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Abstract
Given a polygon P , a flipturn involves reflecting a pocket p of

P through the midpoint of the lid of p. In 1973, Joss and Shannon
(published in Grünbaum (1995)) showed that any polygon on n

vertices will become convex after a sequence of at most (n − 1)!

flipturns. They conjectured that this bound was not tight, and
that n2/4 flipturns would always be sufficient. In this work, we
show that any polygon on n vertices will be convex after any
sequence of at most n(n− 3)/2 flipturns.

1 Introduction

Given a simple polygon P , a flipturn involves reflecting a pocket
p of the convex hull of P through the midpoint of the convex hull
edge defining p. See Fig. 1 for an example. In this paper, we study
the number of flipturns required to convexify a polygon.
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Figure 1: An example of a flipturn.

In studying this problem there are actually two questions that
arise. One can consider the optimization problem of determining
the minimum number of carefully chosen flipturns required to con-
vexify any polygon, where the flipturns are chosen carefully so as
to minimize this quantity. One can also consider the problem of de-
termining the maximum number of flipturns required to convexify
any polygon, where the flipturns are performed arbitarily.

Dubins et al [2] show that the minimum number of flipturns re-
quired to convexify any simple lattice polygon (A lattice polygon is
a polygon in which all edges have length 1 and are either horizontal
or vertical.) on n vertices is at most n− 4.

Surprisingly, the more general case of arbitrary polygons was
studied as early as 1973 when Joss and Shannon (see Grünbaum



[3]) showed that the maximum number of flipturns required to con-
vexify any polygon is at most (n − 1)!. They conjecture that this
bound is not tight and that n2/4 flipturns always suffices.

Biedl [1] has found an example where a sequence of Ω(n2) care-
fully chosen flipturns are required to convexify a polygon. However,
the same polygon can be convexified using a different sequence of
O(n) flipturns. Thus, the Ω(n2) is only a lower bound on the max-
imum number of flipturns required to convexify a polygon.

Grünbaum and Zaks [4] showed that even non-simple polygons
can be convexified with a finite sequence of flipturns. For a survey
of these and other results on flipping polygons, see the paper by
Toussaint [6].

In this paper we show that any simple polygon P with n vertices
will be convexified after any sequence of at most n(n−3)/2 flipturns,
i.e., the maximum number of flipturns required to convexify any
polygon is at most n(n − 3)/2. More generally, any polygon for
which the slopes of the edges take on at most s different values will
be convexified after at most n(s − 1)/2 − s flipturns. In Section 2
we give some definitions. Section 3 presents our proof. Section 4
summarizes and concludes with open problems.

2 Preliminaries

Let P be a simple polygon whose vertices in counterclockwise order
are v0, . . . , vn−1, and let the edges of P be oriented counterclockwise
so that ei = (vi−1, vi).1 A pocket p = (vi, . . . , vj) of P is a subchain
of P such that vi and vj are on the convex hull of P and vk is not
on the convex hull of P for all i < k < j. A lid (vi, vj) is the line
segment joining the two endpoints of a pocket (vi, . . . , vj).

In our proof, there is a special degenerate case that must be
treated carefully. Let (vi, vj) be a lid of P . Let l be the line con-
taining vi and vj and let vk be the first vertex at or following vj such
that vk+1 is not contained in l. Then we call (vi, . . . , vk) a modified
pocket of P and the segment (vi, vk) is called a modified lid of P .
Modified pockets and lids are equivalent to standard pockets and
lids except when convex hull edges have the same slope as edges of
P . Fig. 2 illustrates modified pockets.

Let p = (vi, . . . , vk) be a modified pocket of P . Then a flip-
turn fi,k(P ) of the polygon P transforms P into a new polygon
P ′ by reflecting all edges of p through the midpoint of the mod-
ified lid (vi, vk). Equivalently, fi,k(P ) rotates the modified pocket
p = (vi, . . . , vk) 180 degrees about the midpoint of the lid (vi, vk).

1Here and henceforth, all subscripts are implicitly taken modulo n.
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Figure 2: The pocket vi, . . . , vj and modified pocket vi, . . . , vk in
(a) a non-degenerate case and (b) a degenerate case.

Let dir(ei) be the direction of an edge of P , measured as the angle,
in radians, between a right oriented horizontal ray and ei. Let
S =

⋃n−1
i=0 {dir(ei),−dir(ei)}, i.e., the set of all directions and their

negations used by edges of P . We will label the directions in S as
d0, . . . , dm−1 in increasing order. For two directions di and dj in S we
define the discrete angle between di and dj, as 6 didj = (j−i) mod m,
i.e., one plus the number of other directions in S between di and dj
as we rotate di in the counterclockwise direction.

For a vertex vi of P incident on edges ei and ei+1 we define the
weight of vi as

w(vi) =

{
6 dir(ei)dir(ei+1) if vi is convex
6 dir(ei+1)dir(ei) if vi is reflex .

We define the weight of P as w(P ) =
∑n−1
i=0 w(vi). See Fig. 3 for an

example.
For ease of notation, we define the variable s as |S/2|, which is

exactly the number of distinct slopes used by supporting lines of
edges of P . From these definitions, it is clear that w(vi) ≤ s−1 and
therefore w(P ) ≤ n(s− 1).
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Figure 3: A polygon for which |S| = 8 labelled with its vertex
weights.



3 Proof of the Main Theorem

In this section we prove our main theorem by showing that the
weight of P decreases by at least 2 after every flipturn. We start
with the following simple lemma.
Lemma 1. For any convex polygon P , we have w(P ) = 2s.

Proof. Consider the circle of all directions. The weight of a vertex
vi is the number of elements in S contained in the circular interval
Ii = [dir(ei−1), dir(ei)). Since P is a polygon, ⋃n−1

i=0 Ii is the interval
[0, 2π). Therefore, each element of S contributes at least one to
w(P ) so w(P ) ≥ 2s. Since P is convex, e0, . . . , en−1 are ordered in
decreasing order of direction, therefore no two intervals Ii and Ij,
i 6= j overlap. Thus, each element of S contributes at most one to
w(P ), so w(P ) ≤ 2s.

Consider a modified pocket p of P , and without loss of generality
assume that the modified lid of p is parallel to the x-axis. Let vi
and vj be the left and right vertices of the modified lid of p. Let
r and b be the weight of vi and vj, respectively, before performing
a flipturn on p and let r′ and b′ be the weight of the vi and vj,
respectively, after performing the flipturn.
Lemma 2. r + b− r′ − b′ ≥ 2

Proof. Let dw = dir(ei−1), dx = dir(ei), dy = dir(ej−1), and dz =
dir(ej). To aid in understanding the problem, we place vi and vj
at the same point and draw the four edges incident on vi and vj
along with their extensions. There are now four cases to consider,
depending on the order of dw, dx, dy, and dz. These four cases are
illustrated in Fig. 4.

When viewed this way, it is clear that in each of the four cases
r + b− r′ − b′ = 2α, where α = min{dw, dy} −max{dx, dz}. Since the
discrete angles between edges of P are non-negative integers, all
that remains to show is that α 6= 0. In order to have α = 0, the two
edges defining α must both be pointing in the same direction in P
before performing the flipturn. Thus, with the condition α = 0 we
obtain one of the four situations depicted in Fig. 5. However, in
each of these situations, (vi, vj) is not a modified lid. We conclude
that α 6= 0.
Theorem 1. Any simple polygon on n vertices is convexified after
any sequence of at most n(s− 1)/2− s flipturns.

Proof. This follows immediately from the following three facts. (1) Ini-
tially, the weight of P is at most n(s−1). (2) The weight of P once
it is convexified will be 2s. (3) During a flipturn, the only weights
that change are the weights of the two verices of the modified lid
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Figure 4: Four cases in the proof of Lemma 2. Arrows indicate the
directions of the edges in P before performing the flipturn.
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Figure 5: Four situations corresponding to cases in the proof of
Lemma 2.



Arbitrary Polygons
Min Max

PLB n/2− 2 Ω(n2) [1]
PUB (n− 1)! [3] (n− 1)! [3]
NUB n(n− 3)/2 n(n− 3)/2

Lattice polygons
Min Max

PLB n/2− 2 [2] n/2− 2 [2]
PUB n− 4 [2] 2.6382n [3, 5]
NUB n/2− 2 n/2− 2

Table 1: Summary of previous and new results.

being flipped. Therefore, by Lemma 2 the weight of P decreases
by at least 2 after every flipturn.

Strengthening the result of Joss and Shannon [3], we immediately
obtain the following corollary by taking s = n.
Corollary 1. Any simple polygon on n vertices is convexified after
any sequence of at most n(n− 3)/2 flipturns.

As for the result of Dubins et al [2] we take s = 2 and obtain the
following.
Corollary 2. Any simple lattice polygon on n vertices is convexified
after any sequence of at most n/2− 2 flipturns.

Indeed, Corollary 2 is the best bound possible. This is because
the weight of any vertex in a lattice polygon P is at most 1, thus
the decrease in the weight of P during a flipturn is at most 2.
Therefore n/2 − 2 flipturns are necessary to convexify any simple
lattice polygon with n corners.

4 Conclusions

Table 1 summarizes the results obtained in this paper and compares
them to the previous best known results. The columns labelled Min
(respectively, Max) refer to the minimum (respecively, maximum)
number of flipturns required. The first row of the table shows the
previously known lower bounds, the second row shows the previ-
ously known upper bounds and the third row shows the new upper
bounds obtained in this work.

In looking at this table, an obvious open problem is that of clos-
ing the gap between the linear lower bound and the quadratic upper
bound on the minimum number of flipturns required to convexify
an arbitrary polygon.
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