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We consider routing problems in ad hoc wireless networks modeled as unit graphs in which nodes are points in the

plane and two nodes can communicate if the distance between them is less than some fixed unit. We describe the first

distributed algorithms for routing that do not require duplication of packets or memory at the nodes and yet guarantee

that a packet is delivered to its destination. These algorithms can be extended to yield algorithms for broadcasting

and geocasting that do not require packet duplication. A byproduct of our results is a simple distributed protocol for

extracting a planar subgraph of a unit graph. We also present simulation results on the performance of our algorithms.
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1. Introduction

Mobile ad hoc networks (manets) consist of wireless
hosts that communicate with each other in the absence
of fixed infrastructure. Two nodes in a manet can com-
municate if the distance between them is less than the
minimum of their two broadcast ranges [2]. Because sta-
tions whose broadcast areas overlap can interfere with
each other and also because of health problems that can
occur because of long-term exposure to powerful radio
signals [10], it is generally not possible (or desirable) for
all hosts in a manet to be able to communicate with
each other directly. Thus, sending messages between
two hosts in a manet may require routing the message
through intermediate hosts.

In many cases, manets are pieced together in an
uncontrolled manner, changes in topology are frequent
and unstructured, and hosts may not know the topol-
ogy of the entire network. In this paper, we consider
routing in manets for which hosts know nothing about
the network except their location and the locations of
the hosts to which they can communicate directly. In
particular, we consider the case in which all hosts have
the same broadcast range.

∗ This work was partly funded by the Natural Sciences and Engi-

neering Research Council of Canada.

Let S be a set of points in the plane. Then the unit
graph U (S) is a geometric graph that contains a ver-
tex for each element of S. An edge (u, v) is present in
U (S) if and only if dist(u, v) ≤ 1, where dist(x, y) de-
notes the Euclidean distance between x and y. In the
remainder of this paper we will refer to the elements of S
alternately as hosts, nodes, or vertices. Unit graphs are
a reasonable mathematical abstraction of wireless net-
works in which all nodes have equal broadcast ranges.

Delivering messages between hosts in a manet is an
important and difficult problem in mobile computing.
There are several different scenarios. In the routing
problem, the source s and destination t are points of
S and t must receive a message originating at s. In the
geocasting problem [7,13] the source s is a point in S

while the destination r is a region, and all vertices in r

must receive a message originating at s. In this work we
take r to be a disk, but our algorithms easily generalize
to arbitrary convex regions. The broadcasting problem
is a special case of geocasting in which r is a disk with
infinite radius.

In this paper we describe algorithms for routing,
broadcasting and geocasting on unit graphs that do not
require global information about U (S). Each vertex
v ∈ U (S) represents a transmission station, and has no
information about U (S) except the set of nodes N (v)
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to which it is adjacent. A packet that is stored at vertex
v can be transmitted to any vertex in N (v). In accor-
dance with other papers, our routing algorithm assumes
that the source knows from the beginning the exact ge-
ographical position of the destination [2,8,11]. If only
an approximate location is known, then our geocasting
algorithm can be used to send messages to all hosts near
the location.

Previous algorithms for online routing in unit graphs
can be broadly classified into two categories:

Greedy algorithms apply some type of greedy path-
finding heuristic that does not guarantee that a packet
ultimately reaches (all of) its destination(s). These
include the geographic distance routing (gedir) algo-
rithm of Lin and Stojmenović [11], the directional rout-
ing (dir), a.k.a, compass routing algorithm of Basagni
et al. [2], Ko and Vaidya [7], and Kranakis et al. [9], the
mfr algorithm of Takagi and Kleinrock [15], and their
2-hop variants [11].

Flooding algorithms use some type of controlled
packet duplication mechanism to ensure that every des-
tination receives at least one copy of the original packet
. These are exemplified by the location-aided routing
(lar) protocols of Ko and Vaidya [8,7]. In order for
flooding algorithms to terminate, packets in the net-
work must remember which packets they have previ-
ously seen.

In contrast, our algorithms always guarantee that a
packet will be delivered to (all of) its intended recipi-
ent(s) so long as the unit graph U (S) is static and con-
nected during the time it takes to route a message. Our
algorithms do not make use of any persistent memory at
the nodes of U (S) and require only that a packet carry
a small constant amount of information in addition to
its message. Our algorithms also never require duplica-
tion of a packet, so that at any point in time there is
exactly one copy of each message in the network.

Our algorithms work by finding a connected planar
subgraph of U(S) and then applying routing algorithms
for planar graphs on this subgraph. In Section 2 we
show how to find a connected planar subgraph of U(S)
in an online and distributed manner. In Section 3 we
describe algorithms for routing, broadcasting, and geo-
casting in planar graphs. In Section 4 we describe sim-
ulation results for our algorithm. Finally, in Section 5
we summarize and conclude with open problems in the
area.

2. Extracting a Connected Planar Subgraph

In this section we describe a distributed algorithm for
extracting a connected planar subgraph from U (S). In
order to run the algorithm, the only information needed
at each node is the position of each of its neighbors in
U (S). Our algorithm works by computing the intersec-
tion of U(S) with a well-known planar graph.

Let disk(u, v) be the disk with diameter (u, v). Then,
the Gabriel graph [6] GG(S) is a geometric graph in
which the edge (u, v) is present if and only if disk(u, v)
contains no other points of S. The following lemma
shows that the Gabriel graph is useful for extracting a
connected subgraph from U (S).

Lemma 1. If U (S) is connected then GG(S) ∩ U (S)
is connected.

Proof. Let MST (S) denote a minimum spanning tree
of the complete graph whose vertices are S and whose
edges are weighted with the Euclidean distance between
their endpoints. It is well known that MST (S) is a sub-
graph of GG(S), and therefore GG(S) is connected [14].
Thus, we need only prove that MST (S) ⊆ U (S) if U (S)
is connected. Assume for the sake of contradiction that
MST (S) contains an edge (u, v) whose length is greater
than 1. Removing this edge from MST (S) produces
a graph with two connected components, Cu(S) and
Cv(S). Since U (S) is connected it contains an edge
(w, x) of length not greater than 1 such that w ∈ Cu(S)
and x ∈ Cv(S). By replacing the edge (u, v) with (w, x)
in MST (S) we obtain a connected graph on S with
weight less than MST (S), a contradiction.

Let (u, v) be an edge of U (S) such that (u, v) /∈
GG(S). Then, by the definition of GG(S) there ex-
ists a point w that is contained in the disk with u and
v as diameter, and this point acts as a witness that
(u, v) /∈ GG(S). The following lemma shows that every
such edge can be identified and eliminated by u and v

using only local information.

Lemma 2. Let u and v be points of U (S) such that
(u, v) /∈ GG(S) and let w be a witness to this. Then
(u,w) ∈ U (S) and (v, w) ∈ U (S).

Proof. Let m be the midpoint of (u, v). Then
dist(u,m) ≤ 1/2, dist(v,m) ≤ 1/2 and dist(w,m) ≤
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1/2. Therefore, by the triangle inequality, dist(u,w) ≤
1, dist(v, w) ≤ 1 and (u,w) and (v, w) are in U (S).

Thus, upon reaching a vertex v ∈ S, a packet can
eliminate the edges incident on v that are not in U (S)∩
GG(S) by simply eliminating any edge that is not in
GG(N (v)∪ {v}). This leads to the following algorithm
that is executed by each vertex v ∈ S.

Algorithm: gabriel

1: for each u ∈ N (v) do
2: if disk(u, v) ∩ (N (v) \ {u, v}) 6= ∅ then
3: delete (u, v)
4: end if
5: end for

Lemma 1 guarantees that if we apply this algorithm
to each vertex of S then the resulting graph is con-
nected. Since GG(S) is planar [14], the resulting graph
is also planar. As described above, the algorithm re-
quires O(d2) time, where d is the degree of v. By using
efficient algorithms for constructing the Voronoi dia-
gram and Delaunay triangulation [14] of N (v)∪{v}, and
keeping only the edges of the Delaunay triangulation
that intersect the corresponding edges of the Voronoi
diagram, [12,6], this can be reduced to O(d log d).

Theorem 3. If U(S) is connected then algorithm
gabriel computes a connected planar subgraph of
U(S). The cost of the computation performed at vertex
v ∈ S is O(d log d) where d is the degree of v.

3. Routing in Planar Graphs

In this section we describe algorithms for routing,
broadcasting, and geocasting in a connected planar
graph G. Since we have shown that a connected pla-
nar subgraph of U (S) is easily computable by a routing
algorithm, these algorithms also apply to unit graphs.

3.1. Routing

In this section we describe two algorithms for routing
in planar graphs. The first algorithm, called face-1,
is due to Kranakis et al. [9]. The second algorithm,
called face-2, is a modification of their algorithm that
performs better in practice.

A connected planar graph G partitions the plane into
faces that are bounded by polygonals made up of edges
of G. Given a vertex v on a face f , the boundary of f

vsrc vdst

Figure 1. Routing from s to t using face-1.

can be traversed in the counterclockwise (clockwise if f
is the outer face) direction using the well-known right
hand rule [3] which states that it is possible to visit
every wall in a maze by keeping your right hand on the
wall while walking forward. Treating this face traversal
technique as a subroutine, Kranakis et al. [9] give the
following algorithm for routing a packet from s to t.

Algorithm: face-1

1: p← s

2: repeat
3: let f be the face of G with p on its boundary

that intersects line segment (p, t)
4: for each edge (u, v) of f do
5: if (u, v) intersects (p, t) in a point p′ and

dist(p′, t) < dist(p, t) then
6: p← p′

7: end if
8: end for
9: Traverse f until reaching the edge (u, v)

containing p
10: until p = t

The operation of algorithm face-1 is illustrated in
Figure 1. The following theorem summarizes the per-
formance of this algorithm.

Theorem 4 (Kranakis et al., [9]).
Algorithm face-1 reaches t after at most 4|E| steps,
where |E| is the number of edges in G.

Notice that this algorithm traverses the entire face
f to determine the point p′, and then must return to
the point p′. The bound 4|E| stated in the theorem can
be reduced to 3|E| by having the return trip to p′ be
along the shorter of the two possible paths around f .
However, in practice, as we will show in Section 4, the
following modified version of face-1 works even better.
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vsrc vdst

Figure 2. Routing from s to t using face-2.

s t

Figure 3. A bad input for face-2.

Algorithm: face-2

1: p← s

2: repeat
3: let f be the face of G with p on its boundary

that intersects (p, t)
4: traverse f until reaching an edge (u, v) that

intersects (p, t) at some point p′ 6= p

5: p← p′

6: until p = t

The operation of face-2 is illustrated in Figure 2.
Clearly this algorithm also terminates in a finite number
of steps, since the distance to t is decreasing during
each round. However, in pathological cases it may visit
Ω(n2) edges of G. This can occur, for example, when G
is a snakelike path from s to t that crosses the segment
(s, t) many times (see Figure 3).

Theorem 5. Algorithm face-2 reaches t in a finite
number of steps.

3.2. Broadcasting

Bose and Morin [4] describe an algorithm for enu-
merating all the faces, edges and vertices of a connected
embedded planar graph G without the use of mark bits
or a stack. The algorithm takes O(n log n) time and
uses only constant memory beyond what is required to
store the graph G.

The algorithm works by defining a total order �p on
the edges of G. For each face f of G, there then exists a
unique edge e = entry(f, p) on the boundary of f such
that e �p e′ for all e′ on the boundary of f . Bose and
Morin [4] (see also de Berg et al. [5]) show that if one

s

Figure 4. A spanning tree of the faces of G (with square nodes)

and the resulting traversal of the vertices of G (shown as a spline).

connects all faces f1 and f2 such that entry(f1, p) is on
the boundary of both f1 and f2, the result is a spanning
tree of the faces of G. A traversal of the vertices of G
can then be obtained by a traversal of this spanning
tree. Figure 4 illustrates the spanning tree of the faces
as well as the traversal obtained from this spanning tree.

This algorithm can be applied almost directly to ob-
tain a broadcasting algorithm in which a single packet
with a constant-size memory walks around G and visits
every vertex. Therefore we only describe the non-trivial
part of the implementation. The reader is referred to
Bose and Morin [4] and de Berg et al. [5] for further
details.

Let f be a face of G whose edges in clockwise order
are e0, . . . , em−1. We say that ei is a k-minimum if
ei �p ej for all i−k ≤ j ≤ i+k.1 We define maxval(ei)
as the largest k for which ei is a k-minimum.

Suppose that a packet is stored at node vi incident
on edge ei. In order to obtain an O(n log n) message
broadcasting algorithm it is sufficient to show how to
determine if ei = entry(f, p) in O(maxval(ei)) steps,
where a step involves moving from one edge to the next
on the boundary of f . To do this, we proceed in rounds
using a “repeated doubling” trick.

During round r, we compare ei to the edges ei+1, . . . , ei+2r

if r is even or ei−1, . . . , ei−2r if r is odd. At the end of
each round we return to ei. Thus, the number of steps
taken in round r is 2r+1. If during any round we find
an edge ej , j 6= r, such that ej �p ei we terminate and
say that ei 6= entry(f, p). Otherwise we terminate after
dlog2 |f |e rounds when we return to ei, in which case
we say that ei = entry(f, p).

Clearly this algorithm is correct, since it returns

1 Here and in the remainder of this section, all subscripts are

taken modm.
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false only when finding an edge ej such that ej �p ei
and only returns true after comparing ei to all edges
on the boundary of f . Furthermore, a simple argu-
ment shows that this algorithm terminates after at most
9 ·maxval(ei) steps (see [1] for details). We refer to this
broadcasting algorithm as broadcast. From the pre-
vious discussion, we obtain the following result

Theorem 6. In at most O(n log n) steps algorithm
broadcast terminates after having visited every ver-
tex of G.

3.3. Geocasting

The results of Bose and Morin also extend to window
queries in which all the faces intersecting a rectangular
or circular query region r are to be visited. To start
their algorithm, a vertex contained in r must be given
as part of the input.

By applying Algorithm face-1, such a vertex can
be found in O(n) steps by setting the value of t to the
center of the query region. The algorithm terminates
when it reaches a vertex v contained in r or when it
can no longer make progress, i.e., it visits the same face
twice. In the first case we then apply the algorithm of
Bose and Morin to have the packet visit every vertex in
the query region, while in the second case we can quit,
since there is no vertex of G contained in the query
region. We call this algorithm geocast.

Theorem 7. In at most O(n+k log k) steps algorithm
geocast terminates after having visited every vertex
of G contained in r, where k is the complexity of all
faces of G that intersect r.

Remark. The delivery time for a message in the broad-
casting and geocasting algorithms can be improved in
practice by traversing subtrees of the spanning tree in
parallel, at the cost of having several copies of the same
packet in the network simultaneously.

4. Experimental Results

In this section we measure the quality of the paths
found by our routing algorithms. Our test sets consist
of randomly constructed unit graphs. Test cases were
generated by uniformly selecting n points in the unit
square as vertices, sorting all the n(n− 1)/2 interpoint

distances and setting the value of a “unit” to achieve the
desired average degree. Any such random graph that
did not result in a connected graph was rejected. For
each graph generated, routing was performed between
all n(n−1) ordered pairs of vertices in the graph. Every
data point shown in our graphs is the average of 200
independent trials conducted on 200 different randomly
generated graphs. The results of these trials are given
as 95% confidence intervals in Appendix A.

For comparison purposes the performance of our al-
gorithms were measured against, and in combination
with, geographic distance routing (gedir) as described
by Lin and Stojmenović [11]. The gedir algorithm is a
greedy algorithm that always moves the packet to the
neighbour of the current vertex whose distance to the
destination is minimized. The algorithm fails when the
packet crosses the same edge twice in succession. The
gedir algorithm was chosen for comparison purposes
because, of the three basic algorithms tested by Lin and
Stojmenović, gedir had comparable performance with
other algorithms in terms of delivery rate and average
dilation (defined below).

The experiments measured two quantities. Let X be
the set of pairs of vertices (u, v) ∈ G, u 6= v such that
routing algorithm A succeeds in finding a path from
u to v and let |X| denote the cardinality of X. The
delivery rate of A is defined as

DRA(G) = |X|/(n(n− 1)) .

Note that, because our algorithms guarantee the deliv-
ery of a packet, they have a delivery rate of 1. The
average dilation of A is defined as

ADA(G) = (1/|X|)
∑

(u,v)∈X

AP(u, v)/SP(u, v) ,

where AP(u, v) is the number of edges in the path from
u to v found by A and SP(u, v) is the number of edges
in the shortest path from u to v. Note that having a low
average dilation is only useful if the delivery rate is high
since an average dilation of 1 is easily achieved by (for
example) an algorithm that only succeeds in routing
between two nodes if they are directly adjacent.

To illustrate the importance of having guaranteed de-
livery of messages, Figure 5 shows the delivery rate of
gedir on graphs with varying average degrees and num-
ber of nodes. These results show that delivery failures
are not uncommon with the gedir algorithm, and in
very sparse graphs delivery rates can be as low as 50%.
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Figure 5. Delivery rates for the gedir algorithm.
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Figure 6. Average dilation of the face-1 and face-2 algorithms.

I.e., there are some vertices from which half of the graph
is unreachable using only the gedir algorithm.

Figure 6 compares the face-1 algorithm with the
face-2 algorithm in terms of average dilation for vary-
ing average degrees and number of nodes. Not surpris-
ingly, face-2 outperforms face-1 due to the fact that it
does not require the packet to travel all the way around
each face. What may be surprising is that the average
dilation for both strategies seems to increase as the av-
erage degree increases. This can be explained by the
fact that the subgraph GG(S) ∩ U (S) on which these
algorithms operate is a planar graph and therefore has
average degree at most 6, but they are being compared
to the shortest path in U (S) whose average degree is in-
creasing. Thus, the algorithms are handicapped “from
the start.”

Although these observations may lead one to believe
that algorithms face-1 and face-2 are not very good
on their own, they may nevertheless be useful in com-

GEDIR
GDIR+FACE-2
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Figure 7. Average dilation of the gedir and gedir+face-2 algo-

rithms.

bination with another algorithm. We tested two such
combinations and compared their average dilation with
the average dilation of gedir.

Figure 7 shows the results of combining the gedir

algorithm with face-2 by applying the gedir algo-
rithm until it either fails or reaches the destination. If
the gedir algorithm fails, routing is completed using
the face-2 algorithm. In this scenario face-2 can be
viewed as acting as a backup for the gedir algorithm.
We refer to this algorithm as gedir+face-2.

Figure 8 shows the results of applying gedir un-
til the packet reaches a node v such that all of v’s
neighbours are further from the destination than v is.
The face-2 algorithm is then applied until the packet
reaches another node u that is strictly closer to the des-
tination than v, at which point the gedir algorithm
is resumed. In this scenario, face-2 can be seen as
a means of overcoming local minima in the objective
function (distance to the destination). We refer to this
algorithm as gfg.

Both gedir+face-2 and gfg exhibit similar perfor-
mance in terms of delivery rate with the gfg algorithm
showing a slight advantage in very sparse graphs. These
results show that the average dilation of gedir is con-
sistently low, but this comes at the price of low delivery
rate in sparse graphs. On the other hand, the com-
bined algorithms sometime have high average dilation,
but this only occurs when the delivery rate of gedir

is low and the combined algorithms are often forced to
apply the face-2 algorithm.
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Figure 8. Average dilation of gfg algorithm.

5. Conclusions

We have described algorithms for routing, broadcast-
ing, and geocasting in unit graphs. The algorithms do
not require duplication of packets, or memory at the
nodes of the graph, and yet guarantee that a packet is
always delivered to (all of) its destination(s). The em-
pirical results for our routing algorithms suggest that al-
though the face-1 and face-2 algorithms are not very
efficient on their own, they can be useful in conjunction
with simpler algorithms that do not guarantee delivery.

There are several open problems and directions for
future work in this area. One such direction is the ex-
tension of this work to dynamically changing networks.
Although it is possible to extend our algorithms with
the hope of handling dynamically changing networks, it
is not at all clear what is a reasonable (mathematical or
simulation) model under which to study these modified
algorithms.
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A. Simulation Results

This appendix presents the results of simulations in
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d 4 5 7 9 11

n

20 0.89± 0.0178 0.95± 0.0110 0.99± 0.0049 1.00± 0.0020 1.00± 0.0000

30 0.79± 0.0210 0.88± 0.0168 0.95± 0.0139 0.99± 0.0047 1.00± 0.0009

40 0.70± 0.0203 0.84± 0.0199 0.95± 0.0123 0.99± 0.0053 1.00± 0.0038

50 0.68± 0.0222 0.79± 0.0211 0.92± 0.0161 0.98± 0.0072 0.99± 0.0042

60 0.62± 0.0212 0.74± 0.0215 0.91± 0.0159 0.96± 0.0105 0.99± 0.0037

70 0.57± 0.0172 0.70± 0.0233 0.88± 0.0199 0.96± 0.0089 0.99± 0.0049

80 0.54± 0.0168 0.65± 0.0239 0.86± 0.0184 0.96± 0.0096 0.99± 0.0052

90 0.51± 0.0179 0.63± 0.0216 0.85± 0.0204 0.94± 0.0122 0.99± 0.0047

100 0.47± 0.0157 0.61± 0.0185 0.81± 0.0208 0.93± 0.0144 0.98± 0.0057

Table 1

95% confidence intervals for delivery rates of gedir.

d 4 5 7 9 11

n

20 1.01± 0.0013 1.01± 0.0010 1.00± 0.0006 1.00± 0.0003 1.00± 0.0000

30 1.01± 0.0011 1.01± 0.0013 1.01± 0.0010 1.00± 0.0006 1.00± 0.0002

40 1.01± 0.0013 1.01± 0.0013 1.01± 0.0011 1.00± 0.0007 1.00± 0.0006

50 1.01± 0.0013 1.02± 0.0013 1.01± 0.0009 1.01± 0.0008 1.00± 0.0006

60 1.02± 0.0012 1.02± 0.0013 1.02± 0.0013 1.01± 0.0010 1.01± 0.0006

70 1.02± 0.0015 1.02± 0.0012 1.01± 0.0009 1.01± 0.0009 1.01± 0.0007

80 1.02± 0.0011 1.02± 0.0015 1.02± 0.0011 1.01± 0.0010 1.01± 0.0008

90 1.02± 0.0012 1.02± 0.0012 1.02± 0.0012 1.01± 0.0009 1.01± 0.0009

100 1.02± 0.0013 1.02± 0.0011 1.02± 0.0011 1.02± 0.0010 1.01± 0.0007

Table 2

95% confidence intervals for average dilation of gedir.

d 4 5 7 9 11

n

20 4.27± 0.0911 4.74± 0.0838 5.63± 0.1025 6.42± 0.1040 7.15± 0.1171

30 5.26± 0.1094 5.88± 0.1116 6.60± 0.1229 7.49± 0.1312 8.10± 0.1291

40 6.02± 0.1254 6.70± 0.1388 7.47± 0.1448 8.02± 0.1524 8.62± 0.1514

50 6.83± 0.1150 7.40± 0.1493 8.11± 0.1661 8.44± 0.1613 9.25± 0.1581

60 7.56± 0.1238 7.99± 0.1351 8.75± 0.1893 9.07± 0.2025 9.69± 0.2179

70 8.09± 0.1511 8.69± 0.1647 9.08± 0.2184 9.44± 0.2121 9.97± 0.1947

80 8.62± 0.1426 9.15± 0.1843 9.68± 0.2420 9.71± 0.1828 10.18± 0.1762

90 9.24± 0.1484 9.79± 0.1419 10.12± 0.2562 10.17± 0.2364 10.42± 0.2047

100 9.78± 0.1605 10.28± 0.1852 10.57± 0.2596 10.54± 0.2766 10.62± 0.2012

Table 3

95% confidence intervals for average dilation of face-1.
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d 4 5 7 9 11

n

20 3.69± 0.1691 3.62± 0.1863 3.71± 0.1881 3.90± 0.1762 4.11± 0.1989

30 4.70± 0.2117 4.64± 0.2065 4.24± 0.2273 4.28± 0.1954 4.29± 0.1855

40 5.48± 0.1947 5.17± 0.2473 4.59± 0.2213 4.26± 0.1845 4.19± 0.1856

50 6.11± 0.2216 5.63± 0.2554 4.93± 0.2341 4.28± 0.1836 4.43± 0.1686

60 6.79± 0.2564 6.09± 0.2560 5.22± 0.2642 4.59± 0.2334 4.50± 0.2275

70 7.45± 0.2891 6.69± 0.2891 5.29± 0.2868 4.67± 0.2286 4.52± 0.1981

80 7.74± 0.2585 7.13± 0.3522 5.66± 0.3077 4.70± 0.1818 4.49± 0.1707

90 8.58± 0.3291 7.47± 0.3143 5.92± 0.3304 4.91± 0.2264 4.50± 0.1775

100 9.02± 0.3510 7.64± 0.3272 6.18± 0.3495 5.12± 0.2713 4.53± 0.1766

Table 4

95% confidence intervals for average dilation of face-2.

d 4 5 7 9 11

n

20 1.21± 0.0373 1.10± 0.0280 1.03± 0.0131 1.01± 0.0042 1.00± 0.0000

30 1.51± 0.0579 1.32± 0.0496 1.13± 0.0381 1.02± 0.0179 1.00± 0.0036

40 1.84± 0.0682 1.48± 0.0665 1.17± 0.0391 1.05± 0.0169 1.02± 0.0119

50 2.08± 0.0970 1.69± 0.0779 1.29± 0.0581 1.07± 0.0228 1.04± 0.0158

60 2.45± 0.1172 1.92± 0.0911 1.36± 0.0687 1.14± 0.0423 1.04± 0.0139

70 2.86± 0.1262 2.23± 0.1111 1.46± 0.0817 1.16± 0.0360 1.06± 0.0209

80 3.08± 0.1136 2.53± 0.1443 1.56± 0.0878 1.17± 0.0350 1.06± 0.0218

90 3.50± 0.1661 2.69± 0.1378 1.66± 0.1051 1.25± 0.0547 1.07± 0.0233

100 3.92± 0.1736 2.87± 0.1392 1.85± 0.1282 1.33± 0.0763 1.09± 0.0250

Table 5

95% confidence intervals for average dilation of gedir+face-2.

d 4 5 7 9 11

n

20 1.22± 0.0368 1.12± 0.0259 1.03± 0.0130 1.01± 0.0053 1.00± 0.0001

30 1.53± 0.0574 1.32± 0.0463 1.14± 0.0323 1.03± 0.0136 1.01± 0.0036

40 1.77± 0.0655 1.46± 0.0576 1.18± 0.0369 1.06± 0.0160 1.02± 0.0132

50 1.99± 0.0932 1.66± 0.0777 1.27± 0.0483 1.08± 0.0198 1.05± 0.0189

60 2.30± 0.1139 1.85± 0.0867 1.36± 0.0602 1.14± 0.0384 1.04± 0.0121

70 2.61± 0.1218 2.05± 0.0915 1.41± 0.0684 1.16± 0.0311 1.06± 0.0182

80 2.75± 0.1061 2.26± 0.1189 1.50± 0.0750 1.16± 0.0280 1.06± 0.0199

90 3.12± 0.1504 2.43± 0.1298 1.57± 0.0905 1.23± 0.0455 1.08± 0.0228

100 3.48± 0.1748 2.51± 0.1219 1.74± 0.1134 1.30± 0.0673 1.09± 0.0198

Table 6

95% confidence intervals for average dilation of gfg.


