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Abstract

We consider online routing algorithms for finding paths between the vertices of
plane graphs. Although it has been shown in Bose et al. [4] that there exists no
competitive routing scheme that works on all triangulations, we show that there
exists a simple online O(1)-memory c-competitive routing strategy that approxi-
mates the shortest path in triangulations possessing the diamond property, i.e. the
total distance travelled by the algorithm to route a message between two vertices
is at most a constant c times the shortest path. Our results imply a competitive
routing strategy for certain classical triangulations such as the Delaunay, greedy,
or minimum-weight triangulation, since they all possess the diamond property. We
then generalize our results to show that the O(1)-memory c-competitive routing
strategy works for all plane graphs possessing both the diamond property and the
good convex polygon property.

Key words: Online routing, competitive routing, geometric graph, minimum
weight triangulation, Delaunay triangulation, greedy triangulation, spanner,
spanning ratio, planar graph, good polygon.

1 Introduction

Path finding, or routing, is central to a number of fields including geographic
information systems, urban planning, robotics, and communication networks.
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In many cases, knowledge about the environment in which routing takes place
is not available beforehand, and the vehicle/robot/packet must learn this in-
formation through exploration. Algorithms for routing in these types of envi-
ronments are referred to as online [3] routing algorithms.

In this paper we consider online routing in the following abstract setting: The
environment is a plane graph, G (i.e., the planar embedding of G) with n
vertices and whose edges are weighted with the Euclidean distance between
their endpoints. The source s and destination t are vertices of G, and a packet
can only travel on edges of G. Initially, a packet only knows the coordinates
of s, t, and N(s), where N(v) denotes the set of vertices adjacent to a node
v. When a packet visits a node v, it learns the coordinates of N(v).

Network routing has a rich history and has been studied in many different
contexts (see the handbook [2] for a comprehensive review). The starting point
for this paper is the paper [6] where online geometric routing algorithms are
classified based on their use of memory. A deterministic routing algorithm is
memoryless or oblivious if, given a packet currently at vertex v and destined
for node t, the algorithm must forward the packet and the only information
available to the algorithm is the coordinates of v, t and N(v). An O(1)-memory
routing algorithm decides where to move a packet when the only information
available to the algorithm is the coordinates of v, t, N(v), and the content of
its constant size memory. Henceforth, we assume that a constant size memory
can hold a constant number of vertex identifiers, distances, and O(log n) bit
integers 1 .

We say that a routing algorithm A is defeated by a graph G if there exists a
pair of vertices s, t ∈ G such that a packet stored at s will never reach t when
being routed using A. Otherwise, we say that A works for G.

LetA(G, s, t) denote the length of the walk taken by routing algorithmA when
travelling from vertex s to vertex t of G, and let SP(G, s, t) denote the length
of the shortest path, in G, between s and t. We say that A is c-competitive
for a class of graphs G if

A(G, s, t)

SP(G, s, t)
≤ c

for all graphs G ∈ G and all s, t ∈ G, s 6= t. We say thatA is simply competitive
if A is c-competitive for some constant c.

Recently, several papers have dealt with online routing and related problems

1 In certain contexts, this is sometimes referred to as log memory, however in our
setting, we want to emphasize that the memory only holds a constant number of
words each consisting of at most O(log n) bits.
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in geometric settings. Kalyanasundaram and Pruhs [10] give a 16-competitive
algorithm to explore any unknown plane graph, i.e., visit all of its nodes.
This online exploration problem makes the same assumptions as those made
here, but the goal of the problem is to visit all vertices of G, not just t. This
difference leads to inherently different solutions.

Kranakis et al. [11] give a deterministic oblivious routing algorithm that works
for any Delaunay triangulation, and give a deterministic O(1) memory algo-
rithm that works for any connected plane graph.

Bose and Morin [6] also study online routing in geometric settings, particu-
larly triangulations. They give a randomized oblivious routing algorithm that
works for any triangulation, and ask whether there is a deterministic obliv-
ious routing algorithm for all triangulations. They also give a competitive
O(1)-memory routing algorithm for Delaunay triangulations.

Cucka et al. [7] experimentally evaluate the performance of routing algorithms
very similar to those described by Kranakis et al. [11] and Bose and Morin [6].
When considering the Euclidean distance travelled during point-to-point rout-
ing, their results show that the greedy routing algorithm [6] performs better
than the compass routing algorithm [6,11] on random graphs, but does not
do as well on Delaunay triangulations of random point sets. 2 However, when
one considers not the Euclidean distance, but the number of edges traversed
(link distance), then the compass routing algorithm is slightly more efficient
for both random graphs and Delaunay triangulations.

Recently, Bose et al. [4] provide a deterministic oblivious routing strategy that
works for all triangulations. However, they also show that there is no competi-
tive online routing algorithm under the Euclidean distance metric in arbitrary
triangulations. In light of this fact, it is interesting to classify which types of
triangulations admit competitive routing algorithms since it was shown in [6]
that there exist O(1)-memory competitive routing strategies for the Delaunay
triangulation.

In this paper we explore this question further and present an O(1)-memory
competitive routing strategy that works for the class of triangulations possess-
ing the diamond property. This class is fairly large as it includes such classical
triangulations as the Delaunay, greedy and minimum-weight triangulations.
We then generalize this to show that in fact, the routing strategy works for
all plane graphs possessing both the diamond property and the good convex
polygon property.

The remainder of the paper is organized as follows: In Section 2, we review
the lower bound construction of Bose et al. [4]. In Section 3 we present a de-

2 Cucka et al. call these algorithms p-dfs and d-dfs, respectively.
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terministic competitive online routing algorithm for routing on triangulated
polygons with two ears. Section 4 presents our results for routing on triangu-
lations that possess the diamond property. Finally, Section 6 summarizes and
concludes with open problems.

2 Lower Bounds

By modifying a proof of Papadimitriou and Yannakakis [12], Bose et al. [4]
showed that under the Euclidean metric, no deterministic routing algorithm
is o(
√

n)-competitive for all triangulations. The idea behind their argument
is depicted in Fig. 1. Given any deterministic routing algorithm, observe the
path it obtains between s and t on the n vertex triangulation in Fig. 1 (a).
If each row in the triangulation has Ω(

√
n) vertices and the length of every

horizontal segment is n, then the length of the path is at least Ω(n
√

n) since
the shortest path from s to t has length Ω(n

√
n). Next, construct a new graph

which keeps this path and every vertex adjacent to this path intact but has
a shortcut of length O(n) from s to t. The path found by the deterministic
algorithm on the new graph will still have length Ω(n

√
n) since all of the

vertices visited by the algorithm look identical.

s

t

(a)

s

t

vb

(b)

Fig. 1. (a) The triangulation T with the path found byA indicated. (b) The resulting
triangulation T ′ with the “almost-vertical” path shown in bold.

Theorem 1 [4] Under the Euclidean distance metric, no deterministic rout-
ing algorithm is o(

√
n) competitive for all triangulations.
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Intuitively, the main problem with being able to route competitively online
is the existence of long skinny triangles. Essentially, it is impossible to visit
too many long skinny triangles while searching for a path. Note that the
triangulation in Fig. 1(a) has many long skinny triangles making it possible
to hide a shortcut as was done in Fig. 1(b) once a deterministic algorithm has
computed a path in (a). A natural question to ask is what additional property
would allow the existence of a competitive routing scheme. In [6], we showed
that if a triangulation is Delaunay, then an O(1)-memory online competitive
routing scheme exists. In this paper, we show that a weaker geometric property
is sufficient, namely the diamond property for triangulations and additionally
the good convex polygon property for plane graphs. All of these properties
essentially remove long skinny triangles.

3 Competitive Routing in Triangulated Polygons with Two Ears

Before addressing the problem of routing on plane graphs, we first study the
problem in a specific setting that will prove to be useful in the sequel. A
triangulated simple polygon is a geometric outer-planar graph P where every
face except the outer face is a triangle. A vertex of degree two in P is known
as an ear. In this section, we study triangulated simple polygons with only
two ears, s and t. Given such a graph P , we devise a simple online O(1)-
memory routing strategy that finds a path from s to t such that the total
distance travelled by the algorithm when routing from s to t is at most 9 ·
SP(P, s, t) (i.e. the shortest path from s to t in P ).

s

t

a1

a2

a3

a7a5

a4

a6

b1
b2

b3

b4

b5

Fig. 2. The ears s and t partition P into an upper and lower chain.

The two ears naturally divide the outer face of P into two chains (see Figure 2).
Let {s = a0, a1, . . . , am = t} be the sequence of vertices in the upper chain
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Fig. 3. The paths along the lower and upper chains of P can be arbitrarily long.

and {s = b0, b1, . . . , bn = t} be the sequence of vertices in the lower chain. If
the shortest path from s to t happened to be one of these two chains, then one
could devise a simple online routing strategy by directly applying a result of
Baeza-Yates et al. [1]. Baeza-Yates et al. studied the following problem: given
a two-way infinite line and a searcher starting at the origin, the searcher must
find a goal that lies at some unknown distance d from the origin. The searcher
can only move in unit steps and the objective is to minimize the ratio of the
distance traversed to the true distance d. The strategy proposed in [1] is to
have the searcher alternate her search between the two sides of the origin and
each time the searcher travels a certain distance on one side of the origin, she
doubles the distance travelled on the other side of the origin. This results in
the searcher travelling at most 9d steps to find the goal. By having the upper
and lower chain represent each of the two sides of the origin, applying this
technique would result in a 9-competitive search strategy. Unfortunately, the
shortest path need not be one of the two chains. In fact, the ratio between
the length of the shortest path and either of the two chains can be unbounded
(see Figure 3).

We circumvent this problem by uncovering some key properties of the shortest-
path tree of P rooted at s, denoted T (s). The tree T (s) is formed by taking
the union of the shortest paths from s to all the vertices in P . The shortest
path from s to a node x in P consists of a sequence of nodes from the upper
and lower chain. This sequence cannot have a node from the lower chain
between two consecutive nodes in the upper chain or vice versa, by the triangle
inequality.

We refer to nodes of degree 1 in T (s) as leaves, nodes of degree 2 as internal
nodes and all other nodes as branching nodes. The crucial observation is that
the shortest path from s to t visits every branching node.

Lemma 2 Given a triangulated simple polygon P with two ears s and t, the
shortest path from s to t in P visits every branching node of the shortest path
tree rooted at s.

Proof: Without loss of generality, consider an arbitrary branching vertex, ai,
of T (s) on the upper chain of P . The argument is symmetric for a branching
vertex on the lower chain. Since ai has degree at least 3, it must be adjacent
to at least one vertex bj on the lower chain. The two vertices ai and bj form
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a cut set of the graph P . Therefore, every path from s to t in P goes through
either ai or bj. In particular, the path in T (s) from s to t must go through one
of these two vertices. We have two cases to consider. The first case is when bj

is a child of ai in T (s). In this case, the unique path from s to t in T (s) must
go through ai.

The second case is when ai is a child of bj. In this case, we need to show that
the subtree rooted at ai contains t. Since P is triangulated, we have that either
ai is adjacent to bj−1 or bj is adjacent to ai−1 in P . The former contradicts that
the shortest path from s to ai goes through bj, therefore, we must have the
latter. The latter implies that ai cannot be adjacent to ai−1 in T (s), otherwise
T (s) would contain a cycle. Therefore, since ai has degree at least 3 in T (s),
it must be adjacent to another vertex on the lower chain, bk. Now, k must be
greater than j, since we established that the edge bjai−1 exists. Again, since P
is a triangulation, ai must be adjacent to all the vertices from bj to bk on the
lower chain in P . This implies that bj has two children in T (s). One of them
is ai and the other is bj+1. The subtree rooted at bj+1 is a path on the lower
chain that ends at bk−1. Therefore, the subtree rooted at ai must contain t,
thereby implying that the shortest path from s to t goes through ai.

�

Branching nodes can be identified locally with only a constant amount of ex-
tra information. Consider the node ai in the upper chain. Let bj, bj+1, . . . , bk

be the sequence of nodes in the lower chain adjacent to ai. If we know the
length of SP(P, s, ai−1) and SP(P, s, bj), then we can identify whether ai

or any of its adjacent vertices on the lower chain are branching nodes. For
example, the node bj is a branching node if |SP(P, s, bj)| + dist(bj, ai) <
|SP(P, s, ai−1)| + dist(ai−1, ai), where dist(p, q) represents the Euclidean dis-
tance between points p and q. Therefore, the only information required to
determine if ai or any of its neighbors is a branching node is SP(P, s, ai−1)
and SP(P, s, bj). This is precisely the information that we will maintain while
routing.

The approach to finding a competitive routing algorithm is to move from
branching node to branching node in a competitive fashion. To find a short
path between two consecutive branching nodes, we only need to explore two
paths, one consisting solely of upper chain vertices and the other solely of
lower chain vertices. The following algorithm, which we call Next-Branch

starts at a branching node x and moves to the next branching node y travelling
a total of 9 · SP(P, x, y). Since x is a branching node, there are two paths of
T (s) leading out of x. One of them leads to y and the other ends at a leaf.
Without loss of generality, let P1 = x, ai, ai+1, . . . , aj, y be one of the paths
and P2 = x, bk, bk+1, . . . , bl be the other. The algorithm is outlined in Fig. 4.

7



Next-Branch

The input is either the starting point or a branching node denoted x. The
output is either the final destination t or the next branching node on the
shortest path from s to t along with its furthest adjacent neighbors on the
upper and lower chains.

The loop invariants maintained are: C contains the current position, an is the
furthest vertex on the upper chain adjacent to C, ap is its predecessor on the
upper chain, bn is the furthest vertex on the lower chain adjacent to C, bp is
its predecessor on the lower chain, Sa is the length of the shortest path from
x to an and Sb is the length of the shortest path from x to bn.

1. d = min dist(x, ai), dist(x, bk),
2. C, ap, bp = x
3. an = ai, bn = bk, Sa = dist(x, ai), Sb = dist(x, bk)
4. While (TRUE) {

5. While (Sa < d) {
6. C = an. (i.e. move current vertex to an.)
7. If C is an ear, then the destination is reached. Move to C and

exit.
8. If C or any vertex in N(C) is a branching node, move to that

node, output its furthest neighbor on the upper and lower
chain and exit.

9. Set an to the next vertex on upper chain adjacent to C and
update Sa and ap. This can be done since ap, bn, N(an), Sa

and Sb are available.
10. Set bn to the furthest vertex on the lower chain adjacent to

C and update Sb and bp. }
11. d← 2d
12. While (Sb < d) {

13. C = bn

14. If C is an ear, then the destination is reached. Move to C and
exit.

15. If C or any vertex in N(C) is a branching node, move to that
node, output its furthest neighbor on the upper and lower
chain and exit. Again, this can be done since we know Sa and
Sb.

16. Set bn to the next vertex on upper chain adjacent to C and
update Sb and bp. This can be done since bp, an, N(bn), Sa

and Sb are available.
17. Set an to the furthest vertex on the lower chain adjacent to

C and update Sa and ap. }
18. d← 2d

19. }
Fig. 4. Algorithm Next-Branch
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Clearly, the algorithm uses only a constant amount of memory as outlined
by the constant number of loop variables maintained. A subtle detail that
remains to be clarified is how to determine what is the next vertex on the
upper (resp. lower) chain, given that the current vertex on the upper (resp.
lower) chain (see Lines 8, 9,10, 14, 15 and 16). We address the situation in
Line 9. All other cases are similar. In Line 9, we wish to compute the next
neighbor to an on the upper chain. This vertex is an’s clockwise neighbor after
ap in N(an).

Lemma 3 Starting at x, Next-Branch reaches y after travelling a total of
9 · SP(P, x, y).

Proof: Let c = min{dist(x, ai), dist(x, bk)}. Let df = 2kc be the value of d
during the final exploration step (Line 4 or Line 11) of the algorithm. There-
fore, the total distance travelled by the algorithm is bounded by

D≤ 2 ·
k−1∑

i=1

2ic + L

≤ 2k+1c + L

where L is the distance travelled during the last exploration step. Note that 2ic
is strictly an upper bound on the distance travelled since we do not actually
return to x prior to the invocation of Line 4 and Line 11. There are now two
cases to consider.

Case 1: The algorithm terminated while exploring the shorter of the two paths
P1 or P2. Then df ≤ 4 ·min{length(P1), length(P2)}, otherwise the algorithm
would have reached y in the previous iteration of the algorithm. Therefore

D≤ 8 ·min{length(P1), length(P2)}+ L

= 9 ·min{length(P1), length(P2)}

Case 2: The algorithm terminated while exploring the longer of the two paths
P1 or P2. Then x ≤ df ≤ 2 ·min{length(P1), length(P2)}, otherwise the algo-
rithm would have reached y in the previous exploration step. Then

D≤ 4 ·min{length(P1), length(P2)}+ L

≤ 6 ·min{length(P1), length(P2)}

In both cases, the conditions of the lemma are satisfied. �
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e

αα

t1 t2

Fig. 5. The edge e satisfies the diamond property if at least one of t1 and t2 does
not contain any point of V in its interior.

Putting Lemma 2 and Lemma 3 together, we devise Find-Short-Path, an
online competitive O(1) memory routing strategy to move from s to t in P .
Starting at vertex s, repeatedly invoke Next-Branch until t is reached.

Theorem 4 Find-Short-Path is an online competitive O(1) memory rout-
ing strategy. Given triangulated polygon P and ears s and t, the algorithm
reaches t after having travelled at most 9 times SP(P, s, t).

Proof: By Lemma 2, the shortest path from s to t must visit every branch-
ing node. Since each of these steps is 9-competitive, by Lemma 3, the theorem
follows. �

4 Competitive Routing in Triangulations

Although there is no competitive online routing algorithm under the Euclidean
distance metric in arbitrary triangulations, in this section we provide an O(1)-
memory competitive algorithm for the class of triangulations possessing the
diamond property. Das and Joseph [8], whose work is a generalization of the
seminal paper by Dobkin, Friedman and Supowit [9], showed these triangula-
tions approximate the complete Euclidean graph in terms of the shortest path
length. A graph G approximates the complete Euclidean graph in terms of
shortest path length if for every pair of vertices, u, v in G, the ratio between
SP(G, u, v) and the Euclidean distance between u and v is a constant. Such
graphs are known as spanners.

We elaborate on the precise definition of the diamond property. Let α be any
angle 0 < α ≤ π/2. For an edge e of a triangulation T = (V, E), consider the
two isosceles triangles t1 and t2 whose base is e and with base angle α. Refer
to Fig. 5. The edge e satisfies the diamond property with parameter α if one
of t1 or t2 does not contain any point of V in its interior. A triangulation T
satisfies the diamond property with parameter α if every edge of T satisfies
the diamond property with parameter α. Das and Joseph prove the following.
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Lemma 5 [8] Given a triangulation T = (V, E) satisfying the diamond prop-
erty with parameter α, there exists a constant dα (depending on α), such that
∀x, y ∈ V, SP(T, x, y)/dist(x, y) ≤ dα.

They showed that the diamond property is not an obscure property that is
possessed by only a few triangulations but that the class of triangulations
possessing the diamond property is fairly rich and includes some of the classical
triangulations.

Lemma 6 [8] The set of triangulations satisfying the diamond property in-
clude such classical triangulations as the Delaunay triangulation, the minimum
weight triangulation and the greedy triangulation 3 .

Given two vertices s, t in a triangulation T , consider the set Sst of triangles of
T whose interiors intersect the line segment [s, t]. Define Tst as the subgraph
of T containing only those edges of T bounding triangles of Sst. An example
is shown in Fig. 6.

s

t

Fig. 6. The graph Tst (shaded).

At this point, one may be tempted to assume that Tst is a triangulated simple
polygon with two ears and simply apply Theorem 4. However, the polygon is
not necessarily simple as can be seen in Fig. 7. A careful examination reveals
that the region is a triangulated weakly simple polygon. Many definitions of
weakly simple polygon exist in the literature. The simplest is the following: A
polygon is weakly simple provided that the graph defined by its vertices and
edges is plane, the outer face is a cycle, and one bounded face is adjacent to
all vertices.

Since one bounded face is adjacent to all the vertices, a weakly-simple polygon
can be symbolically transformed into a simple polygon by essentially doubling
degenerate edges and vertices. A vertex is degenerate if it is not on the outer
face or if it is on the outer face and has degree greater than 2. An edge
is degenerate if it is not on the outer face. Once the degenerate edges and
vertices are doubled, running an Euler tour gives the simple polygon. An

3 The greedy triangulation is obtained by starting with a set of points and adding
edges in non-decreasing order as long as the graph remains planar.
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s

t

v

Fig. 7. Note that the lower chain is not simple. Observe vertex v. The graph Tst is
a triangulated weakly simple polygon. The boundary of the weakly simple polygon
is highlighted in bold.

illustration is given in Fig. 8 (see also [5] for another description of this well-
known technique.). For the remainder of this section, we assume that Tst

represents the simple polygon obtained by symbolic transformation. Since Tst

is triangulated and has the diamond property, we can prove the following.

Weakly simple to simple polygon transformation

Fig. 8. Transformation from weakly simple to simple polygon

Lemma 7 Given a triangulation T = (V, E) satisfying the diamond property
with parameter α, and two vertices s, t ∈ V , the shortest path between s and t
in Tst is at most dα times dist(s, t).

Proof: In the proof of Lemma 5 in [8], the authors show that for every
triangulation satisfying the diamond property with parameter α, the shortest
path between s and t in the triangulation has length at most dα times the line
segment [s, t]. The proof is constructive and provides several different methods
for finding such a path depending on the different cases.

Although not explicitly stated, a careful but fairly straightforward analysis of
the proof reveals that none of the path construction methods presented in [8]
use any edges that are not in Tst. Furthermore, all of the paths constructed
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consist of alternating portions of the upper and lower boundary connected by
edges crossing the segment [st]. The portions of the upper and lower boundary
paths appear in the same order as they appear on the boundary in Tst. That
is, in the case of a degenerate vertex, the vertex may appear multiple times in
the path constructed.

The lemma follows. �

Note that the above lemma shows that the path is related not only to the
shortest path between s and t but in fact to the Euclidean distance between
s and t. In order to route in a competitive fashion between vertices s, t in a
triangulation T possessing the diamond property, attention can be restricted
to the subgraph Tst. Actually, we want to route using Find-Short-Path

on the triangulated simple polygon obtained by symbolic perturbation of the
triangulated weakly simple polygon. In order to do this, we need to modify
Next-Branch slightly. First, we need to show how to determine if a vertex
is on the upper chain or lower chain. Consider the line L through s and t.
For simplicity assume the line is horizontal. A vertex v is on the upper (resp.
lower) chain if it is above (resp. below) L and is adjacent to a vertex below
(resp. above) L. Thus, the only local information needed to decide this is the
line L. Next, we need to show how to determine what is the next vertex on the
upper (resp. lower) chain, given that the current vertex on the upper (resp.
lower) chain in this new context (this affects Lines 8, 9,10, 14, 15 and 16 in
Next-Branch). All the cases are similar so we address the one in Line 9.
Here, we wish to compute the next neighbor to an on the upper chain. Now,
an may or may not be degenerate, however, since Tst is triangulated, we know
that ap, an, bn form a triangle. The next vertex on the upper chain adjacent to
an is the first vertex in N(v) that is above L counter-clockwise from bn.

Therefore, we can route using Find-Short-Path and at each step in the
algorithm only local tests are used. We conclude with the following:

Theorem 8 Given a triangulation T = (V, E) satisfying the diamond prop-
erty with parameter α, and two vertices s, t ∈ V , a modified Find-Short-

Path is an O(1)-memory online competitive routing algorithm that moves a
packet from s to t after travelling a total of at most 9 · dα · dist(s, t).

5 Competitive Routing in Plane Graphs with the Diamond and

Good Convex Polygon Property

Intuitively, the diamond property ensures that an edge does not act as a
barrier between two vertices that are relatively close (i.e. within the diamond).

13



A graph possessing the diamond property does not necessarily need to be a
triangulation in order to be a spanner. Das and Joseph showed that if every
bounded face of a plane graph also has the good polygon property, then the
graph is a spanner. A plane graph has the good polygon property provided
that for every pair s, t of visible vertices on the boundary of a face, the shortest
distance from s to t around the boundary of the face is at most a constant
times |st|.

We need a slightly stronger condition than the one defined in [8], namely the
good convex polygon property. A plane graph possesses the good convex polygon
property if every bounded face of G is convex and has the property that for
every pair of vertices, s, t on the boundary of the face, the shortest distance
from s to t around the boundary of the face is at most g∗|st|, for some constant
g. Notice that the good convex polygon property trivially holds for triangles.
Let G be a plane graph satisfying the diamond property and the good convex
polygon property. Consider a non-adjacent pair of vertices s, t in G. Let Fst be
the faces of G whose interiors intersect the line segment [st]. Define Gst as the
subgraph of G induced by all vertices of Fst. Note that the segment [st] only
intersects a face once since each face is convex. Thus, by removing the edges
that intersect [st] we have an upper chain and lower chain after modifying
for degenerate edges and vertices as in the previous section. This is precisely
the reason we need this stronger condition since a segment can intersect a
face multiple times if the graph only has the good polygon property. With
a segment intersecting multiple edges, there no longer necessarily exists an
upper chain and lower chain when routing.

Lemma 9 Let G = (V, E) be a plane graph satisfying the diamond property
with parameter α, and the good convex polygon property with constant g. Given
two vertices s, t ∈ V , the shortest path between s and t in Gst is at most gdα

times dist(s, t) for constants g, dα.

Proof: As in the proof of Lemma 7, this lemma follows from a careful analysis
of Lemma 5 in [8]. The authors prove the result for plane graphs satisfying
the diamond and good polygon properties.

We note that all of the paths constructed consist of alternating portions of the
upper and lower boundary connected by edges crossing the segment [st]. The
portions of the upper and lower boundary paths appear in the same order as
they appear on the boundary in Gst. So in the case of a degenerate vertex, the
vertex may appear multiple times in the path constructed. �

Now the challenge is to route competitively in Gst using only O(1) memory.
Gst may have some edges missing between the upper and lower chains. The
algorithm developed in the previous section is no longer directly applicable.
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Two main difficulties arise because of the missing edges. First, the branching
vertices in the shortest path tree rooted at s can no longer be identified locally
since edges may be absent. Second, and more importantly, the shortest path
from s to t no longer necessarily visits all of the branching vertices.

We need to generalize Lemma 2 to account for missing edges by exploiting the
properties of Gst. Given the shortest path tree T (s) rooted at s, we define a
crossing vertex to be a vertex u on an upper (resp. lower chain) of Gst with
at least one child in T (s) that is in the lower (resp. upper chain) of Gst. This
property is precisely what is required for the shortest path from s to t to go
through u.

Lemma 10 Given the graph Gst, the shortest path from s to t in Gst visits
every crossing node of the shortest path tree rooted at s.

Proof: Without loss of generality, consider an arbitrary crossing vertex, u,
of T (s) on the upper chain of Gst. The argument is symmetric for a crossing
vertex on the lower chain. By definition, u has a child v in the lower chain.
These two vertices form a cut set of the graph Gst whose removal puts s and
t in different components. Therefore, every path from s to t visits either u or
v. Since v is a child of u in T (s), the lemma follows. �

The above lemma permits us to identify the important vertices to consider
when routing from s to t similar to the branching vertices in the previous
section. If we could easily identify the crossing vertices, then we could apply
an algorithm similar to Next-Branch to walk from one crossing vertex to
the next. However, the main problem is to identify crossing vertices locally.
For a given vertex v, computing the exact length of the shortest path from s
to every vertex in N(v) is no longer a local operation since there are missing
edges, which makes it difficult to determine locally if a vertex is a crossing
vertex. The crucial idea is that we do not need to precisely identify crossing
vertices, but by exploiting the diamond and good convex polygon properties,
we can identify approximations of crossing vertices. We elaborate below.

The line through the vertices s and t naturally divides the vertices of Gst

into two chains. Let {s = a0, a1, . . . , am = t} be the sequence of vertices in
the upper chain and {s = b0, b1, . . . , bn = t} be the sequence of vertices in
the lower chain. The only candidates for crossing vertices are the vertices
on the upper chain adjacent to at least one vertex in the lower chain and
vice versa. Let C = {c1, . . . , cj} and D = {d1, . . . , dk} be the ordered subse-
quence of vertices of the upper and lower chains that are candidates. Consider
a vertex ci on the upper chain adjacent to a vertex dj on the lower chain.
What information is needed to determine if ci is a crossing vertex? The vertex
ci is a crossing vertex provided that |SP (Gst, s, ci−1)| + |SP (Gst, ci−1, ci)| +
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|cidj| ≤ |SP (Gst, s, dj−1)| + |SP (Gst, dj−1, dj)|. However, we cannot maintain
this shortest path information locally. We now show how to exploit the dia-
mond and good convex polygon property in order to approximately compute
crossing vertices.

First, we are no longer so ambitious as to maintain exact shortest path in-
formation as was done in the previous sections, but we maintain approximate
shortest path information. The approximation factor is the factor given by
the diamond and good convex polygon properties in Lemma 9. For any pair
of vertices x, y, we can compute an upper bound on the length of the shortest
path (namely the path approximate shortest path constructed by Das and
Joseph has length at most gdα · dist(x, y)). We shall refer to their path as the
approximate shortest path. Therefore, Lemma 9 allows us to compute an ap-
proximation to the length of the shortest path between two vertices by simply
knowing their coordinates. The approximation is even better (g · dist(x, y)) if
x and y are on the same face. We use this approximate information to deter-
mine if ci is an approximate crossing vertex. Let SP ′(Gst, x, y) represent the
length of the approximate shortest path from x to y in Gst. By Lemma 9, we set
|SP ′(Gst, x, y)| = gdα|xy|. The vertex ci is an approximate crossing vertex pro-
vided that |SP ′(Gst, s, ci−1)|+g|ci−1ci|+|cidj| ≤ |SP ′(Gst, s, dj−1)|+g|dj−1dj)|.
Note that dj−1 and dj are on a common face and ci−1 and ci are also on a
common face. We now show that the approximate shortest path from s to t
must contain ci.

Lemma 11 If ci is an approximate crossing vertex, the approximate shortest
path from s to t contains vertex ci.

Proof: Since ci is an approximate crossing vertex, we have that |SP ′(Gst, s, ci−1)|+
g|ci−1ci| + |cidj| ≤ |SP ′(Gst, s, dj−1)| + g|dj−1dj)|. Recall that the vertices ci

and dj form a cut set which means all paths from s to t must go through at
least one of the two vertices. Since the approximate shortest path from s to
dj contains ci by the above relation, the lemma follows.

�

We now have a way of locally determining if a vertex is an approximate crossing
node. To determine if ci is an approximate crossing node, we need to have the
coordinates of ci−1, dj, dj−1, s and the approximation factors g and dα. We
can determine if a node is on the upper or lower chain by its relation to the
line through s and t. Since there are edges missing between the upper and
lower chains in Gst, we do not need to remember the furthest and second
furthest vertices seen on the upper and lower chains but the furthest and
second furthest vertices in the sets C and D, as required to determine if vertices
are approximate crossing or not. These simple modifications to the algorithm
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Next-Branch incorporating the above produce an algorithm Next-Cross

to walk from one approximate crossing vertex to the next. This in turn allows
us to define a modified Find-Short-Path.

Theorem 12 Given a plane graph G = (V, E) satisfying the diamond prop-
erty with parameter α and the good convex polygon property with constant g,
and two vertices s, t ∈ V , a modified Find-Short-Path is an O(1)-memory
online competitive routing algorithm that moves a packet from s to t after
travelling a total of at most 9g · dα · dist(s, t).

Proof: Similar to the proof of Lemma 3 and Theorem 4 �

6 Conclusions

Given that no competitive routing strategy works for all triangulations, in
this paper we presented an O(1)-memory competitive routing strategy that
works for the class of triangulations possessing the diamond property. This
class is fairly large as it includes such classical triangulations as the Delaunay,
greedy and minimum-weight triangulations. The routing strategy is based on a
simple online competitive strategy for routing on triangulated simple polygons.
We then generalized this result to show that the routing strategy works on
all plane triangulations possessing both the diamond property and the good
convex polygon property.

One question that immediately comes to mind is whether or not these two
geometric properties are necessary for the existence of a competitive online
strategy. The lower bound construction implies that some additional property
is necessary for a competitive algorithm to exist. Is the diamond property and
the good convex polygon property combined the weakest properties that still
guarantee the existence of a competitive routing algorithm?

Also, these results are in contrast with results for the link distance metric,
where the length of a path is the number of edges it uses. It is known [4]
that no competitive algorithm exists for greedy, minimum-weight, or Delaunay
triangulations under this metric. This raises the question: For what classes
of geometric graphs do competitive routing algorithms exist under the link
distance metric?
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