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Abstract

We consider the problem of testing the roundness of manufactured disks and balls using the

finger probing model of Cole and Yap [6]. The running time of our procedures depends on the

quality of the object being considered. Quality is a parameter that is negative when the object

is not sufficiently round and positive when it is. Quality values close to 0 represent objects that

are close to the boundary between sufficiently round and insufficiently round.

When the object being tested is a disk and its center is known, we describe a procedure

that uses O(n) probes and O(n) computation time. (Here n = |1/q|, where q is the quality of

the object.) When the center of the object is not known, a procedure using O(n) probes and

O(n log n) computation time is described. When the object is a ball, we describe a procedure

that requires O(n2) probes and O(n4) computation time. Lower bounds are also given that show

that these procedures are optimal in terms of the number of probes used. These results extend

previous results in two directions by relaxing some of the assumptions required by previous

results and by extending these results for 3-dimensional objects.

1 Introduction

The field of metrology is concerned with measuring the quality of manufactured objects. A basic

task in metrology is that of determining whether a given manufactured object is of acceptable

quality. Usually this involves probing the surface of the object using a measuring device such as a

coordinate measuring machine to get a set S of sample points, and then verifying, algorithmically,

how well S approximates an ideal object.
∗This work was funded in part by the Natural Sciences and Engineering Research Council of Canada
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A special case of this problem is determining whether an object is round. For our purposes, an

object I is good if the boundary of I can be contained in an annulus of inner radius 1− ε and outer

radius 1 + ε, for some quality parameter ε > 0, and is bad otherwise. See Figure 1 for examples of

good and bad objects. We call this problem the roundness classification problem.

In the field of computational geometry a lot of work has been done on finding efficient algorithms

for testing the roundness of a set of sample points, using the definition of roundness given above

[4, 7, 13], as well as several other definitions of roundness [2, 3, 1, 5, 8, 9, 10, 11, 15, 14, 16, 18].

However, very little research has been done on probing strategies for the roundness classifica-

tion problem. A notable exception is the work by Mehlhorn, Shermer, and Yap [12, 17], in which

a probing strategy for manufactured disks is coupled with a roundness testing algorithm. Unfortu-

nately, the procedure described in [12, 17] relies on the assumption that the object I is convex. It

is usually not the case that the manufacturing process can guarantee this.

In this paper we describe strategies for testing the roundness of manufactured disks and balls.

We use the finger probing model of Cole and Yap [6]. In this model, the measurement device

can identify a point in the interior of I and can probe along any ray originating outside of I, i.e.,

determine the first point on the ray that intersects the boundary of I (see Figure 2). The finger

probing model is a reasonable abstract model of a coordinate measuring machine or a laser range-

finder [19]. A coordinate measuring machine consists of a robotic arm with a pressure sensitive tip

that determines points on the surface of an object by poking it. A laser range finger is a device

that records points on the surface of an object by shooting a laser at it.

This work extends the results of Mehlhorn et al [12, 17] in several ways. The assumption that

the object I is convex is replaced by a much weaker assumption related to visibility. Using this

assumption, we give a procedure for testing the roundness of a manufactured disk I using O(n)

probes and O(n log n) computation time. Here n = 1/|qual(I)| where qual(I) measures how far

the object I is from the boundary between good and bad. This matches the number of probes

and computation time required by Mehlhorn et al for convex objects. For testing the roundness

of manufactured balls, we give an algorithm that uses O(n2) probes and O(n4) computation time.

This is the first result testing the quality of 3-dimensional objects using finger probes. We also

show that all our results our optimal in terms of the number of probes.

The remainder of the paper is organized as follows: Section 2 introduces definitions and notation

used throughout the remainder of the paper. Section 3 describes procedures for testing the quality

of manufactured disks. Section 4 describes procedures for testing the quality of manufactured balls.
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Figure 1: Examples of (a) good and (b) & (c) bad objects. The inner circle has radius 1 − ε and

the outer circle has radius 1 + ε.
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Figure 2: A finger probe determines the first point at which a ray originating outside of an object

contacts the object.
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Section 5 gives lower bounds on the number of probes needed to solve these problems. Section 6

summarizes and suggests directions for future work.

2 Definitions, Notation, and Assumptions

In this section, we introduce definitions and notation used throughout the remainder of this paper,

and state the assumptions we make on the object being tested. For the most part, notation and

definitions are consistent with [12, 17].

For a point p, we use the notation x(p), y(p), and z(p) to denote the x, y, and z coordinates of

p, respectively. The symbol o+ is used to denote the origin of the coordinate system. We use the

notation dist(a, b) to denote Euclidean distance between two objects. If A and B are sets of points,

dist(A,B) is the minimum distance between all pairs of points in A and B, i.e.,

dist(A,B) = min{dist(a, b) : a ∈ A, b ∈ B} . (1)

The angle formed by three points a, b, and c, is denoted by ∠abc, and we always mean the smaller

angle unless stated otherwise.

An object I is defined to be any compact simply connected subset of R2 or R3 (it will be clear

from the context), with boundary denoted by bd(I). For a point p, we use R(p, I) and r(p, I) to

denote the maximal and minimal distance, respectively, from p to a point in bd(I). I.e.,

R(p, I) = max{dist(p, p′) : p′ ∈ bd(I)} (2)

r(p, I) = min{dist(p, p′) : p′ ∈ bd(I)} . (3)

For a point p, let

qual(p, I) = min{r(p, I)− (1− ε), (1 + ε)−R(p, I)} (4)

and let

qual(I) = max{qual(p, I) : p ∈ R2} . (5)

Any point cI with qual(cI , I) = qual(I) is called a center of I. The value qual(I) is called the quality

of the object I, since it measures the maximum deviation of I from a disk (or ball) of unit radius.

An object I with qual(I) > 0 is good while an object I with qual(I) < 0 is bad. A procedure that

determines whether a planar object is good or bad is called a roundness classification procedure.
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In order to have a testing procedure that is always correct and that terminates, it is necessary to

make some assumptions about the object I being tested. The following assumption made in [12, 17]

is referred to as the minimum quality assumption, and refers to the fact that the manufacturing

process can guarantee that manufactured objects have a minimum quality (although perhaps not

enough to satisfy our roundness criterion).

Assumption 1. R(cI , I) ≤ 1 + δ and r(cI , I) ≥ 1 − δ, for some constant 0 < δ < 1/30, i.e., the

boundary of I is contained in an annulus of inner radius 1− δ and outer radius 1 + δ.

The minimum quality assumption alone is not sufficient. If the object under consideration

contains oddly shaped recesses, then it may be the case that these recesses cannot be found using

finger probes. We say that an object I is star-shaped if there exists a point k ∈ I such that for any

point p ∈ I, the line segment joining k and p is a subset of I. We call the set of all points with this

property the kernel of I. The following assumption ensures that all points in bd(I) can be probed

by directing probes close to a center of I.

Assumption 2. I is a star-shaped object, and its kernel contains all points p such that dist(cI , p) ≤
α, for some constant α > 2δ.

In [12, 17], a roundness testing procedure is described that requires only Assumption 1 and the

assumption that I is convex. We observe that our assumptions are weaker.

Observation 1. The set of convex objects satisfying Assumption 1 is strictly contained in the set

of objects satisfying Assumptions 1 and 2.

To see this, one need only observe that every convex object is a star-shaped object whose

kernel is itself. Therefore every convex object satisfying Assumption 1 satisfies Assumption 2 with

α = 1− δ > 2δ.

3 Testing Disks

In this section we give a procedure for testing the quality of a planar object I. We begin by

describing a simplified procedure that assumes a center of I is known to be the origin, o+. The

motivation for describing this simplified procedure is pedagogical. It is a simple example that helps

in understanding the full procedure.

6



3.1 The Simplified Procedure

Pseudocode for the testing proceudure is given in Procedure 1. It tests the roundness of an object

I by taking a set S of probes at uniform intervals directed at the origin. Throughout this section,

we use the notation probe(n, p) to denote the set of points obtained by taking n probes directed at

the point p in directions 2π/n, 4π/n, . . . , 2(n − 1)π/n. The procedure repeatedly doubles the size

of the sample until either (1) a set of sample points is found that cannot be covered by an annulus

of inner radius 1 − ε and outer radius 1 + ε, in which case I is rejected, or (2) the set of sample

points can be covered by an annulus with inner radius sufficiently larger than 1−ε and outer radius

sufficiently smaller than 1 + ε, in which case we can be sure that I is a good object.

Procedure 1 Tests the roundness of the object I centered at the origin.
1: r ← 1

2: R← 1

3: n← n0

4: repeat

5: ∆← f(n)

6: S ← probe(n, o+)

7: if ∃p ∈ S : dist(p, o+) > 1 + ε or dist(p, o+) < 1− ε then

8: return REJECT

9: end if

10: r ← 1− ε+ ∆

11: R← 1 + ε−∆

12: n← 2n

13: until ∀p ∈ S : dist(p, o+) < R and dist(p, o+) > r

14: return ACCEPT

The function f(n) that appears in the pseudocode is defined as

f(n) =

√(
(1 + δ)π

n

)2

+
(

(1 + δ)2π
αn

)2

= O(1/n) , (6)

for any constant α and the constant n0 is defined as

n0 = dπ/ arctan(α/(1 + δ))e = O(1) . (7)

With these definitions, we obtain the following crucial lemma.

Lemma 1. Let I be a planar object with center cI and satisfying Assumptions 1 and 2. Let S be
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the set of results of n ≥ n0 probes directed at cI in directions 0, 2π/n, 4π/n, . . . , 2π(n− 1)/n. Then

for any point p ∈ bd(I), there exists a point p′ ∈ S such that dist(p, p′) ≤ f(n).

Proof. Assume wlog that cI = o+, x(p) = 0, and 1 − δ ≤ y(p) ≤ 1 + δ. We will upper-bound

|x(p)− x(p′)| and |y(p)− y(p′)|. Refer to Figure 3 for an illustration.

First note that there exists a sample point p′ ∈ S such that 0 ≤ ∠pcIp′ ≤ π/n. By Assumption 1,

dist(o+, p′) ≤ 1 + δ, so an upper bound on |x(p)− x(p′)| is

|x(p)− x(p′)| = |x(p′)| ≤ (1 + δ) sin(π/n) (8)

≤ (1 + δ)π/n (9)

Since ∠pcIp′ ≤ π/n, p′ must lie in the cone defined by the inequality

y(p′) ≥ |x(p′)|
(

cos(π/n)
sin(π/n)

)
. (10)

Next we note that the slope of the line through p′ and p must be in the range [−y(p)/α, y(p)/α],

otherwise Assumption 2 is violated. If n ≥ n0, then the region in which p′ can be placed is bounded,

and |y(p)− y(p′)| is maximized when p′ lies on one of the bounding lines

fl(x) = xy(p)/α+ y(p) (11)

fr(x) = −xy(p)/α+ y(p) (12)

Since both lines are symmetric about x = 0 we can assume that x(p′) lies on fl, giving

|y(p)− y(p′)| ≤ |y(p)− fl(x(p′))| (13)

= |x(p′)y(p)/α| (14)

≤ |x(p′)(1 + δ)/α| (15)

≤ (1 + δ)2π/αn (16)

Substituting (9) and (16) into the Euclidean distance formula and simplifying yields the stated

inequality.

Theorem 1. There exists a roundness classification procedure that can correctly classify any planar

object I with center cI = o+ and satisfying Assumptions 1 and 2 using O(|1/qual(I)|) probes and

O(|1/qual(I)|) computation time.
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o+−α α

p′

y = fl (x) y = fr(x)

Figure 3: Constraints on the position of p′. The point p′ must be in the shaded region, and dist(p, p′)

is maximized when p′ is placed as shown.
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Proof. We begin by showing that the procedure is correct. We need to show that the procedure

never rejects a good object and never accepts a bad object. The former follows from the fact that

the procedure only ever rejects an object when it finds a point on the object’s boundary that is not

contained in the annulus of inner radius 1− ε and outer radius 1 + ε centered at cI .

Next we prove that the procedure never accepts a bad object. Lemma 1 shows that there is

no point in bd(I) that is of distance greater than f(n) from all points in S. The procedure only

accepts I when all points in S are of distance at least ∆ = f(n) from the boundary of the annulus

of inner radius 1− ε and outer radius 1 + ε centered at o+. Therefore, if the procedure accepts I,

all points in bd(I) are contained in an annulus of inner radius 1− ε and outer radius 1 + ε, i.e., the

object is good.

Next we prove that the running time is O(|1/qual(I)|). First we observe that f(n) ∈ O(1/n).

Next, note that the computation time and number of probes used during each iteration is linear

with respect to the value of n, and the value of n doubles after each iteration. Thus, asymptotically,

the computation time and number of probes used are dominated by the value of n during the last

iteration. There are two cases to consider.

Case 1: Procedure 1 accepts I. In this case, the procedure will certainly terminate once ∆ ≤
qual(I). This takes O(log(1/qual(I))) iterations. During the final iteration, n ∈ O(1/qual(I)).

Case 2: Procedure 1 rejects I. In this case, there is a point on bd(I) at distance qual(I) outside the

circle with radius 1 + ε centered at o+, or there is a point in bd(I) at distance qual(I) inside of the

circle with radius 1− ε centered at o+. In either case, Lemma 1 ensures that the procedure will find

a bad point within O(log |1/qual(I)|) iterations. During the final iteration, n ∈ O(|1/qual(I)|).

3.2 The Full Procedure

The difficulty in implementing Procedure 1 is that we may not know the position of an exact center,

cI , of I. However, the following result from [12, 17] allows us to use this procedure anyhow.

Theorem 2 (Near-Center). Let I be a planar object with center cI and that satisfies Assump-

tion 1. Then 6 probes and constant computation time suffice to determine a point c0 such that

dist(cI , c0) ≤ 2δ.

We call any such point c0 a near-center of I. As the following lemmata show, knowing a near

center is almost as useful as knowing a true center. Before we state the lemma, we need the following
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definitions.

g(n) =

√(
π(1 + 3δ)

n

)2

+
(
π(1 + 3δ)2

n(α− 2δ)

)2

(17)

n′0 = dπ/ arctan(α/(1 + 3δ))e (18)

The value of g(n) and n′0 are modifications of f ′(n) and n0 that are required to compensate for the

fact that c0 is a near center rather than a center.

Lemma 2. Let I be a planar object with center cI , near-center c0 and satisfying Assumptions 1 and

2. Let S be the set of results of n ≥ n′0 probes directed at c0 in directions 0, 2π/n, 4π/n, . . . , 2π(n−
1)/n. Then for any point p ∈ bd(I), there exists a point p′ ∈ S such that dist(p, p′) ≤ g(n).

Proof. The proof is almost a verbatim translation of the proof of Lemma 1, except that we assume

that c0 = o+. With this assumption we derive the bounds

|x(p)− x(p′)| ≤ (1 + 3δ)(π/n) (19)

|y(p)− y(p′)| ≤ (1 + 3δ)2π/n(α− 2δ)| (20)

Substituting these values into the formula for the Euclidean distance and simplifying yields the

desired result.

Lemma 3. Let I be a planar object with center cI , near-center c0 and satisfying Assumptions 1 and

2. Let S be the set of results of n probes directed at c0 in directions 0, 2π/n, 4π/n, . . . , 2π(n− 1)/n,

and let cS be the center of S. Then

R(cS , S) ≤ R(cS , I) ≤ R(cS , S) + g(n) (21)

r(cS , S)− g(n) ≤ r(cS , I) ≤ r(cS , S) . (22)

Proof. We prove only the bounds on the R(cS , I) as the proof of the bounds on r(cS , I) are

symmetric. The lower bound on R(cS , I) is immediate, since S ⊂ bd(I). To see the upper

bound, choose any point p ∈ bd(I) such that dist(cS , p) = R(cS , I). By Lemma 2 there exists

p′ ∈ S such that dist(p′, p) ≤ g(n). Therefore dist(cS , p) ≤ dist(cS , p′) + g(n), which implies that

R(cS , I) ≤ R(cS , S) + g(n).

Lemma 4. Let I be a planar object with center cI , near-center c0 and satisfying Assumptions 1 and

2. Let S be the set of results of n probes directed at c0 in directions 0, 2π/n, 4π/n, . . . , 2π(n− 1)/n.

Then qual(S)− g(n) ≤ qual(I) ≤ qual(S)
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Proof. qual(I) ≤ qual(S) follows immediately from the fact that S ⊂ bd(I). For the lower bound,

observe,

qual(I) = max
p∈R2

qual(p, I) (23)

≥ qual(cS , I) (24)

= min{r(cS , I)− (1− ε), (1 + ε)−R(cS , I)} (25)

≥ min{r(cS , S)− g(n)− (1− ε), (1 + ε)− (R(cS , S) + g(n))} (26)

= min{r(cS , S)− (1− ε), (1 + ε)−R(cS , S)} − g(n) (27)

= qual(S)− g(n). (28)

Theorem 3. There exists a roundness classification procedure that can correctly classify any planar

object I satisfying Assumptions 1 and 2 using O(1/|qual(I)|) probes and O(|1/qual(I)| log |1/qual(I)|)
computation time.

Proof. We make the following modifications to Procedure 1. In Line 3, we set the value of n to

n′0. In Line 5, we replace f(n) with g(n). In Line 6 we direct our probes at c0 rather than o+.

In Lines 7 and 13, we replace the simple test with a call to one of the O(n log n) time referenced

roundness algorithms in [4] or [7], to test whether the sample set S can be covered by an annulus

with the specified inner and outer radius.

Lemma 4 ensures that the procedure never accepts a bad object and never rejects a good object.

i.e., the procedure is correct. The procedure terminates once g(n) < |qual(I)|. This happens after

O(log |1/qual(I)|) iterations, at which point n ∈ O(|1/qual(I)|.

4 Testing Balls

In this section we describe a complete procedure for testing the quality of manufactured balls. Since

the first step in the algorithm is finding a point that is close to a center of our object, we begin by

giving a procedure that can find such a point using a constant number of probes.
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4.1 Finding a Near-Center

In this section we describe a procedure for finding a point close to a center, cI , of I . A near-center

of I is any point c0 such that dist(c0, cI) ≤ 2δ. Our procedure uses three simple subroutines X(p),

Y (p) and Z(p). These subroutines perform two probes directed at p. The two probes come from

opposite directions, and are parallel to the x, y, and z axes, respectively. If the two probes contact

I at points a and b, then the subroutines return (a+b)/2, i.e., the midpoint between a and b. If the

probes do not contact I then the routines return the point p. Pseudocode is given in Procedure 2.

Procedure 2 Returns a near-center given a point p0 ∈ I.
1: p1 ← X(p0)

2: p2 ← Y (p1)

3: p3 ← Z(p2)

4: p4 ← X(p3)

5: p5 ← Y (p4)

6: return p5

Theorem 4. Let I be an object with center cI and satisfying Assumption 1. Then 10 probes and

constant computation time suffice to find a point c0 such that dist(cI , c0) ≤ 2δ.

Proof. We will incrementally refine the bounds on the x, y, and z coordinates of p1–p5. Refer to

Figure 4 for illustrations. When using the terms left, right, up, down, vertical and horizontal, we

will do so with respect to the relevant part of Figure 4.

Assume wlog that cI = o+. First we show that

|x(p1)| ≤ 2
√
δ. (29)

Let L1 be the line y = y(p0), z = z(p0), i.e., the line along which the first two probes are taken.

Consider the intersection of the plane that contains both L1 and cI with I (Figure 4 (a)). We use

the notation y′(p) to denote the distance of the point p from the x-axis. There are two cases to

consider.

Case 1: |y′(p0)| ≤ 1−δ. Let vl and vr be the contact points of the left and right probes, respectively.

Since the situation is symmetric about the y′-axis, we bound |x(p1)| = |(x(vl) + x(vr))/2| by

maximizing both x(vl) and x(vr). Using the Pythagorean theorem and Assumption 1, we obtain

x(vl) + x(vr) =
(
dist(vr, cI)2 − y′(p0)2

) 1
2 −

(
dist(vl, cI)2 − y′(p0)2

) 1
2
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Figure 4: The proof of Theorem 4. The shaded annulus has inner radius 1 − δ and outer radius

1 + δ.
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≤
(
(1 + δ)2 − y′(p0)2

) 1
2 −

(
(1− δ)2 − y′(p0)2

) 1
2

=
(1 + δ)2 − y′(p0)2 − ((1− δ)2 − y′(p0)2)

((1 + δ)2 − y′(p0)2)
1
2 + ((1− δ)2 − y′(p0)2)

1
2

=
4δ

((1 + δ)2 − y′(p0)2)
1
2 + ((1− δ)2 − y′(p0)2)

1
2

≤ 4δ

((1 + δ)2 − (1− δ)2)
1
2 + ((1− δ)2 − (1− δ)2)

1
2

=
4δ√
4δ

= 2
√
δ .

Therefore, |(x(vl) + x(vr))/2| ≤
√
δ, implying (29).

Case 2: |y′(p0)| > 1 − δ. In this case, we can define vl and vr as above. Note that |(x(vl) +

x(vr))/2| ≤ max{|x(vl)|, |x(vr)|}. By the Pythagorean theorem, we have

max{|x(vl)|, |x(vr)|} ≤
(
(1 + δ)2 − y′(p0)2

) 1
2

≤
(
(1 + δ)2 − (1− δ)2

) 1
2

= 2
√
δ ,

which is the desired result.

Next we show that

|y(p2)| ≤ 2
√
δ. (30)

There are two cases to consider:

Case 1: The two probes contact I. In this case the same analysis used to show (29) yields the

desired result.

Case 2: The two probes do not contact I. Let L2 be the line defined by x = x(p1), z = z(p1),

i.e., the line along which the second set of probes are taken. Consider the intersection of the plane

containing L2 and cI with I (Figure 4 (b)). The point p2 cannot be contained in the ball of radius

1 − δ centered at cI , or else the probes would have contacted I. Therefore the probes must be to

the left of the left dashed line or to the right of the right dashed line. Note however that p1 must be

contained in the sphere of radius 1 + δ centered at cI . Thus, as in Case 2 of (29), the Pythagorean

theorem provides the desired bound.

Next we will bound dist(cI , c0) by giving bounds on |z(p3)|, |x(p4)| and |y(p5)|. Let L3 be the

line defined by x = x(p2), y = y(p2), i.e., the line along which the third pair of probes is taken.
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From (29) and (30) it follows that dist(L3, cI) ≤
√

8δ (Figure 4 (c)). Note that since δ ≤ 1/30,
√

8δ ≤ 1− δ, and therefore, by Assumption 1 the third pair of probes must contact the object I.

Now consider the intersection of the plane that contains L3 and o+ with the object I (Figure 4 (d)).

We will use the notation y′′(p) to denote the distance of the point p from the z-axis. Define

d3 =
√

8δ, and a computation similar to the one used to obtain (29) (Case 1) yields

|z(p3)| ≤
2δ

((1 + δ)2 − (d3)2)
1
2 + ((1− δ)2 − (d3)2)

1
2

. (31)

By the same argument, define d4 =
(
2
√
δ + z(p3)2

) 1
2 and d5 =

(
z(p3)2 + x(p4)2

) 1
2 , and we obtain

|x(p4)| ≤
2δ

((1 + δ)2 − (d4)2)
1
2 + ((1− δ)2 − (d4)2)

1
2

(32)

|y(p5)| ≤
2δ

((1 + δ)2 − (d5)2)
1
2 + ((1− δ)2 − (d5)2)

1
2

. (33)

Note that z(c0) = z(p3), x(c0) = x(p4), and y(c0) = y(p5), so

dist(cI , c0) =
(
x(p4)2 + y(p5)2 + z(p3)2

) 1
2 . (34)

By expanding (34) and substituting δ ≤ 1/30 in the denominators of (31), (32), and (33), it is

straightforward, but tedious, to verify that dist(cI , c0) ≤ 2δ. (We used Maple.)

4.2 Testing Quality

Once a center or near-center of I is known, we can obtain an approximation of the surface of I

by directing probes at this (near) center. In this section, we first describe a strategy for directing

probes at the (near) center. We then describe the entire quality testing procedure for the case

when the center of I is known in advance. Finally, we describe the procedure for the case when the

center of I is not known in advance. Proving the correctness of our procedures involves bounding

the maximum error in our approximation of the surface.

4.2.1 The Probing Strategy

In this section, we describe a probing strategy for taking Θ(n2) probes directed at a point p, where

n is an even positive integer. The strategy is designed so that for any direction d, there is a probe

in some direction “not too far” from d. Refer to Figure 5 for an illustration of what follows.
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Figure 5: Illustration of (a) spherical coordinates and (b) partitioning the sphere into slices and

pieces.
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Consider the spherical coordinates (φ, ρ) of the unit sphere centered at p, where angles φ and ρ

are in the set [0, 2π). We first divide the sphere into n parallel slices, s0, . . . , sn−1, such that slice

si contains all points where ρ ∈ [iπ/n, (i + 1)π/n]. Each slice si is further subdivided into mi =

d2nmax{sin(iπ/n), sin((i+1)π/n)}e similar pieces, si0, . . . , si(mi−1), such that piece sij contains all

points in si where φ ∈ [jπ/mi, (j + 1)π/mi]. We define the center of a piece sij as the point with

spherical coordinates ((2i+ 1)π/2n, (2j + 1)π/2mi).

Lemma 5. Let a be any point in sij, and let b be the center of sij. Then ∠apb ≤ π/n.

Proof. We begin by observing that the angle ∠apb is the length of the shortest path between a and

b that remains on the surface of the unit sphere centered at p. We will proceed by constructing a

two step path with the desired length.

The first step in our path is from a to (φ(a), ρ(b)). By construction of the slice si, we have

|ρ(a)− ρ(b)| ≤ π/2n. Hence the first step in the path is of length at most π/2n.

Now note that, since n is even, the slice si is the union of circles with radii in the range

[sin(iπ/n), sin((i+ 1)π/n)], and that one of these circles, call it c, contains both (φ(a), ρ(b)) and b.

The radius r(c) of c is at most max{sin(iπ/n, sin(i + 1)π/n)}, therefore the piece sij contains an

arc of c of length at most

2πr(c)/mi ≤
2πmax {sin(iπ/n), sin((i+ 1)π/n)}
d2nmax {sin(iπ/n), sin((i+ 1)π/n)}e

≤ π/n.

Since b is in the center of this arc, the distance from (φ(a), ρ(b)) to b on c is at most π/2n.

Our path from a to b stays on the surface of the unit sphere, and each of the two steps of our

path is of length at most π/2n. This concludes the proof.

Lemma 6.
∑n−1

i=0 mi ∈ Θ(n2), i.e., the partitioning of the sphere described above contains Θ(n2)

pieces.

Proof. That the number of pieces is O(n2) follows from the inequality sin(τ) ≤ 1. That the number

of pieces is Ω(n2) follows from the inequality sin(τ) ≥ 2τ/π, for τ ∈ [0, π/2].

For some center or near center c, our probing strategy involves directing probes along each of

the half lines with an endpoint at c and passing through the center of each piece of the sphere

centered at c. In the remainder of the paper, we will use the notation probe(n, c) to denote the set

of probes obtained when using this strategy.
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4.3 Measuring the Quality of Balls

Given the method described in the previous section of taking probes, the remainder of the procedure

for sampling is similar to the 2-dimensional procedure.

Lemma 7. Let I be an object with center cI , near-center c0, and satisfying Assumptions 1 and 2.

Let S = probe(n, c0), for any n ≥ n′0, where dist(c0, cI) ≤ 2δ. Then for any point p ∈ bd(I), there

exists a point p′ ∈ S such that dist(p, p′) ≤ g(n).

Proof. By Lemma 5, there exists a point p′ ∈ S such that

∠pcIp
′ ≤ π/n . (35)

By orienting the coordinate system so that the plane z = 0 passes through p, p′ and cI , we can

assume, wlog, that

|z(p)− z(p′)| = 0 . (36)

The remainder of the proof is identical to that of Lemma 2.

Theorem 5. There exists a roundness classification procedure that can correctly classify any object

I satisfying Assumptions 1 and 2 using O(1/qual(I)2) probes and O(1/qual(I)4) computation time.

Proof. The proof of correctness and the bound on the number of probes follow by using exactly

the same arguments used in Section 3. The bound on the computation time follows by using the

algorithm of Duncan et al [7] that tests, in O(n2) time for a set of n points in 3-dimensions, if there

is a annulus with inner radius 1− ε and outer radius 1+ ε that contains all the points (this is called

the “referenced roundness decision problem”).

5 Lower Bounds

In this section, we give lower bounds that show that the number of probes used in our testing

procedures is optimal up to a constant factor. These lower bounds hold even if a center of the

object is known in advance. The lower bounds use an adversary argument to show that, if a

procedure uses too few probes then an adversary can orient a bad object so that its defects are

“hidden” from all the probes, making the bad object indistinguishable from a similar good object.

We begin with a lower bound for planar objects.
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Theorem 6. Any roundness classification procedure that is always correct requires, in the worst

case, Ω(|1/qual(I)|) probes to classify a planar object I with center cI = o+ and satisfying Assump-

tions 1 and Assumption 2.

Proof. We prove the theorem by exhibiting two objects I and I ′ with qual(I) = ψ = −qual(I ′), for

any 0 ≤ ψ ≤ ε, such that I and I ′ cannot be distinguished by any algorithm that uses o(|1/qual(I)|)
probes.

The object I is a perfect circle with radius 1− ε+ψ and centered at the origin. The object I ′ is

similar to I, except that it contains a conic recess of depth 4ψ that removes an arc of length 8αψ

from the circle (see Figure 6). Note that qual(I) = ψ and for α = 1/9, δ ≤ 1/30, and ψ ≤ ε ≤ δ,

the assumptions of Section 2 hold for I and I ′.

Furthermore, we claim that qual(I ′) = −ψ. To see this, let p denote the apex of the recess and

observe that the furthest point of I ′ from p is at distance 2−2ε−2Ψ (directly below p in Figure 6).

Therefore, any disk contained in I ′ must have all points within distance 2 − 2ε − 2Ψ of p, i.e., its

radius is at most 1 − ε − Ψ. Thus, any annulus that contains the boundary of I ′ must have inner

radius at most 1− ε−Ψ, so qual(I ′) ≤ Ψ. To see that qual(I ′) ≥ Ψ take an annulus whose center

is 1− ε−Ψ units below p in Figure 6.

Assume by way of contradiction that there exists a roundness classification procedure P that

always accepts I and always rejects I ′ using n < 2π(1 − ε + ψ)/8αψ probes. Let S be the set of

n probes made by P in classifying I. Since |S| = n < 2π(1 − ε + ψ)/8αψ, S contains two probes,

p1 and p2, that occur consecutively on bd(I), such that the length of bd(I) between p1 and p2 is

greater than 8αψ. Note that we could place I ′ with its recess between p1 and p2, and the results

of all the probes made by P, and therefore the actions of P, would be the same for I and I ′. But

this is a contradiction, since we assumed that P always correctly classifies both I and I ′.

We conclude the proof by making the observation that n = 2π(1 − ε + ψ)/8αψ ∈ Ω(1/ψ) =

Ω(|1/qual(I)|) = Ω(|1/qual(I ′)|).

For 3-dimensional objects we require the following lemma.

Lemma 8. Let S be a set of n2 points on the unit sphere. Then, there exists a spherical cap c with

radius 1/n such that c contains no points of S

Proof. Consider the convex hull of S, which has at most 2n2 − 4 faces. The plane passing through

a face defines a spherical cap, and the union of these caps cover the entire sphere, a surface area of
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Figure 6: An example of two planar objects, I and I ′ that cannot be differentiated using

o(1/qual(I)) probes.
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4π. By the pigeonhole principle, some face f must define a cap c with surface area at least 2π/n2.

Furthermore, since f is part of the convex hull, there are no other points of S in this cap. The

surface area of c obeys the inequality sa(c) ≤ 2πr2, where r is the radius of c. Thus, we have the

inequalities

2πr2 ≥ sa(c) ≥ 2π/n2 ,

yielding r ≥ 1/n.

Theorem 7. Any roundness classification procedure that is always correct requires, in the worst

case, Ω(|1/qual(I)2|) probes to classify a object I with center cI = o+ and satisfying Assumptions 1

and 2.

Proof. We proceed in almost the same way as in Theorem 6. The object I is a perfect ball with

radius 1 − ε + ψ. The object I ′ is similar to I, except that it contains a conic recess of depth 4ψ

that removes a circle of diameter 8αψ from the surface of I.

Let S be any set of o(n2) probes directed at I. Then, by Lemma 8, there exists a spherical cap

c on the surface of I with radius ω(ψ) such that c contains no point of S. We use the cap to hide

the conic defect of I ′ so that the procedure cannot distinguish I and I ′.

6 Conclusions

We have studied the problem of determining whether a manufactured disk or ball is sufficiently

round. Our model for disks is less restrictive than that of [12, 17] yet our results are the same. Our

result for balls is the first result in this area. We have also given lower bounds that show that our

procedures are optimal in terms of the number of probes used.

Practitioners may question whether adaptive sampling methods such as those used in our round-

ness classification procedures are of wide spread usefulness, since production facilities are often

arranged as “assembly lines” in which the each step in the assembly process should take a fixed,

and known, amount of time. In this case, our results are still useful, since we can fix the number of

probes used by our procedures. The bounds on the quality of the object can then be used to deter-

mine whether the object is definitely good, definitely bad, or unclear. A conservative production

strategy can then simply reject objects that are bad or unclear.

22



Acknowledgement
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