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Abstract

A binary image I is Ba, Wb-connected, where a,b 2 {4,8}, if its foreground is a-connected and its background is b-connected. We con-
sider a local modification of a Ba, Wb-connected image I in which a black pixel can be interchanged with an adjacent white pixel provided
that this preserves the connectivity of both the foreground and the background of I. We have shown that for any (a,b) 2 {(4,8), (8,4),
(8,8)}, any two Ba, Wb-connected images I and J each with n black pixels differ by a sequence of H(n2) interchanges. We have also shown
that any two B4, W4-connected images I and J each with n black pixels differ by a sequence of O(n4) interchanges.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

We call a function I : Z2 ! f0; 1g a binary image. We
call the elements of Z2 pixels and we say that a pixel p is
black (respectively, white) if I(p) = 1 (respectively,
I(p) = 0). We say that a binary image is finite if it has a
finite number of black pixels. We only consider finite bin-
ary images in this paper.

Let G4 be the graph whose vertex set is Z2 (the set of all
pixels) and in which two pixels (x1,y1) and (x2,y2) are adja-
cent if and only if (x1 � x2)2 + (y1 � y2)2 = 1, that is, G4 is
the integer lattice. The graph G8 is the graph whose vertex
set is Z2 and in which two pixels (x1,y1) and (x2,y2) are
adjacent if and only if (x1 � x2)2 + (y1 � y2)2

6 2, that is,
G8 is the integer lattice in which two diagonals have been
added to every face. Two pixels are 4-neighbours (respec-
tively, 8-neighbours) if they are adjacent in G4 (respectively,
G8). Given a binary image I, the graph B4(I) (respectively,
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B8(I)) is the subgraph of G4 (respectively, G8) induced by
the black pixels in I and the graph W4(I) (respectively,
W8(I)) is the subgraph of G4 (respectively, G8) induced by
the white pixels (see Fig. 1). For a,b 2 {4, 8} we say that
an image I is Ba,Wb-connected if the graphs Ba(I) and
Wb(I) are each connected, that is, each has a single con-
nected component. Note that a binary image I is BaW8-
connected, a 2 {4, 8}, if and only if Ba(I) is connected
and B4(I) does not contain a cycle C such that in I there
is a white pixel inside C. Similarly, a binary image I is
BaW4-connected, a 2 {4, 8}, if and only if Ba(I) is con-
nected and B8(I) does not contain a cycle C such that in
I there is a white pixel inside C.

In this paper we consider a local modification operation
on binary images in which a black pixel p and a white pixel
q are interchanged. More precisely, we perform the inter-

change Æp,qæ on I to obtain the image I
0

where

I 0ðxÞ ¼
IðpÞ if x ¼ q

IðqÞ if x ¼ p

IðxÞ otherwise:

8><
>:

We say that the interchange Æp,qæ is 4-local (respectively,
8-local) if p and q are adjacent in G4 (respectively, G8).
In this paper we are primarily concerned with 8-local
ving transformations of binary images, Comput. Vis. Image Un-
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Fig. 1. (a) A binary image I, (b) the graphs B4(I) and W8(I), (c) the graphs B8(I) and W4(I), (d) the graphs B4(I) and W4(I), and (e) the graphs B8(I) and
W8(I).
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interchanges and we are interested in whether two images
with the same number of black pixels differ by a sequence
of connectivity-preserving interchanges. More precisely,
we say that two Ba, Wb-connected images I and J are
(a,b)-IP-equivalent [9] if there exists a sequence of images
I0 = I, I1, . . . , Ir = J such that each Ii is Ba, Wb-connected
and Ii can be converted into Ii+1 by a single (8-local)
interchange.
1.1. Previous work

The study of connectivity in digital images was initiated
by Rosenfeld [5–7] and has since become part of the field of

digital topology [4,3,2]. The idea of using connectivity-pre-
serving interchanges (IP-equivalence) to convert one image
into another appears in a sequence of papers by Rosenfeld
et al. [8–10].

Rosenfeld et al. [10] study interchanges and (among
other things) show that any two B4, W8-connected digital
arcs* with the same number of black pixels are (4, 8)-IP-
equivalent. The same authors conjectured that any two
B4, W8-connected images are (4, 8)-IP-equivalent.

Rosenfeld and Nakamura [9] later resolved this conjec-
ture in the affirmative by giving an algorithm for computing
a sequence of 8-local interchanges to convert any B4, W8-
connected image I with n black pixels into any other B4,
W8-connected image J with n black pixels. Their algorithm
achieves this by scanning I with a horizontal line from top
to bottom and performing interchanges while maintaining
the invariant that the part of the image above the scan line
* An image I is a digital arc if the graph B4(I) is a path.
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consist of a set of disjoint vertical line segments. As the scan
line advances, the line segments above the scan line are
moved and/or merged in order to preserve this invariant.
Although the authors are not concerned with the number
of interchanges required to perform this conversion, examin-
ing their algorithm reveals that the number of interchanges is
bounded by O(n3) and there exists examples for which their
algorithm performs X(n3) interchanges.

Motivated by applications in robotics, and apparently
unaware of Ref. [9], Dumitrescu and Pach [1] consider
the problem of converting one image into another while
preserving connectivity of the graph B4 only. Thus their
definition of connectivity is weaker than that used here,
however, their definition of interchange is more restricted.
They show that any image I for which B4(I) is connected
can be converted into any image J for which B4(J) is con-
nected using a sequence of O(n2) 8-local interchanges that
preserve connectivity of the graph B4. They achieve this
result by collecting all black pixels on a line segment. To
add a new black pixel to the line segment they select a very
particular pixel and move it around the boundary of the
black pixels until it lies on the line segment.
1.2. New results

In this paper we prove that, for any (a,b) 2 {(4, 4), (4, 8),
(8,4), (8,8)}, any two Ba, Wb-connected images I and J

each with n black pixels are (a,b)-IP-equivalent. Moreover,
one can be converted into the other with a sequence of
O(n2) 8-local interchanges if (a,b) 2 {(4, 8), (8, 4), (8, 8)}
and O(n4) 8-local interchanges if (a,b) = (4,4). To the best
of our knowledge, these are the first results on (4, 4)-, (8, 4)-
ving transformations of binary images, Comput. Vis. Image Un-
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and (8,8)-IP-equivalence. This is also the first quadratic
bound on the number of interchanges used to show (4, 8)-
IP-equivalence to two arbitrary B4, W8-connected images.
The quadratic bounds are optimal up to constant factors
since it is easy to see that converting a horizontal line seg-
ment into a vertical line segment requires X(n2) 8-local
interchanges.

It is also worth noting that our proof technique, and
resulting algorithms, are of a different style than those used
by Rosenfeld and Nakamura [9] and Dumitrescu and Pach
[1]. For (a,b) 2 {(4, 8), (8, 4), (8,8)}, we obtain our results by
showing that, as long as I is not a vertical segment, there is
always a set of at most 4 black pixels that can move one by
one such that the resulting image is more to the ‘‘left’’ or
‘‘upwards’’ than the one we started with. By repeatedly per-
forming this sequence of at most four 8-local interchanges
the image organizes itself into a vertical line segment. This
is unlike previous algorithms [1,9] in that the entire process
takes place without any long-term planning about the
movement of a pixel or group of pixels. The (a,b) 2 {(4,4)}
version of the problem appears to be quite different from
the other three and our solution for this version required a
more careful plan for the movement of the pixels.

The remainder of the paper is organized as follows.
After preliminaries in Section 2, we give proofs for (4, 8),
(8,4), (8,8) and (4,4)-IP-equivalence in Sections 3–6,
respectively. We conclude in Section 7.

2. Preliminaries

For a pixel p = (x,y), we use the notation N(p)
(respectively, E(p), S(p), W(p)) to denote the pixel (x,y + 1)
(respectively, (x + 1,y), (x,y � 1),(x � 1,y)). We allow con-
catenation of these modifiers so that, for example NE(p) =
N(E(p)), NNE(p) = N(N(E(p))), and so on. We use the short-
hand N

(0)(p) = p and, for k > 0, N
(k)(p) = NN

(k�1)(p). We
also use the regular expression notations * and + so that,
for example N

+(p) = {N
(k)(p) : k > 0} and N*(p) = {N

(k)(p) :
k > 0}.

For a graph G, let V(G) and E(G) denote the vertex and
edge sets of G. The subgraph of G induced by a set of vertices
S ˝ V(G) has vertex set S and edge set {vw 2 E(G) : v,
w 2 S}, and is denoted by G[S]. A non-empty graph G is
called connected if there is a path between any pair of verti-
ces in G, otherwise G is disconnected. A maximal connected
subgraph of a G is called a component of G. A cut vertex of a
connected graph G is a vertex v whose removal disconnects
G, that is G[V(G)n{v}] has at least two components. For
brevity we will often write Gnv instead of G[V(G)n{v}].
Note that for any image I, since Ba(I) is finite, each cut ver-
tex in Wb(I) splits Wb(I) into k P 2 components k � 1 of
which are finite and one of which is infinite.

For a graph G and a vertex v 2 V(G), let AG(v) denote
the set of all the vertices in V(G)nv that are adjacent to
v. Furthermore, let AG[v] = AG(v) [ v. We start with two
simple but useful observations. The first one is a well
known graph theoretic fact.
Please cite this article in press as: P. Bose et al., Connectivity-preser
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Observation 1. For a graph G, a vertex v 2 V(G) and any set
S ˝ V(G)n{v}, if G[AG(v) [ S] is connected then v in not a
cut vertex of G. As a special case, consider two vertices
v,w 2 V(G), if AG(v) ˝ AG[w], then v in not a cut vertex of G.

Our second observation gives a sufficient condition for
an interchange to preserve connectivity.

Observation 2. For a Ba, Wb-connected image I, let p be a
black pixel that is not a cut vertex in Ba(I) and q a white
pixel that is not a cut vertex in Wb(I). If p has a white b-
neighbour in I other than q and q has a black a-neighbour
in I other than p, then the interchange Æp,qæ preserves Ba,
Wb-connectivity.

A Ba, Wb-connected image I is vertical if all black pixels
in I have the same x-coordinate, otherwise I is non-vertical.
We prove that each Ba, Wb-connected image I,
(a,b) 2 {(4, 8), (8, 4), (8,8)} is (a,b)-IP-equivalent to some
vertical image. Our approach to, or more precisely, the
sequence of interchanges used in solving all but the (4,4)
version of the problem have some commonalities. We
describe these commonalities in the reminder of this section.

2.1. Our approach to solving (4,8), (8,4), and (8,8)

versions of the problem

To prove that each Ba, Wb-connected image I, (a,b) 2
{(4, 8), (8, 4), (8,8)} is (a,b)-IP-equivalent to some vertical
image we use the following kinds of interchanges only.

For a Ba, Wb-connected image I, and an integer k P 1,
we say that I admits a k-vertical interchange if there exists a
sequence of at most k 8-local interchanges (Æpi,qtæ : 16 i6 k)
such that pi is black and it is not a black pixel with minimum
x-coordinate in I, qi is white, and

• if k > 1, then for all i < k; qi ¼ eðpiÞ and qk 2 {NW(pk),
nðpkÞ, NE(pk)}

• otherwise, k = 1, and q1 2 {W(p1), NW(p1), N(p1), NE(p1)}.
Moreover, after each interchange Æpi,qiæ, the resulting
image Ii is Ba, Wb-connected.

To simplify the exposition in Sections 3–5, we will use
the term interchange in place of 1-vertical interchange. This
will not cause confusion since the only type of interchanges
we use in these three section are k-vertical interchanges.

Lemma 1. Suppose that each non-vertical Ba, Wb-connected

binary image admits a k-vertical interchange, for some integer
k P 1. Then every Ba, Wb-connected binary image I is (a,b)-

IP-equivalent to some vertical image. Furthermore, I can be

converted into a vertical image by a sequence of O(kn2) 8-local

interchanges, where n is the number of black pixels in I.

Proof. Without loss of generality, assume that minimum x-
coordinate of all black pixels of I is 0 and that of all black
pixels with x-coordinate 0, the minimum y-coordinate is 0.
Let p0 be the black pixel (0,0). Define the potential of a
black pixel p = (x,y) as U(p) = x + (k + 1)(n � y) and
ving transformations of binary images, Comput. Vis. Image Un-
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define the potential U(I) of image I as the sum the poten-
tials of all black pixels in I. Because p0 is black and Ba(I)
is connected, it is easily verified that U(p) < (2k + 3)n for
any black pixel p in I and therefore U(I) < (2k + 3)n2. Fur-
thermore, any image that has no black pixel with negative
x-coordinate has non-negative potential.

It is simple to verify that applying a k-vertical inter-
change to I, results in an image I

0
with smaller potential

than I, that is U(I
0
) < U(I). Thus by applying at most (2k +

3)n2 k-vertical interchanges to I we obtain an image J such
that U(J) < 0. However, that cannot occur unless we, at
some point, performed an interchange involving a black
pixel with x-coordinate 0 which is not possible given the
definition of k-vertical interchange. We conclude that at
some point during the first (2k + 3)n2 interchanges we
obtained a vertical image. h
3. Maintaining B4, W8-connectivity

The following lemma is the main step in the proof that
two B4, W8-connected images I and J differ by a sequence
of 8-local interchanges.

Lemma 2. Any non-vertical B4, W8-connected binary image

I admits a 2-vertical interchange.

Proof. Let p = (x,y) be the pixel such that
1. p is black,
2. S(p) is white,
3. there exists an integer k P 0 such that all pixels

N
(1)(p), . . . , N

(k)(p) are black and all pixels in N
+

N
(k)(p)

are white,
4. all pixels in E

+
N*(p) are white, and

5. y is maximum.

Such a pixel always exists because a pixel satisfying the
first four conditions can be found in the set of black pix-
els with maximum x-coordinate and a pixel satisfying the
fifth condition is guaranteed by finiteness. Furthermore, p

is not a pixel with minimum x-coordinate in I, as other-
wise I would be vertical or B4(I) would be disconnected.
We will show that each pixel pi in the 2-vertical inter-
change Æpi,qiæ, l 6 i 6 2, is located near p. To simplify
the exposition, in what follows we will argue that pi is
not a black pixel with minimum x-coordinate only when
it is not obvious. Furthermore, only in the last case, 2b,
will we be using 2-vertical interchanges. On all other occa-
sions we will be using a 1-vertical interchange, i.e., an
interchange Æp1,q1æ where q 2 {W(p1), NW(p1), N(p1),
NE(p1)}. To prove the lemma we distinguish between
two main cases.

Case 1: p is not a cut vertex of B4(I). In this case, if N(p) is
black (Fig. 2a) then we can perform the interchange
Æp, NE(p)æ. Since p is not a cut vertex of B4(I) and NE(p) is
not a cut vertex of W8(I), Observation 2, implies that this
interchange preserves connectivity.
Please cite this article in press as: P. Bose et al., Connectivity-preser
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Therefore, we may assume that N(p) is white. But in this
case, W(p) must be black (Fig. 2b), otherwise p would be an
isolated vertex in B4(I).

If NW(p) is black (Fig. 2c), then we can perform the inter-
change Æp, N(p)æ. Again, neither p nor N(p) are cut-vertices
in their respective graphs, so this interchange preserves
connectivity by Observation 2.

Otherwise NW(p) is white (Fig. 2d) and we claim that the
interchange Æp, NW(p)æ preserves connectivity. Observe that
by the choice of p, all pixels in N

+(p) and N
+

W(p) are white
(Fig. 2d). If NW(p) is not a cut vertex in W8(I) then the claim
follows by Observation 2. The only way in which NW(p)
could be a cut vertex in W8(I) is if WNW(p) is black
(Fig. 2e). But in this case, the choice of p ensures that
WW(p) is black (Fig. 2f) contradicting the assumption that
NW(p) is a cut vertex of W8(I).

Case 2: p is a cut vertex of B4(I). In this case, N(p) and
W(p) must be black or else p would have less than two
neighbours in B4(I) and could not be a cut vertex. Also,
NW(p) must be white (Fig. 3a) otherwise the graph induced
by AB4

ðpÞ would be connected and thus p would not be a
cut vertex. By the same reasoning, if the interchange
Æp, NW(p)æ does not preserve connectivity, it is because
NW(p) is a cut vertex in W8(I). We now consider the possible
ways in which this can happen.

If NWW(p) is white, (Fig. 3b) then NN(p) is white (Fig. 3c),
otherwise AW 8

ðnwðpÞÞ � AW 8
½nwwðpÞ� and thus by Obser-

vation 1, NW(p) would not be a cut vertex in W8(I). Having
NN(p) white implies by the choice of p that NN

+(p), WN
+(p)

and WWN
+(p) are white. In that case the graph induced by

AW 8
ðnwðpÞÞ in W8(I) is connected and again by Observa-

tion 1, NW(p) is not a cut vertex in W8(I).
Therefore, assume NWW(p) is black, (Fig. 3d). Let

g = NWW(p). It is either the case that every path from g to
p in B4(I) goes through W(p) (Fig. 3e) or every path from
g to p in B4(I) goes through N(p) (Fig. 3f). Otherwise, if
there is a path through W(p) and a path through N(p), then
W8(I) would be disconnected; or, if there is neither a path
through W(p) nor N(p), then B4(I) would be disconnected.
Based on that we now have two cases to consider.

Case 2a: Every path from g to p in B4(I) goes through
W(p) (Fig. 4a).

If WW(p) is black (Fig. 4b), then NNWW(p) is white,
NNW(p) is black and NN(p) is white (Fig. 4c), as otherwise
NW(p) is not a cut vertex of W8(I), by Observation 1. How-
ever this is not possible due to the choice of p.

Therefore, WW(p) is white (Fig. 4d). In this case, we
claim that the interchange Æ(W(p), NW(p)æ preserves connec-
tivity of the resulting image I1.

To see that W8(I1) is connected, first observe that
W8(I)nNW(p) has two components. (It cannot have three
components as otherwise, NNWW(p) is white, NNW(p) is
black and NN(p) is white (Fig. 4d), which is impossible
due the the choice of p.) The finite component of
W8(I)nNW(p) contains WW(p), and the infinite component
contains S(p). Therefore, to see that W8(I1) is connected it
is enough to observe that W8(I1) can be obtained by adding
ving transformations of binary images, Comput. Vis. Image Un-



Fig. 2. Illustrating case 1 in the proof of Lemma 2.

Fig. 3. Illustrating case 2 in the proof of Lemma 2.

Fig. 4. Illustrating case 2a in the proof of Lemma 2.

Fig. 5. Illustrating case 2b in the proof of Lemma 2.
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W(p) to W8(I)nNW(p) where W(p) is adjacent in W8(I1) to at
least one vertex of the finite component, in particular
WW(p), and at least one vertex of the infinite component,
in particular S(p). To see that B4(I1) is connected observe
that because W(p) has only two neighbours in B4(I)
(namely, p and SW(p)), B4 (I)nW(p) has two components,
one containing p (and N(p)) and the other containing
SW(p) and g. Therefore, to see that B4(I1) is connected it
is enough to observe that B4(I1) can be obtained by adding
NW(p) to B4(I)nW(p) where NW(p) is adjacent in B4(I1) to at
least one vertex of the first component, in particular N(p),
and at least one vertex of the second component, in partic-
ular g.

Case 2b: Every path from g to p in B4(I) goes through
N(p).

Then WW(p) cannot be black (Fig. 5a), otherwise there is
a path from g to p that does not go through N(p). Having
NW(p) white, and having every path from g to p go through
N(p) implies that NN(p) is black (Fig. 5b). That further
implies at least one of {NNW(p), NNWW(p)} is white, as
otherwise NW(p) would not be a cut vertex of W8(I) by
Observation 1.

First consider the case that NNW(p) is white (Fig. 5c). We
claim that the interchange ÆN(p), NW(p)æ preserves
connectivity of the resulting image I1. To see that W8(I1)
is connected, first observe that W8(I)nNW(p) has two com-
ponents, the finite of which contains NNW(p) and infinite of
which contains E(p). Thus W8(I1) is connected as it can be
obtained by adding N(p) to W8(I)nNW(p) where N(p) is
Please cite this article in press as: P. Bose et al., Connectivity-preser
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adjacent in W8(I1) to at least one vertex of the finite com-
ponent, in particular NNW(p), and at least one vertex of
the infinite component, in particular E(p). To see that
B4(I1) is connected observe that because N(p) has only
two neighbours in B4(I), B4(I)nN(p) has two components,
one containing p (and W(p)) and the other containing g.
Therefore, B4(I1) is connected as it can be obtained by add-
ing NW(p) to B4(I)nN(p) where NW(p) is adjacent in B4(I1) to
at least one vertex of the first component, in particular
W(p), and at least one vertex of the second component, in
particular g.
ving transformations of binary images, Comput. Vis. Image Un-
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Now consider the case that NNW(p) is black. Then
NNWW(p) is white (Fig. 5d) and thus g has only one neigh-
bour in B4(I), namely W(g). Thus g is not a cut vertex in
B4(I) and it is not a black pixel with minimum x-coordinate
in I. We claim that the 2-vertical interchange Æg, E(g)æ,
ÆN(p), NNE(p)æ preserves connectivity of both resulting
images I1 and I2. B4(I1) is connected since g is not a cut ver-
tex in B4(I) and since E(g) has a black pixel in its 4-neigh-
bourhood distinct from g (recall Observation 2). To see
that W8(I1) is connected, first observe that W8(I)nE(g)
has two components, the finite of which contains N(g)
and infinite of which contains S(g). Thus W8(I1) is con-
nected as it can be obtained by adding g to W8(I)nE(g)
where g is adjacent in W8(I1) to at least one vertex of the
finite component, in particular N(g), and at least one vertex
of the infinite component, in particular S(g). See Fig. 5f for
the resulting image I1. It is now simple to verify that the
second interchange, ÆN(p), NNE(p)æ preserves the connectiv-
ity of I2. h

By applying Lemma 1 to convert any binary image I

into a vertical image and then converting that image into
any other binary image J we obtain our first theorem.

Theorem 1. Any two B4, W8-connected images I and J, each

having n black pixels, are (4,8)-IP-equivalent and I can be

converted into J using a sequence of O(n2) 8-local

interchanges.
Fig. 6. Illustrating case 1 in the proof of Lemma 3.
4. Maintaining B8, W4-connectivity

As in the previous section, the next lemma is the main
step in the proof that two B8, W4-connected images I and
J differ by a sequence of 8-local interchanges. While, the
beginnings of Lemmas 2 and 3 resemble each other, the
technical details are all distinct due to the differences in
the connectivity requirements.

Lemma 3. Any non-vertical B8, W4-connected binary image

I admits a 4-vertical interchange.

Proof. Let p = (x,y) be the pixel such that

1. p is black,
2. S(p) is white,
3. there exists an integer k P 0 such that all pixels

N
(1)(p), . . . , N

(k)(p) are black and all pixels in N
+

N
(k)(p)

are white,
4. all pixels in SE

+
N*(p) are white, and

5. y is maximum.

Such a pixel always exists because a pixel satisfying the
first four conditions can be found in the set of black pixels
with maximum x-coordinate and a pixel satisfying the fifth
condition is guaranteed by finiteness. Furthermore, p is not
a vertex with minimum x-coordinate in I, as otherwise I
would be vertical or B8(I) would be disconnected. We will
show that each pixel pi in the 4-vertical interchange
Please cite this article in press as: P. Bose et al., Connectivity-preser
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Æpi,qiæ : 1 6 i 6 4, is located relatively close to p. To sim-
plify the exposition, in what follows we will argue that pi

is not a black pixel with minimum x-coordinate only when
it is not obvious. Furthermore, only in the last case, the
case 2b, we will be using k-vertical interchanges where
k > 1. On all the other occasions we will be using a 1-verti-
cal interchange, that is an interchange Æp1,q1æ where
q 2 {W(p1), NW(p1), N(p1), NE(p1)}. To prove the lemma we
distinguish between two main cases.

Case 1: p is not a cut vertex of B8(I). In this case, if N(p) is
black (Fig. 6a) then we can perform the interchange
Æp, NE(p)æ. Since p is not a cut vertex of B8(I) and NE(p) is
not a cut vertex of W4(I), Observation 2 implies that this
interchange preserves connectivity.

Therefore, we may assume that N(p) is white. Then if at
least one of {NW(p), W(p)} is black (Fig. 6b and c), the inter-
change Æp, N(p)æ preserves connectivity since N(p) is not a
cut vertex of W4(I) by the choice of p and Observation 1.
Thus assume both W(p) and NW(p) are white and SW(p) is
black (Fig. 6d). Then by the choice of p, WN

+(p) is all white.
If W(p) is not a cut vertex of W4(I) then the interchange
Æp, W(p)æ preserves connectivity. Otherwise, W(p) is a cut
vertex and thus WW(p) is white and NWW(p) is black
(Fig. 6e). We claim that the interchange Æp, NW(p)æ preserves
connectivity. W4(I1) can be disconnected only if NW(p) is a
cut vertex in W4(I). In that case W4(I)nNW(p) has two com-
ponents, the finite of which contains W(p) and infinite of
which contains E(p). Therefore, to see that W4(I1) is con-
nected it is enough to observe that W4(I1) can be obtained
by adding p to W4(I)nNW(p) where p is adjacent in W4(I1)
to at least one vertex of the finite component, in particular
W(p), and at least one vertex of the infinite component, in
particular E(p).

Case 2: p is a cut vertex of B8(I). In this case W(p) is
white, otherwise AB8

ðpÞ � AB8
[W(p)] and by Observation

1, p would not be a cut vertex in B8(I). Similarly, SW(p)
has to be black (Fig. 7a) as otherwise, the graph induced
by AB8

ðpÞ would be connected and p would not be a cut
vertex in B8(I). If W(p) is not a cut vertex of W4(I) then
the interchange Æp, W(p)æ preserves connectivity. Therefore,
assume W(p) is a cut vertex of W4(I). Then WW(p) and NW(p)
must be white and NWW(p) must be black (Fig. 7b), as
otherwise the graph induced by AW 4

(W(p)) would be con-
nected and W(p) would not be a cut vertex in W4(I). All
together this implies that N(p) is black as otherwise p is
not a cut vertex of B8(I) (Fig. 7c). Let g = NWW(p).

It is either the case that every path from g to p in B8(I)
goes through SW(p) (Fig. 7d) or every path from g to p in
ving transformations of binary images, Comput. Vis. Image Un-



Fig. 8. Illustrating case 2b in the proof of Lemma 3.
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B8(I) goes through N(p) (Fig. 7e). Otherwise, if there is a
path through SW(p) and a path through N(p), then W4(I)
would be disconnected; or, if there is neither a path
through SW(p) nor N(p), then B8(I) would be disconnected.

Case 2a: Every path from g to p in B8(I) goes through
SW(p). In that case we claim that the interchange Æp, NW(p)
preserves connectivity. To see that B8(I1) is connected first
observe that B8(I)np has two components, one containing
SW(p) and g and the other containing N(p). Therefore, B8(I1)
is connected since it can be obtained by adding NW(p) to
B8(I) np where NW(p) is adjacent in B8(I1) to at least one
vertex of the first component, in particular g, and at least
one vertex of the second component, in particular N(p).
To see that W4(I1) is connected first observe that
W4(I)nNW(p) has two components, the finite of which con-
tains W(p) and infinite of which contains S(p). Therefore,
W4(I1) is connected since it can be obtained by adding p

to W4(I)nNW(p) where p is adjacent in W4(I1) to at least
one vertex of the finite component, in particular W(p),
and at least one vertex of the infinite component, in partic-
ular S(p).

Case 2b: Every path from g to p in B8(I) goes through
N(p). Use Fig. 8a as reference throughout this proof.

Let l be the black pixel with minimum y-coordinate in
WNN

+(p). Such a pixel has to exist as otherwise there would
be no path from g to p. For the same reason, all the pixels
in {ES

+(l) \ N*(p)} are black. By the choice of l, all the pix-
els in S

+(l) \ WN*(p) are white (Fig. 8b).
If S(l) is not a cut vertex in W4(I) then the interchange

ÆSE(l), S(l)æ preserves connectivity. Thus assume S(l) is a
cut vertex in W4(I). Then S(l) has to have at least two neigh-
bours in W4(I) and thus SS(l) is white and SW(l) is white.
Furthermore, for S(l) to be a cut vertex SSW(l) has to be
black. Since SSW(l) 2 N*(g), SSSE(l) is black and SSS(l) is white
(Fig. 8c).

Note that having SW(l) white implies that there is a black
pixel in WWN*S*(l) as otherwise, there would be no path
from g to p in B8(I). Therefore, SSW(l) is not a black pixel
with minimum x-coordinate. If SSW(l) is not a cut vertex
in B8(I) then clearly the interchange ÆSSW(l), S(l)æ is valid
since it preserves connectivity and since SSW(l) is not a black
pixel with minimum x-coordinate. Thus assume SSW(l) is a
cut vertex in B8(I). Then SSWW(l) cannot be black, as other-
wise AB8

ðsswðlÞÞ � AB8
½sswwðlÞ� and thus SSW(l) would

not be a cut vertex. Similarly, SWW(l) is black (Fig. 8d).
Let h be the black pixel with minimum y-coordinate in

N* (g) such that N(h) is white. Let B denote the set of all
black pixels in-between, and including, g and h. That is,
Fig. 7. Illustrating case 2 in

Please cite this article in press as: P. Bose et al., Connectivity-preser
derstand. (2007), doi:10.1016/j.cviu.2007.06.003
B is the set of black pixels in {N*(g) \ S*(h)}. For the remin-
der of the proof refer to Fig. 8a and d as reference for the
position of h. To complete the proof we distinguish
between two cases:

Case 2b-I: There exist a black pixel z 2 B such that W(z)
is black. Let z be such a pixel with minimum y-coordinate.
Since AB8

ðzÞ � AB8
½wðzÞ�, z is not a cut vertex in B8(I).

Therefore, if both N(z) and NN(z) are white, then the inter-
change Æz, NE(z)æ preserves connectivity (Fig. 9a). Thus
assume that at least one of {N(z), NN(z)} is black.

Consider the position of z 2 B. Firstly, z „ SSW(l) since z

is not a cut vertex of B8(I) and by our assumption SSW(l) is.
If z = SSSW(l) (in which case h = N(z)) then W(h) is not cut
vertex in W4(I) and the interchange Æh, W(h)æ preserves con-
nectivity (Fig. 9b). Therefore, z 2 WSSSS

+(l) \ N*(g).
To resolve this case we will use the following simple

observation. For any set of consecutive black pixels
{v1, . . . ,vt} in N

+(p) such that each E(vi), 1 � i � t, is white
and N(vt) is black, the sequence of interchanges (Ævi, E(vi)æ),
1 � i � t preserve connectivity of each of the resulting
images in the sequence (see the final image in Fig. 9c).
We call such a set of pixels, t-block at v1.

By the position of z with respect to l, it follows that there
is a 3-block at EE(z) (in the worst case z = SSSSW(l) (as an
example consider Fig. 9d). Perform a 4-vertical interchange
(ÆEE(z),EEE(z)æ, ÆNEE(z),NEEE(z)æ, ÆNNEE(z),NNEEE(z)æ, Æz,NE(z)).
Each of the three images I1, I2 and I3 are clearly B8,
W4-connected. W4(I4) is connected since W4(I3nNE(z) has
at most two components one containing E(z) and the other
N(z) (if N(z) is white) (as an example consider (Fig. 9e)). In
any case, W4(I4) is connected since it can be obtained by
adding z to W4(I3nNE(z) where z is adjacent in W4(I4) to
E(z) and N(z) (if white). B8(I4) is connected by Observation
2 since z is not a cut vertex in B8(I3) and NE(z) has at least
one black pixel in its 8-neighbourhood other than z,
namely N(z) or NN(z) (one of them has to be black by the
assumption from the beginning of case 2b-I).

Case 2b-II: For each pixel z 2 B, W(z) is white. That
implies that at least one of {NW(h), SW(g)} is black as
the proof of Lemma 3.

ving transformations of binary images, Comput. Vis. Image Un-
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otherwise there would be no path in B8(I) from g to p.
Every such path goes through either SW(g) or NW(h).

First consider the case that h = g and thus N(g) is white.
If both NW(g) and SW(g) are black (Fig. 7a), then the inter-
change Æg, W(g)æ preserves connectivity. Otherwise, if one of
{NW(g), SW(g)} is white (Fig. 7b and c), then the 2-vertical
interchange (Æg, E(g)æ, ÆEE(g), EEEN(g)æ) preserves the connec-
tivity of both images I1 and I2.

Thus assume h „ g and consider the case the all paths
from g to p go through SW(g). Since h „ g, N(g) is black
(Fig. 10d). We claim the interchange Æg, NE(g)æ preserves
connectivity. To see that W4(I1) is connected, observe that
W4(I)nNE(g) has two components, the finite one containing
W(g) and the infinite one containing E(g). Therefore, W4(I1)
is connected since it can be obtained by adding g to
W4(I)nNE(g) where g is adjacent in W4(I1) to a vertex of
the finite component, in particular W(g), and a vertex of
the infinite component, in particular E(g). To see that
B8(I1) is connected observe that B8(I)ng has two compo-
nents, one containing N(g) and the other SW(g), p and
N(p). Therefore, B8(I1) is connected since it can be obtained
by adding NE(g) to B8(I)ng where NE(g) is adjacent in B8(I1)
to a vertex of the first component, in particular N(g), and a
vertex of the second component, in particular N(p).

Finally, assume h „ g and all the paths from g to p go
through NW(h). Since h „ g, S(h) is black (Fig. 10e). We
claim that the 2-vertical interchange (Æh, E(h)æ,
ÆEE(h), EEEN(h)æ) preserves connectivity of both images I1

and I2. To see that W4(I1) is connected, observe that
W4(I)nE(h) has two components, the finite one containing
Fig. 10. Illustrating case 2b-II in the proof of Lemma 3.
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N(h) and the infinite one containing W(h). Therefore,
W4(I1) is connected since it can be obtained by adding h

to W4(I)nE(h) where h is adjacent in W4(I1) to a vertex of
the finite component, in particular N(h), and a vertex of
the infinite component, in particular W(h). To see that
B8(I1) is connected observe that B8(I)nh has two compo-
nents, one containing NW(h) and p (and EE(h) and the other
S(h). Therefore, B8(I1) is connected since it can be obtained
by adding E(h) to B8(I)nh where E(h) is adjacent to a vertex
of the first component, in particular EE(h), and a vertex of
the second component, in particular S(h). See Fig. 10f for
the resulting image
I1. It is now simple to verify that the second interchange,
ÆEE(h), EEN(h)æ preserves the connectivity of I2.

Lemmas 1 and 3 imply the following theorem.

Theorem 2. Any two B8, W4-connected images I and J each

having n black pixels are (8,4)-IP-equivalent and I can be

converted into J using a sequence of O(n2) 8-local

interchanges.
5. Maintaining B8, W8-connectivity

Lemma 4. Any non-vertical B8, W8-connected binary image

I admits a 1-vertical interchange.
Proof. Let p = (x,y) be the pixel defined exactly as in the
proof of Lemma 3. We will show that each pixel p1 in the
1-vertical interchange Æp1,q1æ, where q1 2 {W(p1), NW(p1),
N(p1), NE(p1)} must exist somewhere near p. To prove the
lemma we distinguish between two main cases.

Case 1: p is not a cut vertex of B8(I). In this case, if N(p) is
black (Fig. 11a) then we can perform the interchange
(p, NE(p)). Since p is not a cut vertex of B8(I) and NE(p) is
not a cut vertex of W8(I), Observation 2, implies that this
interchange preserves connectivity.

Therefore, we may assume that N(p) is white. Then if at
least one of {NW(p), W(p)} is black (Fig. 11b and c), the
interchange Æp, N(p)æ preserves connectivity since N(p) is
not a cut vertex of W8(I) by the choice of p and Observa-
tion 1. Thus assume both W(p) and NW(p) are white and
SW(p) is black (Fig. 11d). Then by the choice of p, WN

+(p)
is white. That implies that the graph induced by
AW 8
ðnwðpÞÞ is connected and that NW(p) is not a cut vertex

of W8(I). Therefore, if WW(p) is black (Fig. 11e) the inter-
change Æ(p, NW(p)æ preserves connectivity by Observation
ving transformations of binary images, Comput. Vis. Image Un-
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2. Finally, if WW(p) is white (Fig. 11f), then the graph
induced by fAW 8

ðwðpÞÞ [ eðpÞg is connected thus by Obser-
vation 1, W(p) is not a cut vertex in W8(I), and the inter-
change Æp, W(p)æ preserves connectivity.

Case 2: p is a cut vertex of B8(I). In this case W(p) is
white, otherwise AB8

ðpÞ � AB8
½wðpÞ� and by Observation

1, p would not be a cut vertex in B8(I). Similarly, SW(p)
has to be black (Fig. 12a) as otherwise, the graph induced
by AB8

ðpÞ would be connected and p would not be a cut
vertex in B8(I). Finally, for the same reason, at least one
of {N(p), NW(p)} has to be black. Since p is a cut vertex,
each path from {N(p), NW(p)} to SW(p) goes through p.

Assume first that NW(p) is black (Fig. 12b). Then WW(p)
has to be white (Fig. 12c) as otherwise p is not cut vertex of
B8(I) since the path NW(p), WW(p), SW(p) does not go
through p. We claim that W(p) is not a cut vertex of
W8(I) and thus that the interchange Æp, W(p)æ preserves con-
nectivity. W8(I1) can only be disconnected if B8(I1) contains
a cycle C in which each pair of consecutive pixels in C are
4-neighbours in I1 (that is, C is a cycle in B4(I1)-recall the
observation made on the first page of this article with
regards to the connectivity of images), we call such a cycle
a 4-neighbourhood cycle. Thus if W(p) is a cut vertex of
W8(I) then B8(I1) has a 4-neighbourhood cycle C contain-
ing W(p). Every 4-neighbourhood cycle C containing W(p)
has to contain two vertices from the 4-neighbourhood of
W(p) in B8(I1). W(p) has only two such neighbours in
B8(I1) (Fig. 12c), namely NW(p) and SW(p). However having
C contain NW(p), SW(p) and W(p) implies that there is a path
in B8(I) between NW(p) and SW(p) that does not go through
p which contradicts the assumption that p is a cut vertex in
B8(I).

Assume finally that NW(p) is white. Then as noted above
N(p) is black (Fig. 12d). If W(p) is not a cut vertex of W8(I)
then the interchange Æp, W(p)æ preserves connectivity. Thus
assume W(p) to be a cut vertex of W8(I). The only black pix-
els in the 4-neighborhood of W(p) in (B8(I)np) are sw(p)
and possibly WW(p). Thus by the same arguments as in
Fig. 12. Illustrating case 2 in
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the previous paragraph, (B8(I)np) [W(p) has a 4-neigh-
bourhood cycle C1 that has as consecutive vertices WW(p),
W(p), SW(p). Therefore, WW(p) is black and there is a path
from WW(p) to SW(p) that does not go through p

(Fig. 12e). We claim that the interchange Æp, NW(p)æ pre-
serves connectivity. B8(I1) is clearly connected. W8(I1) can
only be disconnected if NW(p) is a cut vertex of W8(I). In
that case NWW(p) has to be black, as otherwise the graph
induced by AW 8

ðnwðpÞÞ [ fneðpÞ; eðpÞ; sðpÞg would be con-
nected and, by Observation 1, NW(p) would not be a cut
vertex of W8(I). Therefore, since NWW(p) is black, NNW(p)
has to be white (Fig. 12f) as otherwise, there would be a
path from SW(p) to N(p) that does not contain p contradict-
ing the assumption that p is a cut vertex. Now the only
black pixels in the 4-neighborhood of NW(p) are NWW(p)
and N(p). Thus by the same arguments as in the previous
paragraph, (B8(I)np) [ NW(p) has a 4-neighbourhood cycle
C2 that has as consecutive vertices N(p), NW(p), NWW(p)
(Fig. 12f). That however implies again a path in B8(I) from
SW(p) to N(p) that does not contain p, contradicting the
assumption that p is a cut vertex. h

Lemmas 1 and 4 imply the following theorem.

Theorem 3. Any two B8,W8-connected images I and J each

having n black pixels are (8,8)-IP-equivalent and I can be

converted into J using a sequence of O(n2) 8-local

interchanges.

We should note that if I and J are B4, W8-connected or
B8, W4-connected then (8, 8)-IP-equivalence of I and J fol-
lows from Theorems 1 and 2 (even if I is B4, W8-connected
and J is B8, W4-connected).

6. Maintaining B4, W4-connectivity

Our approach for solving the B4, W4 version of the
problem is significantly different from that used in the pre-
vious three versions. The width of an image I, is defined as
one plus the difference between the maximum and the min-
the proof of Lemma 4.

ving transformations of binary images, Comput. Vis. Image Un-
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imum x-coordinate of the black pixels in I. For example, a
Ba, Wb-connected image has width one if and only if it is
vertical. We will prove that the width of every non-vertical
B4, W4-connected image I can be reduced by one after
O(n3) interchanges. That will imply the desired result,
namely that any two B4, W4-connected images I and J
each having n black pixels are (4,4)-IP-equivalent and that
I can be converted into J using a sequence of O(n4)
interchanges.

We will make use of the following notions defined on a
B4, W4-connected image I. A pixel p is an elbow in I if it is
black and each pixel in {E(p), S(p), SE(p)} is white. If in
addition p is a cut vertex in B4(I), we say that p is a cut

elbow in I. Note that if p is a cut elbow, then N(p) and
W(p) are black and NW(p) is white. Consider a (possibly
empty) set of elbows {pi : 1 6 i 6 k, k P 0} in I, such that
for each 1 6 i < k, pi = NNWW(pi+1). We say that I admits
a k-diagonal interchange at pk if

1. p1 is a cut elbow and after each interchange Æpi, NW(pi)æ,
in the sequence Æ(pi, NW(pi)æ : 1 6 i 6 k), the resulting
image Ii is B4, W4-connected, or

2. p1 is not a cut elbow, and after each interchange
Æpi, SE(pi)æ, in the sequence (Æpi, SE(pi)æ : 1 6 i 6 k � 1),
the resulting image Ii is B4, W4-connected.
Lemma 5. Any B4, W4-connected binary image I with an

elbow pixel p admits a k-diagonal interchange at p, for some
k P 0, such that in the final image J, p is either an elbow but

not a cut elbow in J, or p is white. Furthermore, the width of J

is at most the width of I.

Proof. If p is not a cut elbow in I, then the statement is triv-
ial, that is, I admits a (k = 0)-diagonal interchange. Thus
assume p is a cut elbow in I. Then N(p) and W(p) are both
black and NW(p) is white. If NW(p) is not a cut vertex in
W4(I) then the interchange Æp, NW(p)æ is a (k = 1)-diagonal
interchange at p of the first type (in this case p1 = p). Thus
assume NW(p) is a cut vertex in W4(I). That implies that
NNWW(p) is an elbow in I. Consider the set of all elbows
in N

j
W

j(p), for all j P 0. Let p1 be the elbow with the small-
est y-coordinate in that set such that either

(a) p1 is a cut elbow but NW(p1) is white and not a cut ver-
tex in W4(I), or

(b) p1 is not a cut elbow.

Since the number of black pixels is finite such a pixel p1

has to exist. Furthermore, by the above assumption p1 „ p.
All this implies that I has a set of elbows p1, . . . ,pk = p,
k P 2, where for each 1 6 i < k, pi = NNWW(pi+1); and, for
each i > 1, pi is a cut elbow in I.

There are two cases to consider depending on whether p1

is a cut elbow or not, see (a) and (b) above. If p1 is a cut
elbow we will show that I admits a k-diagonal interchange
at p of the first type. Otherwise, I admits a k-diagonal
Please cite this article in press as: P. Bose et al., Connectivity-preser
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interchange at p of the second type. It is simple to observe
that in the first case that implies that p is white in the final
image J, and in the second case p is an elbow but not a cut
elbow in J. Also in both cases the width of the final image J

does not exceed that of I.
First consider the case, (a), that p1 is a cut elbow in I. Then,

by the choice of p1, NW(p1) is white and not a cut vertex in
W4(I). Furthermore, since p1 is a cut elbow in I, N(p1) and
W(p1) are black. Then the interchange Æp1, NW(p1)æ preserves
the connectivity of the resulting image I1. Moreover, since
W(p1) is black the width of I1 is at most that of I. Now, in I1,
NW(p2) is not a cut vertex (anymore) in W4(I1) and p2 is a cut
elbow. Thus in I1 the elbow p2 plays the role p1 played in I.
Therefore, by an easy induction (on k) we get that I admits a
k-diagonal interchange at p of the first type.

Finally, consider the case, (b), that p1 is not a cut elbow in
I. Since p2 is a cut elbow in I, N(p2) and W(p2) are black and
NW(p2) (that is, SE(p1)) is white. We claim that the
interchange Æp1, SE(p1)æ preserves the connectivity of the
resulting image I1. By Observation 2, B4(I1) is connected
since p1 is not a cut vertex in B4(I) and SE(p1) has at least one
black 4-neighbour. To see that W4(I1) is connected, observe
that W4(I)n SE(p1) has at most two components one
containing S(p1) (if S(p1) is white) and the other containing
E(p1) (if E(p1) is white). Therefore, to see that W4(I1) is
connected it is enough to observe that W4(I1) can be
obtained by adding p1 to W4(I)n SE(p1) where p1 is adjacent
in W4(I1) to at least one vertex of the first component, in
particular S(p1), and at least one vertex of the second
component, in particular E(p1). Now, in I1, p2 is an elbow
but not a cut elbow anymore. Thus in I1 elbow p2 plays the
role p1 played in I. Therefore, by an easy induction (on k) we
get that I admits a k-diagonal interchange at p of the second
type. Note that none of the above interchanges can increase
the width of the final image. That completes the proof. h

To state the next lemma we need the following simple
definitions. The frontier of an image I is the set of all pixels
in I that have x-coordinate equal to the maximum x-coor-
dinate of the black pixels in I. Note that each image has at
least one elbow in its frontier. We call the elbow in the
frontier that has the maximum y-coordinate the lead elbow.
An anchor of a non-vertical image I is a black pixel that has
the minimum y-coordinate amongst the black pixels that
are not in the frontier, but have a (not necessarily black)
4-neighbour in the frontier (that is, an anchor is a black
pixel with the minimum y-coordinate amongst all the black
pixels immediately to the left of the frontier). The height of
the lead elbow in a non-vertical image I is defined as the
difference between the y-coordinates of the lead elbow
and the anchor of I. Note that this height may be a negative
number.
Lemma 6. Any B4, W4-connected non-vertical binary image I

with n black pixels admits a sequence of O(n) 8-local

interchanges, none involving the anchor of I, such that in the
final image J
ving transformations of binary images, Comput. Vis. Image Un-
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1. the width of J is smaller than the width of I, or

2. the widths are the same, but the number of elbows in the

frontier of J is smaller than that in I, or

3. both quantities above are the same, but the height of the

lead elbow in J is greater than that in I; and, I and J have

the same anchor.

Proof. In an image Q, let lQ denote the lead elbow of Q and
let tQ denote the top pixel of Q defined as the black pixel
with the maximum y-coordinate in the frontier. Notice that
the anchor of I is in WS*(tI). In the proof below, for brevity,
we will just state where the anchor is with respect to the
pixels involved in interchanges. From that it will always
be clear that no interchange involves the anchor and that
in fact the anchor of each produced non-vertical image is
exactly the same pixel.

Assume first that NW(tI) is white and NNW(tI) is black.
We claim that O(n) interchanges, none involving the
anchor, can convert I into an image I 0 where it is not the
case that nwðtI 0 Þ is white and nnwðtI 0 Þ is black. Moreover,
all these interchanges are amongst pixels in N

+
W*(tI), and

the invariants are maintained, that is, the width of I 0 is at
most that of I, the number of elbows in their frontiers, as
well as the height of the lead elbows in the two images are
the same.

If it is not the case that NW(tI) is white and NNW(tI) is
black, then let I 0 = I. Otherwise, NNW(tI) is an elbow in I.
Applying (a diagonal interchange of) Lemma 5 to
NNW(tI) gives an image I1 where either nnwðtI1

Þ is white,
or nnwðtI1

Þ is an elbow but not a cut elbow in I1. If
nnwðtI1

Þ is white then let I 0 = I2, otherwise the inter-
change hnnwðtI1

Þ;nðtI1
Þi preserves the connectivity of the

resulting image I2 Now, in I2, nnwðtI2
Þ is white. If

nnwðtI2
Þ is white, then let I 0 = I otherwise we can repeat

the process above (starting by applying Lemma 5 to
nnwðtI2

Þ) until we arrive at an image I 0 where it is not
the case that nwðtI 0 Þ is white and nnwðtI 0 Þ is black. That
has to happen by the finiteness. None of the interchanges
involves the anchor and the invariants are maintained.
Furthermore, diagonal interchanges of Lemma 5 are
always applied to a black pixel with bigger y-coordinate
than in the previous iteration thus no interchange
involves the same pixel. Thus the number of interchanges
needed to convert I to I 0 is at most the number of black
pixels in N

+
W*(tI).

The above conversion allows us to now assume that we
have an image I where it is not the case that NW(tI) is white
and NNW(tI) is black. That property is very useful, since
changing N(tI) from white to black results in an image that
is B4, W4-connected. There are two cases to consider
depending on whether lI is a cut elbow in I.

Case 1: lI is an elbow but not a cut elbow in I. Let p = h

and let k be the difference between the y-coordinate of tI

and the y-coordinate of p. There are two sub-cases to
consider here depending on whether k is zero or a positive
integer.
Please cite this article in press as: P. Bose et al., Connectivity-preser
derstand. (2007), doi:10.1016/j.cviu.2007.06.003
Case 1a: k > 0. In this case, apply the following sequence
of interchanges (Æp, NE(p), (N

i
E(p), N

i+1
E(p)æ, ÆN

k
E(p), N

k+1(p),
1 6 i 6 k � 1. This is a simple set of interchanges that can
be visualized as having the black pixel at p slide upward
along the east side of the frontier ending up at the top of tI.
The fact that connectivity of each resulting image
I1, I2, . . . , Ik+1 = J is preserved follows from the fact that
lI is not a cut vertex and from the fact that it is not the case
that NW(tI) is white and NNW(tI) is black (that, as noted
above, allows us to place a black pixel on top of tI). Note
that the number of interchanges is at most O(n) and none
of them involves the anchor nor changes the anchor of the
resulting image. Furthermore, the width of J is at most that
of I, the number of elbows is the same, but the lead elbow
in J, that is N(p), has greater height than the lead elbow in I,
that is p.

Case 1b: k = 0. In this case each pixel in N
+(p) is white

and W(p) is black as otherwise p would be an isolated
vertex. Furthermore, by the initial conversion it is not the
case that NW(p) is white and NNW(p) is black, that is, either
NW(p) is black, or both NW(p) and NNW(p) are white. Thus
consider these two possibilities.

If NW(p) is black then the interchange Æp, N(p)æ preserves
the connectivity and in the resulting image J the width and
the number of elbows in I and J are the same, but the lead
elbow in J, that is N(p) has greater height than the lead
elbow in I.

Thus assume NW(p) and NNW(p) are both white. Unless,
NNWW(p) is black and NWW(p) is white, the interchange
Æp, NW(p)æ preserves the connectivity of the resulting image
which has either the width or the number of elbows in its
frontier smaller than that in I. Thus assume NNWW(p) is
black and NWW(p) is white. Then q = NNWW(p) is an elbow
in I. Applying (a diagonal interchange of) Lemma 5 to q

results in an image I* where q is either white or it is an
elbow but not a cut elbow in I*. If q is white then as above
the interchange Æp, NW(p)æ gives the desired result. Other-
wise, the interchange Æq, SE(q)æ followed by Æp, N(p)æ pre-
serves the connectivity of both resulting images.
Furthermore, the width of the final image J is at most
that of I, the number of elbows is the same but the lead
elbow in J, that is N(p), has greater height than the lead
elbow in I, that is p. The total number of interchanges is
O(n).

Case 2: lI is a cut elbow in I. Again let p = lI. Since p is a
cut elbow, N(p) and W(p) are black and NW(p) is white.
Having W(p) black, implies that the anchor is in WS*(p).

Now apply (a diagonal interchange of) Lemma 5 to p.
None of the interchanges involves nor changes the anchor.
In the resulting image I*, p is either white or it is the lead
elbow that is not a cut elbow in I*. If it is white, then we are
done, namely I* = J; the width of J is at most that of I; the
number of elbows is the same but the lead elbow in J, that
is N(p), has greater height than the lead elbow in I, that is p.
Otherwise if, p is the lead elbow that is not a cut elbow in I*

then we are in case 1a that has already been
considered. h
ving transformations of binary images, Comput. Vis. Image Un-
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Aided by the previous lemma we can now deduce the
following theorem.

Theorem 4. Any two B4, W4-connected images I and J each

having n black pixels are (4,4)-IP-equivalent and I can be

converted in J using a sequence of O(n4) 8-local interchanges.

Proof. It is sufficient to prove that each non-vertical image
I with n black pixels can be converted into a vertical image
J with n black pixels, using a sequence of O(n4) 8-local
interchanges.

Consider a sequence of images I0 = I, I1, I2, . . . , Is result-
ing from consecutive applications of Lemma 6, such that
each image in the sequence has the same width and the
same number of elbows in their frontier. By Lemma 6 each
image Ii, 1 < i 6 s in this sequence has the same anchor as
image Ii � 1, but the height of its lead elbow is greater than
that in Ii-1. Therefore, there are at most n � 1 images in this
sequence, that is s 6 n � 1. Thus applying Lemma 6 to Is

results in an image Is+1 that has either width or the number
of elbows in its frontier smaller than Is. Thus after at most
O(n2) interchanges the number of elbows in the frontier
goes down by one, which further implies that after at most
O(n3) interchanges the width goes down by one. Thus
finally, at most O(n4) interchanges converts I into an image
that has width one, that is, into a vertical image J. h
7. Conclusions

We have shown that, for any (a,b) 2 {(4, 8), (8, 4),
(8,8)}, any two Ba, Wb-connected images I and J each with
n black pixels differ by a sequence of O(n2) interchanges.
That is the best possible, since converting a horizontal
image to a vertical image requires X(n2) interchanges. We
have also shown that any two B4, W4-connected images I

and J each with n black pixels differ by a sequence of
Please cite this article in press as: P. Bose et al., Connectivity-preser
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O(n4) interchanges. Since the same X(n2) lower bound
applies to this version, the obvious open problem is
whether any two B4, W4-connected images differ by a
sequence of O(n4) interchanges.
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