vertical dividing line through the median
X-coordinate. The algorithm then finds the closest pair with both points to
the left of this line, the closest pair with both points to the right of this line
and then finds the closest pair with one point on the left and one point on
the right of the line. The first two closest pairs are computed with recursive
calls while the third closest pair is accomplished by a vertical plane sweep of
all the points that are “close to” the dividing line. Details of this plane sweep
can be found in the original paper [1].

Note that if we let the work done in Line 2 be denoted by Base-Code, the
work done in Lines 4 and 5 be denoted by Pre-Code, the work in Lines 7
and 8 denoted by Mid-Code and the work done in Lines 10–14 by Post-
Code then the algorithm is identical to Algorithm 1. Furthermore, all of
these routines use only O(1) extra space. Therefore, by Theorem 1, the entire
algorithm can be implemented using only O(1) extra space.

Theorem 2 Given a set P of n points in the plane stored in an array A[0, . . . , n−
1], a closest pair in P can be computed in O(n log n) time using O(1) extra
memory.

3.2 Bichromatic Closest Pair

In the Bichromatic Closest Pair Problem, we are given a set R of red points and
a set B of blue points in the plane. The problem is to return a pair of points,
one red and one blue, whose distance is minimum over all red-blue pairs. We
assume that there are a total of n = r + b points, with r > 0 red points and
b > 0 blue points. The input is given to us as two arrays R[0, . . . , r − 1] and
B[0, . . . , b− 1].

The algorithm we use, which to the best of our knowledge is new, is similar
to the Bentley-Shamos algorithm from the previous section, but has some
subtle differences. The algorithm chooses a vertical line, computes the closest
bichromatic pair to the left of the line, the closest bichromatic pair to the right
of the line and the closest bichromatic pair with one point on the left of the
line and one point on the right of the line. The difficulties arise in two places.
The first is that, in general there does not exist a vertical line that partitions
each of R and B into two sets of equal size. If we choose a line that partitions
R into two equal sets then we obtain an uneven partition of B and vice-versa.
The second difficulty is that, in order to obtain a running time of O(n log n),
we need a linear time algorithm for finding the closest pair between two sets
separated by a line. We concentrate first on the second problem.
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Algorithm 6 Closest-Pair(A, b, e): Divide-and-Conquer algorithm for find-
ing a closest pair [1].

Require: All points in the input array A are sorted according to Y -
coordinate.

Ensure: The first two points in the array A[b, . . . , e − 1] realize the closest
pair and the remaining points are sorted by Y -coordinate.

1: if e− b < 16 then
2: Compute a closest pair using a brute-force algorithm, stably place them

at A[b] and A[b + 1].
3: else
4: Compute the median X-coordinate x of A[b, . . . , e−1] using Algorithm 5

(Select) while maintaining the array sorted by Y -coordinate.
5: Using Algorithm 3 (SubsetSelection), stably select all elements of

A[b, . . . , e− 1] with X-coordinate less than or equal x so that they are
stored in A[b, . . . , be/2c − 1].

6: Closest-Pair(A, b, be/2c)
7: Using Algorithm 4 (UndoSubsetSelection), restore A[b, . . . , e − 1]

so that it is sorted by Y -coordinate. Stably store the closest pair from
the previous step in A[b] and A[b + 1].

8: Using Algorithm 3 (SubsetSelection), stably select all elements of
A[b, . . . , e−1] with X-coordinate greater than x so that they are stored
in A[be/2c, . . . , e− 1].

9: Closest-Pair(A, be/2c, e)
10: Using Algorithm 4 (UndoSubsetSelection), restore A[b, . . . , e − 1]

so that it is sorted by Y -coordinate. Stably store the closest pair from
Step 6 or the closest pair from the previous step (whichever is closer)
at locations A[b] and A[b + 1].

11: Let δ be the distance between A[b] and A[b + 1].
12: Using Algorithm 3 (SubsetSelection), extract in Y -sorted order the

points of A[b, . . . , e− 1] that fall within a strip of width 2δ centered at
the median X-coordinate of A[b, . . . , e− 1].

13: Scan the points in this strip to determine whether it contains a pair of
points with distance smaller than δ. Update δ and the closest pair as
necessary.

14: Using Algorithm 4 (UndoSubsetSelection), restore A[b, . . . , e − 1]
so that it is sorted by Y -coordinate. Stably store the closest pair at
locations A[b] and A[b + 1].

15: end if

3.2.1 Computing the closest vertically separated pair

In this subsection we give pseudocode in Algorithm 7 (Bichromatic-Closest-
Vertically-Separated-Pair) for computing the closest bichromatic pair
separated by a given vertical line `. We concentrate on the case in which R
and B are separated by ` with R to the left of ` and B to the right of `. It is
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clear that if we can solve this case then we can solve the general case using two
calls to this algorithm and a constant number of calls to SubsetSelection
and UndoSubsetSelection.

Algorithm 7 Bichromatic-Closest-Vertically-Separated-
Pair(R,B, `): Bichromatic closest pair when R and B are separated
by a vertical line ` and R is to the left of `.

Require: All points in R[0, . . . , r − 1] and B[0, . . . , b − 1] are sorted by Y -
coordinate

Ensure: All points in R and B are sorted by Y -coordinate, and the bichro-
matic closest pair is reported

1: r ← |R| and b← |B|.
2: while r > 16 and b > 16 do
3: Assume r ≥ b, otherwise reverse the roles of R and B
4: repeat
5: Pick a random element p from R[0, . . . , r − 1]
6: Find the distance δ from p to the nearest element of B[0, . . . , b− 1]
7: Compute the left envelope of disks having radius δ centered at each

of the points in B[0, . . . , b− 1].
8: until at least br/2c elements of R[0, . . . , r − 1] are to the left of the

envelope
9: Move exactly br/2c elements from R[0, . . . , r − 1] that are not to the

left of the blue envelope into R[0, br/2c − 1].
10: Push 2(r/2− br/2c) on the stack S.
11: Push 1 bit on stack S when r ≥ b and 0 bit otherwise.
12: Undo the envelope computation.
13: r ← br/2c.
14: end while
15: Compute and report a bichromatic closest pair using a brute-force algo-

rithm since one of r of b is at most 16
16: {Undo operations to restore Y -sorted order for both R and B}
17: while r < |R| or b < |B| do
18: F ← pop(S)
19: X ← pop(S)
20: if F is 1 (i.e. r ≥ b) then
21: r1 ← 2r + X
22: UndoSubsetSelection(R, 0, r1, r).
23: r ← r1.
24: else
25: {F is 0 (i.e. r < b)}
26: b1 ← 2b + X.
27: UndoSubsetSelection(B, 0, b1, b).
28: b← b1.
29: end if
30: end while
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Fig. 1. Left envelope of disks centered at blue points (red points are drawn as hollow
disks).

The algorithm is similar to Clarkson and Shor’s randomized algorithm for
finding the diameter of a (2d or 3d) point set [7]. It selects a random red point
and then computes the distance δ from this point to the nearest blue point.
It then constructs the left envelope of disks centered at the blue points and
having radius δ (see Figure 1). Any red point to the left of this envelope can
not take part in the bichromatic closest pair (since there are no blue points
within distance δ of it), so it is discarded and the algorithm continues with
the undiscarded points.

Algorithm 7 runs in linear-expected time since each time through the first
while loop, with constant probability, we reduce the size of R or B by a factor
of 2. This algorithm can be implemented using only a constant amount of
extra memory. In the first while loop, there are two steps we elaborate on: (1)
how to compute and undo the left-envelope, and (2) how to identify points to
the left of the blue envelope. We begin with the former.

Computing the left-envelope (portions of the disks visible from the point
(−∞, 0)), is very similar to the convex hull problem and can be solved in
O(n) time and O(1) extra memory using an algorithm identical to Graham’s
scan since the points are sorted by Y -coordinate. The implementation of Gra-
ham’s scan given by Brönnimann et al. [5] achieves this with the output being
an array that contains the elements that contribute to the left envelope in the
first part of the array sorted by Y -coordinate and the elements that do not
contribute in the second part of the array. This algorithm is similar in several
ways to the SubsetSelection algorithm. In particular, it is not difficult to
reverse the effects of this algorithm to restore the original <y sorted order
of the elements in O(n) time once we are done with the left envelope. To
see this, consider the pseudo-code implementation of Graham’s Scan as given
by Brönnimann et al. [5] (Algorithm 8). The effects of Algorithm 8 can be
reversed by Algorithm 9.

We now address the problem of determining the red points that are to the
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Algorithm 8 Computing the left convex hull of a point set.

Require: All points in the input array A[0 . . . n− 1] are sorted according to
y-coordinate.

1: for i← 0 to n− 1 do
2: while h ≥ 2 and (A[h − 2], A[h − 1], A[i]) does not form a right turn

do
3: h← h− 1.
4: end while
5: swap A[i]↔ A[h].
6: h← h + 1.
7: end for
8: return h

Algorithm 9 Restoring the <y-order after computing the left envelope.

Require: Array A[0 . . . h] contains the result of running Algorithm 8 on (the
sorted) array A[0 . . . n− 1].

1: Set q ← n− 1.
2: while h 6= q do
3: if A[q] <y A[h] then
4: swap A[h]↔ A[q].
5: Set q ← q − 1.
6: if A[q] <y A[h− 1] then
7: Set h← h− 1.
8: end if
9: while (A[h] <y A[h + 1]) and ((A[h− 2], A[h− 1], A[i]) form a right

turn) do
10: Set h← h + 1.
11: end while
12: else
13: Set h← h + 1.
14: end if
15: end while

left of the blue envelope. To determine whether or not a given red point p is
to the left of the blue envelope, we compute the intersection of a horizontal
line through p with the envelope (see Figure 1). If the intersection point is to
the right of p then p is to the left of the envelope. By scanning the red points
from top to bottom and simultaneously scanning the blue envelope from top
to bottom, similar to merging of two sorted lists, all of these intersections can
be computed in linear time.
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3.2.2 A divide-and-conquer algorithm for bichromatic closest pairs

The previous section gives an in-place algorithm for implementing the merge
step of a divide-and-conquer algorithm for bichromatic closest pairs. All that
remains is to show how this can be put into our framework for stackless divide-
and-conquer algorithms. The algorithm Bichromatic-Closest-Pair given
as pseudocode in Algorithm 10, is very similar to the closest pair algorithm of
the previous section and works by divide and conquer on the red array R.

Initially it seems that this algorithm easily fits into the framework of Section 2,
with the easily handled exception that it recurses first on the right subprob-
lem and then the left subproblem. However, there is one sticking point. Al-
gorithm 2 (Stackless-Recursive) can only call the functions Base-Code,
Pre-Code, Mid-Code, and Post-Code with information about the loca-
tion of the subproblem in the array R (these are the values bR and eR). In
particular, after the recursive calls in Lines 7 and 14, the algorithm no longer
knows the indices bB and eB that mark the current subproblem in the blue
array B, nor does the algorithm know the value of k needed to run Undo-
SubsetSelection. It must recompute these values.

We first observe that recomputing the value of bB is not necessary. The al-
gorithm always moves the current blue subproblem to the front of the blue
array, so bB never changes. Next we observe that the value of k (in line 8) or
eB − k (in line 15) can be found by scanning B starting at bB until reaching
a point whose X-coordinate is smaller than x (in Line 8) or larger than x (in
Line 15).

Our most difficult task is keeping track of the value of eB. We first note
that, unless we are at a node on the rightmost path of the recursion tree, the
subarray B[bB, . . . , eB − 1] contains only elements of B that are to the left of
some dividing line `. This dividing line is defined by the median x-coordinate
in some subarray A[u′, . . . , u′+2h′

] of A. When viewed in terms of the recursion
tree this subarray corresponds to the last node on the path from the root to
the current node at which the path turns left. Furthermore, the values of u′

and h′ can be determined simply by looking at the binary representation of
the current node. If the current node is represented by the pair (u, h) then h′

is the smallest value greater than h such that uh′ = 0 and u′ is obtained from
u by zeroing uh′ , . . . , u0. Furthermore, line 13 of the algorithm explicitly stores
the point with median x-coordinate in R[u′, . . . , u′ +2h′

] at location R[u′] and
the convention of always recursing on the right subproblem first ensures that
this value is still stored in R[u′] when it is needed. Thus, we can determine
the median of R[u′, . . . , u′ + 2h′

] in constant time once we know the value of
u′. Computing u′ takes O(log n) time.
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Algorithm 10 Bichromatic-Closest-Pair(R,B, bR, eR, bB, eB): Compute
the bichromatic closest pair in R[bR, . . . , eR − 1] and B[bB, . . . , eB − 1].

Require: R and B are sorted by Y -coordinate
Ensure: The bichromatic closest pair is stored R[bR] and B[bB] and the re-

maining elements of R and B are sorted by Y -coordinate
1: if eR − bR ≤ 16 or eB − bB ≤ 16 then
2: Compute the bichromatic closest pair by brute force and store the closest

pair in R[bR] and B[bB]
3: else
4: Using Algorithm 5, compute the median X-coordinate x in

R[bR, . . . , eR − 1]
5: Using Algorithm 3 (SubsetSelection), stably store the elements

of R[bR, . . . , eR − 1] with X-coordinates greater than x at locations
R[b(eR − bR)/2c , . . . , eR − 1]

6: Using Algorithm 3 (SubsetSelection), stably store the elements
of B[bB, . . . , eB − 1] with X-coordinates greater than x at locations
B[bB, . . . , bB + k − 1]

7: Bichromatic-Closest-Pair(R,B, b(eR − bR)/2c , eR, bB, bB + k)
8: Compute bB, eB and k {We now know bR and eR but we have forgotten

bB, eB and k.}
9: Using Algorithm 4 (UndoSubsetSelection), restore the Y -sorted or-

der of B[bB, . . . , eB − 1]
10: Using Algorithm 4 (UndoSubsetSelection), restore the Y -sorted or-

der of R[bR, . . . , eR − 1]
11: Using Algorithm 3 (SubsetSelection), stably store the elements of

R[bR, . . . , eR−1] with X-coordinates less than or equal to x at locations
R[bR, . . . , b(eR − bR)/2c − 1]

12: Using Algorithm 3 (SubsetSelection), stably store the elements of
B[bB, . . . , eB−1] with X-coordinates less than or equal to x at locations
B[bB, . . . , eB − k − 1]

13: Stably store the element with median x-coordinate at location R[bR]
and the closest bichromatic pair from step 7 at R[bR + b(eR − bR)/2c]
and B[eB − k]

14: Bichromatic-Closest-Pair(R,B, bR, b(eR − bR)/2c , bB, eB − k)
15: Compute bB, eB and k {We now know bR and eR but we have again

forgotten bB, eB and k.}
16: Using Algorithm 4 (UndoSubsetSelection), restore the Y -sorted or-

der of B[bB, . . . , eB]
17: Using Algorithm 4 (UndoSubsetSelection), restore the Y -sorted or-

der of R[bR, . . . , eR]
18: Stably store the bichromatic closest pair computed in Step 7 (saved in

Line 13) or Step 14, whichever is closer, at R[bR] and B[bB]
19: Using Algorithm 7 (Bichromatic-Closest-Vertically-

Separated-Pair) compute the closest bichromatic pair with one
point to the left of x and one point to the right of x. If this pair is closer
together than R[bR] and B[bB] then stably store this pair at R[bR] and
B[bB]

20: end if
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Putting it all together, we obtain a running time recurrence of

T (r, b) = T (r/2, k) + T (r/2, b− k) +O(r + b + log n) ,

which solves to O(n log n) in an algorithm that uses only O(1) extra memory.

Theorem 3 Given sets R and B of n points in the plane, a closest bichro-
matic pair can be computed in O(n log n) expected time using O(1) extra mem-
ory.

4 Orthogonal line segment intersection

In this section, we present a space-efficient algorithm for the orthogonal line
segment intersection problem. The algorithm reports all intersections between
a set V of v vertical segments and a set H of h horizontal segments in
O(n log n + k) time using a stack of size O(log n). Here, and throughout this
section, n = v + h and k is the number of intersections between H and V . In
Appendix B we describe a version of this algorithm that requires only O(1)
extra space. The main difficulty in achieving the O(1) extra space result is the
same as in the previous section; we perform two recursive calls on pieces of V
that are of equal size, but the parts of H that we recurse on are of odd sizes,
and keeping track of these is a technical challenge.

The algorithm is a space-efficient version of the divide-and-conquer algorithm
given by Goodrich et al. [10], which can be viewed as an implicit traver-
sal of a segment tree [15, Section 1.2.3.1]. The algorithm, which is given as
pseudocode in Algorithm 11 (OLSI) works by restricting itself to a verti-
cal slab [Xmin, Xmax] that contains all the vertical segments currently being
considered. Initially this slab is [−∞, +∞]. The algorithm selects the median
vertical segment from V , which has X-coordinate Xmed. It then processes all
segments of H that completely span [Xmin, Xmed] or [Xmed, Xmax] to find their
intersections with the horizontal segments in [Xmin, Xmed] or [Xmed, Xmax],
respectively. This last step is easily accomplished in linear-time if the hori-
zontal segments are presorted by Y -coordinate and the vertical segments are
presorted by the Y -coordinate of their bottom-endpoint (see Goodrich et al.
[10] for details).

Next the algorithm recurses on the slabs [Xmin, Xmed] and [Xmed, Xmax] along
with the vertical segments that they contain and the horizontal segments that
intersect but do not completely span them. This condition on the horizontal
segments ensures that each intersection is reported only once and that a hor-
izontal segment appears in at most 2 subproblems at each level of recursion.
These two conditions, combined with the fact that there are only O(log n)
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levels of recursion ensure a running time of O(n log n + k).

Algorithm 11 OLSI(V, H, bV , eV , bH , eH): Orthogonal line segment intersec-
tion
Require: Segments in V are sorted by Y -coordinate of the bottom vertices

of the segments and segments in H are sorted by Y -coordinate.
Ensure: All intersections between a segment in H[bH , . . . , eH − 1] and a seg-

ment in V [bV , . . . , eV − 1] are reported.
1: if eV − bV ≤ 2 then
2: Use a brute force algorithm to report all intersection between segments

in V [bV , . . . , eV − 1] and H[bH , . . . , eH − 1]
3: else
4: Let Xmin, Xmed, and Xmax be the minimum, median, and maximum,

respectively, X-coordinates of all segments in V [bV , . . . , eV ].
5: Using Algorithm 3, (SubsetSelection), select all segments of

H[bH , . . . , eH ] that completely span the slab [Xmin, Xmax] and store
them stably in H[bH , . . . ,m2 − 1]

6: Scan V [bV , . . . , eV −1] and H[bH , . . . ,m2−1] to report all intersections.
7: Using Algorithm 4 (UndoSubsetSelection), restore H[bH , . . . , eH −

1]
8: Using Algorithm 3 (SubsetSelection) select all segments of

V [bV , . . . , eV − 1] in the slab [Xmin, Xmed] and stably store them in
V [bV , . . . ,m1 − 1].

9: Using Algorithm 3 (SubsetSelection), select all horizontal seg-
ments that intersect the slab [Xmin, Xmed] but do not span the slab
[Xmin, Xmax] and stably store them in H[bH , . . . ,m2 − 1].

10: OLSI(V, H, bV , m1, bH , m2)
11: Using Algorithm 4 (UndoSubsetSelection), restore H[bH , . . . , eH −

1]
12: Using Algorithm 4 (UndoSubsetSelection), restore V [bV , . . . , eV−1]
13: Using Algorithm 3 (SubsetSelection), select all segments of

V [bV , . . . , eV − 1] in the slab [Xmed, Xmax] and stably store them in
V [bV , . . . ,m1 − 1].

14: Using Algorithm 3 (SubsetSelection), select all segments of
H[bH , . . . , eH − 1] that intersect the slab [Xmed, Xmax] but do not span
the slab [Xmin, Xmax] and stably store them in H[bH , . . . ,m2 − 1].

15: OLSI(V, H, bV , m1, bH , m2)
16: Using Algorithm 4 (UndoSubsetSelection), restore H[bH , . . . , eH −

1]
17: Using Algorithm 4 (UndoSubsetSelection), restore V [bV , . . . , eV−1]
18: end if

Theorem 4 Given a set of v vertical line segments in an array V and a set of
h horizontal line segments in an array H all intersections between horizontal
and vertical segments can be reported in O(n log n + k) time using O(log n)
extra space where n = v + h and k is the number of intersections reported.
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As mentioned above, the main difficulty in implementing this algorithm using
O(1) extra space is in keeping track of the current subarray of H that is being
considered. The details of how this can be done are given in Appendix B.

5 Conclusions

We have given a number techniques for developing space-efficient algorithms.
In particular, we presented a scheme for transforming a recursive function
in standard form to one in space-efficient form reducing the amount of ex-
tra memory used to traverse the recursion tree. We provided a simple way
to stably select a set of elements within an ordered array, and undoing the
selection to restore the array to its original order. Using this, we have also
given simple algorithm for selecting in linear time with constant extra space,
the k-th smallest element in one dimension from an array of points in 2 or
more dimensions when the points are sorted in another dimension, without
disturbing the sorted order. All of these tools are applied to solve several ge-
ometric problems that have solutions using some form of divide-and-conquer.
Specifically, we address the problem of closest pairs, bichromatic closest pairs,
and orthogonal line segment intersection.

Some of the techniques we use to achieve O(1) extra memory may be a little
too complicated for use in practice. In particular, the algorithms for bichro-
matic closest pair and orthogonal line segment intersection do some extra work
in order to keep track of subproblems in the blue, respectively horizontal, ar-
rays. We note, however, if one is willing to use O(log n) extra space then all
of our algorithms can be implemented recursively so that they use O(log n)
extra space and are very implementable.

We conclude with the following open problem: Can one devise a deterministic
counterpart to the randomized algorithm presented for computing the bichro-
matic closest pair for points separated by a vertical line? This would yield a
deterministic O(1) extra memory algorithm for the bichromatic closest pair
problem.
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A Selecting the k-th smallest element

In this appendix, we describe a space-efficient variant of the well-known median-
find algorithm by Blum et al. [2]. Our algorithm assumes that the input is given
in the form of an array A[0 . . . n− 1] which is sorted according to some total
order <y. The goal of the algorithm is, given an integer k ∈ [0 . . . n − 1], to
select the k-th smallest element in A according to some other total order <x.
This algorithm will run in linear time and will require only O(1) extra space.
Additionally, the algorithm returns the array A[0 . . . n− 1] in the same order
as it was presented, namely sorted according to <y.

The correctness of the algorithm described below will follow from the following
invariant:

Invariant: Assume the algorithm is called to select the k-th smallest element
from a <y-sorted (sub-)array A[b . . . e − 1], where b, e, and k, are three
global variables. Then, upon returning from this call, b, e, and k have been
restored to the values they had when the algorithm was called. Additionally,
A[b . . . e− 1] is sorted according to <y.

The invariant is to enforce trivially for any constant-sized input. Algorithm 13
is described in a recursive way to facilitate the analysis and the proof of
correctness. We can convert this algorithm into a non-recursive variant by
simply maintaining a stack of two-bit entries that indicate whether the current
“invocation” took place from line 5, 26, or 38. This stack has a worst-case depth
of O(log n) and thus will (in an asymptotic sense) not increase the extra space
required by this algorithm. Also, the stack S used in lines 4 and 7 contains
only integers in the range [0 . . . 4], so its overall size is bounded by O(log n)
bits, too.

Assuming that the above invariant is fulfilled for any constant-size input, we
can inductively assume that the invariant holds after the “recursive” call in
line 5. This implies that for the successive call to UndoSubsetSelection the
parameters b, b(e−b)/5c, and hence also e1 := b+b(e−b)/5c and e2 := b+b(e−
b)/5c·5 are known. The situation prior to the call to UndoSubsetSelection
is depicted in Figure A.1: The array A[b . . . e1 − 1] contains the medians in
sorted <y-order that had been selected from A[b . . . e2− 1], and the remaining
i elements are still untouched, hence also sorted according to <y.

. . . medians <y-sorted unsorted rest <y-sorted . . .

b e1 e2 e2 + i

Fig. A.1. Restoring the <y-order after having computed the median of the b(b−e)/5c
medians. Here e1 := b + b(b− e)/5c and e2 := b + b(b− e)/5c · 5.
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Algorithm 12 The algorithm RestoringSelect(A, b, e, k, mode) for select-
ing the k-th smallest element in A[b . . . e − 1] (if mode = Select) or the
median element (if mode = Median).

Require: A[b . . . e− 1] is sorted according to <y.
Ensure: A[b . . . e− 1] is sorted according to <y. The variables b, e, and k are

reset to their original values.
1: Subdivide A[b . . . e−1] into b(e−b)/5c groups of 5 elements and (possibly)

one group of size ≤ 4.
2: Move the medians of the first b(e−b)/5c groups to A[b . . . b+b(e−b)/5c−1]

using algorithm SortedSubsetSelection.
3: i← (e− b)− b(e− b)/5c · 5
4: Push(S, i)
5: imed ← RestoringSelect(A, b, b + b(e− b)/5c, k,Median)
6: UndoSubsetSelection(A, b, b + b(e− b)/5c · 5, b(e− b)/5c)
7: i← Pop(S)
8: e← b + b(e− b)/5c · 5 + i
9: if mode = Median then

10: l← b(e− b)/2c
11: else
12: l← k
13: end if
14: x← A[imed]
15: k< ← |{a ∈ A[b . . . e− 1] | a < x} |
16: k= ← |{a ∈ A[b . . . e− 1] | a = x} |
17: k> ← |{a ∈ A[b . . . e− 1] | a > x} |
18: if l /∈ [k< + 1, k< + k=] then
19: if l ≤ k< then
20: if l = k< then
21: Set imed to point to the largest element in A[b . . . e− 1] less than x

(according to <x).
22: else
23: Move x to A[b].
24: Using SortedSubsetSelection, move all elements in A[b +

1 . . . e− 1] less than x to A[b + 1 . . . b + k<].
25: Move the largest element less than x (according to <x) to A[e− 1]

.
26: imed ← RestoringSelect(A, b + 1, b + k<, k,Select)
27: Starting at A[b + k<], scan A to find e − 1 (the index of the first

element y for which y <x x := A[b]).
28: Move A[e− 1] to its proper position in A[b + 1 . . . b + k<].
29: UndoSubsetSelection(A, b + 1, e, b + k< + 1).
30: Reinsert (according to <y) x := A[b] into A[b . . . e− 1] maintaining

imed.
31: end if
32: else
33: (. . . )

45: end if
46: end if
47: Return imed.
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Algorithm 12 Algorithm RestoringSelect(A, b, e, k, mode) (contd.)

18: if l /∈ [k< + 1, k< + k=] then
19: if l ≤ k< then
20: (. . . )

32: else
33: if l = b− e then
34: Set imed to point to the largest element in A[b . . . e− 1] larger than

x (according to <x).
35: else
36: Using SortedSubsetSelection, move all elements in A[b +

1 . . . e− 1] larger than x to A[b + 1 . . . b + k>].
37: Move the smallest element larger than x (according to <x) to A[e−

1].
38: imed ← RestoringSelect(A, b+1, b+k>, k−(k<+k=),Select).
39: Starting at A[b + k>], scan A to find e − 1 (the index of the first

element y for which A[b] =: x <x y).
40: Move A[e− 1] to its proper position in A[b + 1 . . . b + k>].
41: UndoSubsetSelection(A, b + 1, e, b + k> + 1).
42: Reinsert (according to <y) x := A[b] into A[b . . . e− 1] maintaining

imed.
43: Recompute k< and k= (as above) and set k ← (k − (k< + k=)) +

k< + k=.
44: end if
45: end if
46: end if
47: Return imed.

As a consequence, we can first undo the effects of SortedSubsetSelection
on A[b . . . e2 − 1], hence restoring it to sorted <y-order and finally adjust e to
point to e2 + i. This implies that b and e are known and A[b . . . e− 1] is sorted
according to <y. As the original value of k had been passed to the “recursive”
call to RestoringSelection, by the invariant, we still know its value.

For the second and third situtation in which a “recursive” call to Restor-
ingSelection may happen (lines 26 and 38), we do not know how many
elements are passed to the “recursive” call. In order to recover the original
value of e after the call, we move the median-of-medians x to the front of the
array and use a distinguished element y to denote the end of the subarray that
is not passed to the recursive call. Let us consider the situation where the k-th
element to be selected is larger (according to <x) than the median-of-medians
x (the other situation is handled analogously). Prior to the “recursive” call
in line 38 we have moved all elements larger than x to the front of the array,
more specifically to the subarray A[b + 1 . . . b + k>]. Then we find the largest
element larger than x (using a single scan) and move it to the end of the cur-
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rent array A[b . . . e− 1]. This element, being larger than x, is also larger than
any element not passed to the “recursive” call and will be the first element
larger than x encountered when scanning the array A starting from A[b + k>]
(Figure A.2).

. . . x “x <x” <y-sorted “x 6<x” unsorted y . . .

b b + 1 b + k> ? e

Fig. A.2. Restoring the <y-order after having selected the k− (k< + k=)-th element
from A[b + 1 . . . b + k> − 1]. Here y is the largest element in A[b . . . e− 1] for which
x <x y.

By the invariant, we know that after the “recursive call” to RestoringSub-
setSelection(A, b+1, b+k>, k−(k<+k=), the subarray A[b+1 . . . b+k>−1]
will be sorted according to <y, and we will know the values of b + 1, b + k>,
and k − (k< + k=). This enables us to retrieve the median-of-medians x from
A[b] and (starting from A[b + k>]) to scan for the first element larger than x.
After we have found this element at position e−1, we have restored to original
value of e, and a single scan over A[b . . . e−1] allows us to compute the values
k< and k=, which are needed to restore k to its original value.

Inductively, we see that the invariant holds for the initial call to the algorithm,
and this implies that the algorithm selects the k-th smallest element according
to <x while maintaining the <y-order in which the elements had been given.
The space requirement of this algorithm is O(log n) bits, because besides a
constant number of indices, only two stacks of size O(log n) bits are needed.
Using the analysis of the original algorithm by Blum et al. [2], the running
time can be shown to be O(n), and we conclude with the following theorem:

Theorem 5 The k-th smallest element in an array of n element can be se-
lected in linear time using O(1) extra space. Furthermore, if the set is given
sorted according to some total order, this order can be restored in the same
time and space complexity.

B Orthogonal Line-Segment Intersection

In this appendix, we describe an algorithm that solves the orthogonal line
segment intersection problem in O(n log n + k) time using O(1) extra space,
where n is the total number of line segments and k is the total number of
intersections. We assume that the input is given in the form of two arrays
H[0 . . . nh − 1] and V [0 . . . nv − 1] of horizontal and vertical line segments,
respectively, where n = nh + nv.
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We will describe the algorithm as a recursive algorithm. Since it follows the
general framework of Section 2, however, we can make it space-efficient so that
it uses only O(1) extra space.

Consider a subarray V [0 . . . ev − 1], and let m := 2blog2((ev)/2)c. Let i be the
index such that the X-coordinate of V [i] is the m-th smallest among all X-
coordinates of the line segments in this subarray. Our algorithm will use V [i]
to first partition the subarray into a subarray of length m (we call this “par-
titioning the left”) and then into a subarray of length ev − m (we call this
“partitioning the right”). These partitioning algorithms are given as Algo-
rithms 13 and 15. Both of them can be undone, see Algorithms 14 and 16.

Algorithm 13 PreVerticalPartition(V ,ev) Partition the vertical seg-
ments before the first recursive call (Partitioning the left)

Require: V [0 . . . ev − 1] is sorted according to <y.upper, i.e., Y -coordinates of
the upper endpoints.

Ensure: That ev := m and the resulting array V [0 . . . ev − 1] contains all
vertical segments not to the right of the X-median, and is sorted according
to <y.upper.

1: m← 2blog2((ev)/2)c

2: i← RestoringSelect(V, 0, ev, m,Select).
3: Using SortedSubsetSelection, move all elements less than or equal

to V [i] to V [0 . . . m− 1].
4: Push(S,Left).
5: ev ← m
6: Return ev

Algorithm 14 UndoPreVerticalPartition(V ,ev) Undo the pre-
partitioning of the vertical segments after returning from the first recursive
call.
Require: The first recursion has ended, and we are given an array V [0 . . . ev−

1] that is sorted according to <y.upper.
Ensure: The variable ev has been reset to its original value and the resulting

array V [0 . . . ev − 1] is sorted according to <y.upper.
1: Pop(S).
2: if 2ev ≤ |V | then
3: eorig

v ← 2ev.
4: else
5: eorig

v ← |V |.
6: end if
7: UndoSubsetSelection(V, 0, eorig

v , ev)
8: ev ← eorig

v

9: Return ev

The observation that shows the correctness of the formula for restoring the
value of ev (Line 3 in Algorithm 16) is that the left subtree of the current node
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Algorithm 15 MidVerticalPartition(V ,ev) Partition the vertical seg-
ments before the second recursive call.
Require: V [0 . . . ev − 1] is sorted according to <y.upper.
Ensure: That ev := ev −m and that the resulting array V [0 . . . ev] contains

all vertical segments to the right of the X-median and is sorted according
to <y.upper.

1: m← 2blog2(ev/2)c

2: i← RestoringSelect(V, 0, ev, m,Select).
3: Using SortedSubsetSelection, move all elements larger than V [i] to

V [0 . . . ev −m− 1].
4: Push(S,Right).
5: ev ← ev −m
6: Return ev

Algorithm 16 UndoMidVerticalPartition(V ,ev) Undo the partitioning
of the vertical segments after returning from the second recursive call

Require: The last recursive call has ended, and we are given an array
V [0 . . . ev] that is sorted according to <y.upper.

Ensure: The variable ev has been reset to its original value and the resulting
array V [0 . . . ev − 1] is sorted according to <y.upper.

1: Pop(S).
2: Let d be the number of elements on the stack S.
3: eorig

v ← 2dlog2 |V |e−(d+1) + ev.
4: UndoSubsetSelection(V, 0, eorig

v , ev)
5: ev ← eorig

v

6: Return ev

is a complete binary tree. The height of the tree is the height of the recursion
tree (which is dlog2 |V |e) minus the depth of the current node. The number
of leaves in the left subtree, and hence the number of elements on which the
first recursive call took place, is then 2dlog2 |V |e−(d+1), which is also the index of
the split point.

After a subarray V [0 . . . ev− 1] has been “partitioned to the left”, the vertical
slab spanned by V [0 . . . ev − 1] (this is the current slab) has been partitioned
into a left sub-slab and a right sub-slab. At this moment, we use these sub-
slabs to partition the corresponding subarray H[0 . . . eh− 1] of horizontal line
segments. To be more precise, in “partitioning the left” (see Algorithm 17), the
initial part of the subarray of H contains all m horizontal line segments in the
subarray that intersect the left sub-slab and do not cross the current slab. A
problem arises when we want to undo this partitioning (in Algorithm 18): At
that moment, we do not know the original value of eh. The solution is to store
a “special” horizontal segment (viz. the segment h in Line 13 of Algorithm 17)
in H[m].
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Algorithm 17 PreHorizontalPartition(H,eh) Partition the horizontal
segments before the first recursive call.

Require: H[0 . . . eh−1] is sorted according to <y. The current slab boundaries
as well as the median for splitting the slab are known.

Ensure: That eh := m and the resulting array H[0 . . . eh − 1] contains all
horizontal segments to be passed to the first recursion sorted according to
<y.

1: Let m be the number of elements in H[0 . . . eh − 1] that intersect the left
sub-slab and do not cross the current slab.

2: if m < eh then
3: Push(T, 1). {At least one segment will not move.}
4: Synchronously go back in stack T and stack S and find the most recent

recursion (except for the current) where at least one segment was not
moved. Let R be the type of this recursion.

5: if R = Right then
6: Let h be the segment of those crossing the current slab with the

leftmost left endpoint.
7: else
8: Let h be the segment of those crossing the current slab with the

rightmost right endpoint.
9: end if

10: if h is undefined then
11: Let h be H[m]. {Don’t do anything.}
12: end if
13: Move h to H[m].
14: Using SortedSubsetSelection, move all elements except for those

that (a) avoid the left sub-slab or (b) cross the current slab to
H[0 . . . m− 1].

15: else
16: Push(T, 0).
17: end if
18: eh ← m
19: Return eh

This segment is used to distinguish horizontal segments crossing the left sub-
slab from horizontal segments crossing a slab corresponding to a recursive
call higher up in the recursion tree. These segments may be stored in cells
H[m] and higher and may make it impossible to re-obtain the original index
eh that is needed in the restoration process. If there is no segment crossing the
current slab, but at least one segment did not move, we can easily re-obtain
the original index eh by searching for the first segment that is either to the
right of the current slab or completely crosses the current slab.

Because of the special role of the horizontal line segment h, we use a variant
of SortedSubsetSelection in Algorithm 17 and a variant of UndoSub-
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Algorithm 18 UndoPreHorizontalPartition(H,eh) Undo the parti-
tioning of the horizontal segments after returning from the first recursive call.

Require: The first recursive call has ended, and we are given an array
H[0 . . . eh − 1] that is sorted according to <y. The current slab bound-
aries as well as the median for splitting the slab is known.

Ensure: The variable eh have been reset to its original value and the resulting
array H[0 . . . eh − 1] is sorted according to <y.

1: i← Pop(T ).
2: if i = 0 then
3: {No partitioning needs to be reverted.}
4: else
5: h← H[eh].
6: if h crosses the current slab then
7: Synchronously go back in stack T and stack S and find the most

recent recursion (except for the current) where at least one segment
was not moved. Let R be the type of this recursion.

8: if R = Right then
9: Starting at H[eh + 1], scan to find the first element that either is

right of the current slab or which crosses the current slab and whose
left endpoint is left of h’s left endpoint.

10: else
11: Starting at H[eh + 1], scan to find the first element that either is

right of the current slab or which crosses the current slab and whose
right endpoint is right of h’s right endpoint.

12: end if
13: else
14: Starting at H[eh + 1], scan to find the first element whose right end-

point is right of the right slab boundary or the first element which
crosses the current slab.

15: end if
16: Let eorig

h be the index of the element just found.
17: UndoSubsetSelection(H, 0, eorig

h , eh)
18: Move h to its proper position.
19: eh ← eorig

h

20: Return eh

21: end if

setSelection in Algorithm 18. These variants skip over the line segment
h.

We have only described how to partition the subarray H[0 . . . eh − 1] “to the
left”. In a completely symmetric way, this subarray can be partitioned “to the
right”.

Having these subroutines at hand, the algorithm solving the orthogonal line
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segment intersection problem is given as Algorithm 19.

Algorithm 19 ImprovedOLSI(V ,ev,H,eh) Solving the Orthogonal Line Seg-
ment Intersection Problem.
1: Scan V [0 . . . ev − 1] to compute the boundaries of the current slab

(min/max values of X-coordinates).
2: Using SortedSubsetSelection, move all horizontal segments spanning

the current slab to H[0 . . . `− 1].
3: Perform a top-down sweep over H[0 . . . `− 1] and V [0 . . . ev− 1] to find all

intersections.
4: UndoSubsetSelection on H[0 . . . eh − 1].
5: ev ← PreVerticalPartition(V ,ev)
6: eh ← PreHorizontalPartition(H,eh)
7: ImprovedOLSI(V ,ev,H,eh)
8: ev ← UndoPreVerticalPartition(V ,ev)
9: UndoPreHorizontalPartition(H,eh,mh)

10: ev ← MidVerticalPartition(V ,ev)
11: eh ← MidHorizontalPartition(H,eh)
12: ImprovedOLSI(V ,ev,H,eh)
13: ev ← UndoMidVerticalPartition(V ,ev)
14: eh ← UndoMidHorizontalPartition(H,eh)

Theorem 6 Given a set of n horizontal and vertical line segments, all k in-
tersections among them can be reported in O(n log n+k) time using O(1) extra
space.
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