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Abstract. Supporting nodes without Global Positioning System (GPS)
capability, in wireless ad hoc and sensor networks, has numerous ap-
plications in guidance and surveying systems in use today. At issue is
that a procedure be available so that the subset of nodes with GPS ca-
pability succeed in supporting the maximum possible number of nodes
without GPS capability and as a result enable the highest connectivity
of the underlying network infrastructure. In this paper, we identify in-
completeness in the standard method for computing the position of a
node based on three GPS enabled neighbors, in that it may fail to sup-
port the maximum possible subset of sensors of the wireless network. We
give a new complementary algorithm (the three/two neighbor algorithm)
that indeed succeeds in providing a higher fraction of nodes (than the
3-Neighbour algorithm) with their position. We prove its correctness and
test its performance with simulations.

1 Introduction

In wireless ad hoc systems, location determination can be an important pa-
rameter in reducing information overhead, thus simplifying the distribution of
information and limiting infrastructure reliance. Location awareness has proven
to be an important component in designing communication algorithms in such
systems and there have been many papers making use of this paradigm (e.g.,
Kranakis et al. [13] Bose et al. [4], Kuhn et al. [14], and Boone et al. [3], to
mention a few) thus making possible the execution of location based routing us-
ing only local (i.e., information in the vicinity of the node) as opposed to global
knowledge on the status of the nodes. In addition, guidance and surveying sys-
tems in use today have numerous military and civilian applications. The current
Global Positioning System (GPS) is satellite based and determines the position
of a GPS equipped device using the radiolocation method. However, there are
instances where devices may not have GPS capability either because the signal
is too weak (due to obstruction) or integration is impossible. Adding to these
the fact that such devices are easy to jam and there have been calls to declare
the GPS a critical infrastructure.

Typically, sensors so equipped can determine their position with their GPS
devices. The remaining nodes have no option but to query neighbors for their
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location and thus determine their position using radiolocation. There are several
radiolocation methods in use (see Bahl et al. [2]) including signal strength, angle
of arrival, time of arrival, and time difference of arrival. However, despite the
method used at issue is that a procedure be available so that the subset of nodes
with GPS capability succeed in supporting the maximum possible number of
nodes without GPS capability and as a result enable the highest connectivity of
the underlying network infrastructure.

Consider a set S of n sensors in the plane. Further assume that the sensors
have the same reachability radius r. This paper addresses the problem of sup-
porting nodes that do not have GPS capability within a sensor network. We
assume that all the sensors have identical reachability radius r. We are inter-
ested in algorithms that will position the maximum number of sensors in the
set S. The paper is organized as follows. In Section 2, we give an overview of
radiolocation.

In Section 3, we show first that the usual positioning algorithm that deter-
mines the position of a node based on the presence of its three GPS enabled
neighbors may fail to determine the position of the maximum number possible
of sensors. We give a new algorithm that is based on using the distance one
neighborhood. It may outperform the traditional algorithm in the sense that it
determines correctly the position of more sensors than the usually used three
neighbor algorithm. Later we explore the distance k (k ≥ 1) neighborhood of
a node and derive an algorithm that captures the maximum number of nodes
of a sensor system that can compute their geographic position. In Section 4,
we explore the performance of these algorithms in a random setting whereby
sensors are dropped randomly and independently with the uniform distribution
in the interior of a unit square. We investigate what is the impact of the size of
the reachability radius r of the sensors as a function of the number of sensors so
that with high probability all the sensors in the unit square determine correctly
their position. Our approach to improve distance based geographic location tech-
niques is fairly general and can be applied over an existing algorithm like the
one proposed by Capkun et al. [9].

2 Overview of Radiolocation

The position of wireless nodes can be determined using one of four basic tech-
niques, namely time of arrival (TOA), time difference of arrival (TDOA), angle
of arrival (AOA) or signal strength.

The TOA technique is pictured in Figure 3. Node A is unaware of its posi-
tion. Three position aware nodes are involved, let us say B1, B2, and B3. Each
position aware node Bi sends a message to A and the trip time of the signal
is measured. The trip time multiplied by the propagation speed of signals (i.e.
the speed of light) yields a distance di. The distance d(A, Bi) defines a circle
around node d(A, Bi). The position of A is on the circumference of this circle.
In a two dimensional model, the position of A is unambiguously determined as
the intersection of three such circles.
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Trip time measurement from each node Bi to node A requires synchronized
and accurate clocks at both locations. If round-trip time is measured instead
(halved to obtain trip time), then this requirement is relaxed. No clock synchro-
nization is required and accurate clocks are required only at the Bi’s.

TDOA is pictured in Figure 1. Nodes B1, B2, and B3 are aware of their
position while node A is not. B1 and B2 simultaneously send a signal. Times of
arrivals t1 and t2 of signals from B1 and B2, respectively, are measured by A.
Node A has the capability to recover the identity of the sender of a signal and its
position. The time difference of arrival is calculated, i.e. δt = t2 − t1. The time
difference δt multiplied by the speed of light is mapped to the distance difference
δd. The position (x1, y1) of B1, position (x2, y2) of B2 and δd define a hyperbola
h with equation:

√

(x − x1)2 + (y − y1)2 −
√

(x − x2)2 + (y − y2)2 = δd (1)

The positions of B1 and B2 are at the foci of the hyperbola. The position of
node A is a solution of Equation 1. The geometrical properties of the hyperbolas
are such that all points located on the line of h are of equal time difference δt

and equal distance difference δd.
Two such hyperbolas can be defined by involving two different pairs of nodes

(B1, B2) and (B2, B3) which produce two time differences of arrival δ1 and δ2. In
a two dimensional model, the observer of the times of arrival δ1 and δ2, i.e. node
A, is at the position corresponding to the intersection of the two hyperbolas. Note
that there are cases in which the two hyperbolas intersect at two points. In these
cases, a third independent measurement is required to resolve the ambiguity.
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Fig. 1. The TDOA technique.

The AOA technique is pictured in Figure 2. Two position aware nodes, let us
say B1 and B2, are required to determine the position of a node A. Nodes B1 and
B2 have to be able to determine the direction from which a signal is coming. This
can be achieved with an array antenna [10]. An imaginary line is drawn from B1
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to A and another imaginary line is drawn from B2 to A. The angle of arrival is
defined as the angle that each of these lines make with a line directed towards a
common reference. The intersection of these two lines unambiguously determines
the position of A. Note however, that if A, B1, and B2 all lie on the same straight
line, another independent measurement is required to resolve the ambiguity.
Accuracy of the AOA technique is largely dependent on the beamwidth of the
antennas. According to Pahlavan and Krishnamurthy [15] the TOA technique
is superior to the AOA technique. In CDMA cellular networks, Caffery and
Stüber [8] come to similar conclusions.

B1
B2

A

a2

a1

reference axis

Fig. 2. The AOA technique.

The signal strength based technique exploits the fact that a signal loses its
strength as a function of distance. Giving the power of a transmitter and a
model of free-space loss, a receiver can determine the distance traveled by a
signal. If three different such signals can be received, a receiver can determine
its position in a way similar to the TOA technique. Application of this technique
for cellular systems has been investigated by Figuel et al. [11] and Hata and
Nagatsu [12]. The main criticism of Caffery and Stüber [7] is about the accuracy
of the technique. This is due to transmission phenomena such as multi path
fading and shadowing that cause important variation in signal strength.

All these techniques require line of sight propagation between the nodes in-
volved in a signal measurement. Line of sight means that a non obstructed
imaginary straight line can be drawn between the nodes. In other words, the
accuracy is sensitive to radio propagation phenomena such as obstruction, re-
flection and scattering. With all the distance-based techniques (i.e. TOA, TDOA,
signal strength) three position aware neighbors are required to determine the lo-
cation of a position unware node, in a two dimensional model (e.g. latitude and
longitude are determined), and four neighbors are required in a three dimen-
sional model (e.g. altitude is determined as well). In the sequel, we augment
the distance-based techniques with an algorithmic component that can resolve
ambiguity in a two dimensional model when only two position aware neighbors
are available. The ambiguity can also be resolved using knowledge about the tra-
jectory when the wireless nodes are mobile or using the AOA technique. When
the nodes are fixed and the technology required to apply the AOA technique is
not available, the algorithm described in this paper can be used. We note that
a similar algorithm is also possible in a three dimensional model.
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3 Computing the Geographic Location

Consider a set S of n sensors in the plane. Further assume that the sensors
have the same reachability radius r. We divide the set S of sensors into two
subsets. A subset E of S consists of sensors equipped with GPS devices that
enable them to determine their location in the plane. The set U of remaining
sensors, i.e., S \ E, consists of sensors not equipped with GPS devices. (In pic-
tures, the former are represented with solid circles and the latter with empty
circles.) In this section, we consider the problem of determining the positions of
sensors in a sensor network. In the beginning, we review the well-known three
neighbor algorithm (3-NA) and conclude with an example illustrating why the
algorithm does not necessarily compute the positions of the maximum possi-
ble number of nodes. Subsequently, we present an improvement, the three/two
neighbor algorithm (3/2-NA). Essentially, this is an iteration of the 3-NA fol-
lowed by an algorithm that uses only two neighbors as well as their distance one
neighborhood.

3.1 Three neighbor algorithm and its deficiencies

If a sensor at A (see Figure 5) is not equipped with a GPS device, then it can
determine its (x, y) coordinates using three neighboring nodes. After receiving

B
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Fig. 3. A sensor at A not equipped with a GPS device can determine its position from
the positions of its three neighbors B1, B2, B3.

messages from B1, B2, and B3, that include their position, node A can determine
its distance from these nodes using a distance-based radiolocation method. Its
position is determined as the point of intersection of three circles centered at
B1, B2, and B3 and distances d(A, B1), d(A, B2), and d(A, B3), respectively.
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The well-known 3-NA is as follows. Each node that is not equipped with
a GPS device sends a position request message. A sensor that knows or can
compute its position sends it to all its neighbors. A sensor that receives position
messages from three different nodes, say B1, B2, and B3 can calculate its position
as in Figure 3.

Computing the position of the maximum number of nodes The 3-NA
does not necessarily compute the positions of the maximum possible number of
sensors without GPS devices. We illustrate this with a simple example depicted,
in Figure 4. The left side of the picture depicts five nodes A, A′, B1, B2, and C.

1B

C
B2

A’

A
1B

C
B2

A’

A

Fig. 4. Application of 3-NA will equip node A′ with its (x, y)-coordinates, but it fails
to do it with node A.

Node A′ is within communication range of nodes B1, B2, and C. Node A is within
communication range of nodes B1 and B2. Node A is out of the range of both
nodes C and A′. Assume nodes B1, B2 and C know their (x, y)-coordinates.
Application of the 3-NA will equip A′ with its (x, y) coordinates (because it
will receive messages from all three of its neighboring nodes B1, B2, C). This is
depicted in the right side of the picture in Figure 4. However, node A will never
receive three position messages and therefore will never be able to discover its
(x, y)-coordinates. Nevertheless, we will see in the next algorithm that node A
can indeed discover its position if additional information (i.e., the distance one
neighborhood of its neighbors) is provided.

3.2 Three/Two neighbor algorithm

We now consider an extension of the 3-NA for the case where all the sensors
have exactly the same reachability radius, say r.

On utilizing the distance one neighborhood Assume that we have con-
cluded the execution of the 3-NA. For each node P , let N(P ) be the set of
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neighbors of P , i.e., the set of sensors within communication range of P . Suppose
we have two nodes B1 and B2 (depicted in Figure 5) that know their position.
The solid circles are determined by the reachability radius of the nodes. The

B 1 B 2

A

C

A’

Fig. 5. A sensor not equipped with a GPS device can determine its coordinates using
the positions of two neighbors B1 and B2 and their neighborhood information.

dashed circles are centered at B1 and B2 respectively. After using radiolocation
they specify that the inquiring node must be located at one of their points of
intersection (in this case either A or A′). Further assume that a given node X
receives the positions of nodes B1 and B2 by radiolocation. On the basis of this
information, X may be located in either position A or A′.

Lemma 1. Suppose that both nodes A and A′ receive from B1 and B2 the set
N(B1) ∪ N(B2). If there is a sensor C ∈ (N(B1) ∪ N(B2)) ∩ (N(A) ∪ N(A′))
that knows its position then both nodes A and A′ can determine their position.

Proof (of Lemma 1). We must consider two cases. In the first case, assume
C is within range of both nodes A and A′. In this case the two nodes will
receive position messages from all three nodes B1, B2, and C and can therefore
determine their position. In the second case, assume C is within range of only
one of the two nodes. Without loss of generality assume it is within range of A′

but outside the range of A, i.e., d(C, A′) ≤ r < d(C, A) (see Figure 5). Then A′

can determine its position. Also, A can determine its position because it knows
it must occupy one of the two positions A or A′ and also can determine it cannot
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be node A′ since its distance from C (a node whose position it has received) is
outside its range. This completes the proof of Lemma 1.

It is now clear that Lemma 1 gives rise to the following 3/2-NA for computing
sensor positions.

3/2-NA (Three/Two Neighbor Algorithm):

1. For each node as long as new nodes determine their position do
2. Each sensor executes the 3-NA algorithm and also collects the coordinates

of all its neighbors.
3. If at the end of the execution of this algorithm a sensor has received the

coordinates from only two neighbors, say B1, B2 then
(a) it computes the distances from its current location to the sensors B1, B2

and also computes the coordinates of the two points of intersection A, A′

of the circles centered at B1, B2, respectively;
(b) it requests the coordinates of all the neighbors of B1 and B2 that are

aware of their coordinates;
(c) if N(B1) ∪ N(B1) 6= ∅ then take any node C ∈ N(B1) ∪ N(B1) and

compute d(C, A), d(C, A′); then the sensor occupies the position X ∈
{A, A′} such that d(X, C) > r;

For any node P let D(P ; r) be the disc centered at P and with radius r, i.e., the
set of points X such that d(P, X) ≤ r. We can prove the following theorem.

Theorem 1. The Three/Two Neighbor Algorithm terminates in at most (n−e)2

steps, where e is the number of GPS equipped nodes.

Proof of Theorem 1. First consider the three neighbor algorithm. At each
iteration of the algorithm a sensor either waits until it receives three messages
(of distances of its neighbors), or else it receives the coordinates of at least
three neighboring sensors, in which case it computes its own coordinates and
forwards it to all its neighbors. Let Et be the number of sensors that know their
coordinates by time t. Observe that initially E0 = E and Et ⊆ Et+1. If at any
given time no new sensors are not GPS-equipped determines their coordinates
(i.e., Et = Et+1) then no new non-equipped sensor will ever be added. It follows
that the algorithm terminates in at most n − e steps. After this step no new
sensors will be equipped with their coordinates.

Now consider the three/two neighbor algorithm. Concerning correctness we
argue as follows. Consider a sensor as above that has received position messages
only from two neighbors, say B1 and B2. The sensor knows it is located at one
of the points of intersection of the two circles (see Figure 5). Since N(B1) ∪
N(B2) 6= ∅ and the sensor received no position message from any sensor in
N(B1) ∪ N(B2) after the execution of the 3-NA algorithm it concludes that it
must occupy position X , where X ∈ {A, A′} such that d(C, X) > r. Since within
each iteration at one new sensor computes its position the running time is as
claimed. This completes the proof of Theorem 1.

Remark 1. There are several interesting issues arising in the algorithm 3/2-NA.
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1. The sensors may not know the total number of sensors in the network par-
ticipating in the positioning algorithm. In this case, they may have to guess
an upper bound value n′ and use this to execute the above algorithm or even
execute the algorithm by increasing incrementally the value n′. The running
time stated in Theorem 1 pre-supposes that the sensors know the value n−e.

2. The above algorithm will take a lot of messages. To increase efficiency, it may
be a good idea that sensors localize their search within limited geographic
boundaries.

3.3 Beyond distance one neighborhood

B B21

X

Fig. 6. The termination condition for the 3/2-NA.

When the 3/2-NA terminates no new node can compute its position. There is
an improvement that can be made to the 3/2-NA. In Figure 5, this may happen
when for some k ≥ 1 the node C is at distance k hops from either B1 or B2.
If the entire distance k neighborhood is being transmitted and C is within A′’s
range but outside A’s range, then the node A can determine its position. This
gives rise to the 3/2-NA(k) algorithm which is similar 3/2-NA algorithm except
that now the nodes transmit their distance k neighborhood.

We define the distance k hop(s) neighborhood of a node P as follows. First,
N1(P ) is defined as N(P ). For k = 2, 3, 4, . . .,

Nk(P ) = {A|A ∈ Nk−1(P ) ∨ ∃B ∈ Nk−1(P ) ∧ A ∈ N(B)}

The specific algorithm is as follows:

3/2-NA(k) (Three/Two Neighbor Algorithm):

1. For each node as long as new nodes determine their position do
2. Each sensor executes the 3-NA algorithm and also collects the coordinates

of all its neighbors.
3. If at the end of the execution of this algorithm a sensor has received the

coordinates from only two neighbors, say B1, B2 then
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(a) it computes the distances from its current location to the sensors B1, B2

and also computes the coordinates of the two points of intersection A, A′

of the circles centered at B1, B2, respectively;
(b) it requests the coordinates of all the neighbors of B1 and B2 that are

aware of their coordinates;
(c) if Nk(B1) ∪ Nk(B1) 6= ∅ then take any node C ∈ Nk(B1) ∪ Nk(B1)

and compute d(C, A), d(C, A′); then the sensor occupies the position
X ∈ {A, A′} such that d(X, C) > r;

4 Simulations

Our approach is sufficiently general and may augment any distance-based geo-
graphic location method in use. For example, Capkun et al. [9] propose a GPS-
free positioning algorithm for mobile ad hoc networks. In general, their algorithm
succeeds in providing a common reference only for a subset of the total number
of nodes. In this section, we provide simulations which confirm that our method
increases the percentage of nodes that can compute their geographic location in
an arbitrary sensor network.

4.1 Connectivity and coverage in random setting

Assume that n sensors (here assumed to be omnidirectional antennas) are dropped
randomly and independently with the uniform distribution on the interior of a
unit square. For any integer k ≥ 0 and real number constant c let the sensors

Fig. 7. Sensors dropped randomly and independently over a unit square region. Bolds
(respectively, empty) circles denote sensors which are equipped (respectively, not
equipped) with GPS devices.



11

have identical radius r, given by the formula

r =

√

ln n + k ln ln n + ln(k!) + c

nπ
. (2)

A network is called k-connected if it cannot be disconnected after the removal of
k−1 nodes. Then using the main result of Penrose [16, 17] we conclude that this
is a threshold value for k-connectivity. Namely, we have the following theorem.

Theorem 2. Consider sensors with reachability radius r given by Formula 2,
and suppose that k ≥ 0 is an integer and c is a real. Assume n sensors are dropped
randomly and independently with the uniform distribution on the interior of a
unit square. Then

limn→∞ Pr[sensor network is (k + 1)-connected] = e−e
−c

, and

limn→∞ Pr[(k + 1) is the min degree of the sensor network] = e−e
−c

.
(3)

Thus, for the radius chosen by Formula 2 not only is the network (k + 1)-
connected but within distance r, each node will have k + 1 neighbors with high
probability as indicated by Equations 3.
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Fig. 8. 9% of the sensors are GPS equipped.
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4.2 Experimental results

A simulation of the algorithms has been conducted. Sensors are spread randomly
and independently with uniform distribution on a unit square. The communica-
tion range of each sensor is a circle centered at its position and of radius r as
defined by Formula 2. Constants k and c are both set to value 1. If the number
of nodes equipped with GPS devices is dense (as a proportion to the total),
then we expect that with high probability every node will have three neighbors
that are equipped with GPS devices. Therefore, the standard 3-NA algorithm
is expected to enable all nodes to compute their position, with high probability.
Therefore incremental differences will be more substantial in a sparse setting.
Figure 8 pictures the results of the simulation of one to 50-sensor networks. An
average of 9% of the sensors are GPS equipped and can determine their position
independently of other sensors. Application the 3-NA, 3/2-NA (using one-hop
neighbors only) and 3/2-NA(2) (using one or two-hop neighbors) all make an ad-
ditional number of sensors aware of their position, up to 5% of the total number
of sensors in each case. The simulation was run for 200 times for each network
size.

Figure 9 pictures the results of the simulation of one to 50-sensor networks.
An average of 28% of the sensors are GPS equipped and can determine their
position independently of other sensors. The simulation was run for 200 times
for each network size.
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Fig. 9. 28% of the sensors are GPS equipped.
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Application of the 3-NA makes the number of sensors aware of their position
up to the double of the number of GPS equipped sensors. This is consistent with
intuition since, with respect to Figure 8, more nodes are available to resolve loci
of position unaware sensors. In addition, up to 10% and 7% more sensors can
resolve their position using respectively the 3/2-NA (using one-hop neighbors
only) and 3/2-NA(2) (using one or two-hop neighbors).

In both cases, the 3/2-NA increase significantly the number of sensors aware
of their position.

5 Conclusion

In this paper, we have considered a new class of algorithms for improving any
distance based geographic location method. Our technique may augment any
existing algorithm by iterating a three-neighbor with a two-neighbor based cal-
culation as well a taking into account the distance k neighbors of the given node.
Our simulations show that 5% to 10% more sensors can resolve their position
using the 3/2-NA and 3/2-NA(2).

Our analysis focused only on the two dimensional plane. However, it can be
easily extended to the three dimensional space. In this case, the intersection of
the spheres defined by the distance from four neighbors is required in order to
determine the location of a node. The intersection of three spheres alone creates
an ambiguity which can be resolved by looking at the distance k neighbors, just
like the two dimensional case.
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