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Abstract

The detour and spanning ratio of a graph � embedded in 
�� measure how well � ap-
proximates Euclidean space and the complete Euclidean graph, respectively. In this paper we
describe ��������������� time algorithms for computing the detour and spanning ratio of a planar
polygonal path. By generalizing these algorithms, we obtain ������������� ��� -time algorithms for
computing the detour or spanning ratio of planar trees and cycles. Finally, we develop sub-
quadratic algorithms for computing the detour and spanning ratio for paths, cycles, and trees
embedded in 
�! , and show that computing the detour in 
"! is at least as hard as Hopcroft’s
problem.
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1 Introduction

Suppose we are given an embedded connected graph ���������
	�� in 
�� . Specifically, � consists of
points in 
 � and 	 consists of closed straight line segments whose endpoints are in � . For any two
points, � and � in ���
����� , let ���������
��� be the shortest path between � and � along the edges of � .
The detour between � and � in � is defined as

 �!���"�
�#��� � � ���"�
�#�$ �%� $

where
$ �%� $ denotes the Euclidean distance between � and � . The detour of � is defined as the

maximum detour over all pairs of points in ���
��� � , i.e.,

 ���&���('*),+-/.021
 � ���"�
�#�43

The challenge is in computing the detour quickly. Several cases of this generic problem have
been studied in the last few years. One variant results from restricting the points �"�
� in the above
definition to a smaller set. For example, the spanning ratio or stretch factor of � is defined as the
maximum detour over all pairs of vertices of � , i.e.,

5 ���&���6'
)7+8:9;#<84= <?>A@
 �B���"�
�#�43

Such restrictions influence the nature of the problem considerably. In this paper we are studying
both, detour and spanning ratio.

The case of � being a planar polygonal chain is of particular interest. Alt et al. [6] proved that
if the detour of two planar curves is at most C , then their Fr échet distance is at most CEDGF times
their Hausdorff distance. The Fr échet and Hausdorff distances are two commonly used similarity
measures for geometric shapes [5]. Although the Hausdorff distance works well for planar regions,
the Fr échet distance is more suitable to measure the similarity of two curves [5]. However, the
Fr échet distance is much harder to compute [6]. A relationship between the two measures suggests
that one could use the Hausdorff distance when the detours of the two given curves are bounded and
small. This is the only known condition (apart from convexity) under which a linear relationship
between the two measures is known.

Analyzing on-line navigation strategies also often involves estimating the detour of curves [8,
17]. Sometimes the geometric properties of curves allow us to infer upper bounds on their detour [4,
18, 24], but these results do not lead to efficient computation of the detour of the curve.

Related work. Recently, researchers have become interested in computing the detour and span-
ning ratio of embedded graphs. The spanning ratio of a graph � embedded in 
 � can be obtained
by computing the shortest paths between all pairs of vertices of � . Similarly, the detour of � can be
determined by computing the detour between every pair of edges �IHJ�K�MLNHO�QP�HR� and �TSU�K�MLVS��QP�ST� .

1



Although this seems to involve infinitely many pairs of points, this problem is of constant size: For
each pair of points �����
��� in �#H�� �OS , the type of the shortest connecting path �7�!���"�
�#� is determined
by the two endpoints of � H and �TS contained in this path. In the 2-dimensional rectangular parameter
space of all positions of � and � on � H and �TS , classification by type induces at most four regions that
are bounded by a constant number of line segments. For each region, the maximization problem
can be solved in time

� �?FT� , after having computed the shortest paths between all pairs of vertices of
� . This approach, however, requires � ��� S � and � ��� S � time for computing the spanning ratio and
detour, respectively, where � denotes the number of vertices and � is the number of edges. Sur-
prisingly, these are the best known results for these problems for arbitrary crossing-free graphs in

 S . Even if the input graph � is a simple path in 
 S , no subquadratic-time algorithm has previously
been known for computing its detour or spanning ratio.

Narasimhan and Smid [23] study the problem of approximating the spanning ratio of an arbitrary
geometric graph in 
 � . They give a

� �����
	��
��� -time algorithm that computes an �?F������ -approximate
value of the spanning ratio of a path, cycle, or tree embedded in 
�� . More generally, they show that
the problem of approximating the spanning ratio can be reduced to answering

� ����� approximate
shortest-path queries after

� �����
	������ preprocessing.

Ebbers-Baumann et al. [10] have studied the problem of computing the detour of a planar polyg-
onal chain � with � vertices. They have established several geometric properties, the most signif-
icant of which (restated in Lemma 2.1) is that the detour of � is always attained by two mutu-
ally visible points �"�
� , one of which is a vertex of � . Using these properties, they develop an � -
approximation algorithm that runs in

� �Q�����������
	������ time. However, the existence of a subquadratic
exact algorithm has remained elusive.

New results. In this paper we present randomized algorithms with
� �����
	������ expected running

time that compute the exact spanning ratio or detour of a polygonal path with � vertices embedded
in 
 S . These are the first subquadratic-time algorithms for finding the exact spanning ratio or detour,
and they solve open problems posed in at least two papers [10, 23]. Our algorithm for the spanning
ratio is worst-case optimal, as shown in [23], and we suspect that the algorithm for the detour is
also optimal, although we are not aware of a published � ������	������ lower bound. By extending these
algorithms, we present

� ������	�� S ��� expected time randomized algorithms for computing the detour
and spanning ratio of planar cycles and trees. We can also obtain deterministic versions of our
algorithms. They are more complicated and a bit slower—they run in

� �����
	�������� time, for some
constant � .

We also consider the problem of computing the detour and spanning ratio of 3-dimensional
polygonal chains, and show that the first problem can be solved in randomized expected time� ��� H�� �"! #%$ � , for any �'&)( (where the constant of proportionality depends on � ), and the sec-
ond problem can be solved in randomized expected time

� ���+* �", #%$ � , for any �-&.( . Using the same
extensions as in the planar case, this leads to subquadratic time algorithms for 3-dimensional trees
and cycles. We also show that it is unlikely that an /,��� * �", � -time algorithm exists for computing
the detour of 3-dimensional chains, since this problem is at least as hard as Hopcroft’s problem, for
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which a lower bound of � ��� * �", � , in a special model of computation, is given in [12].

Preliminary versions of this work appeared in [2, 20]; the 2-dimensional algorithm described in
[20] is significantly different from the one presented here.

2 Polygonal Chains in the Plane

Let the graph � � �����
	�� be a simple polygonal chain in the plane with � vertices. That is,
�G���Q�����:3:3:3T� ����� H	� is a set of � points in 
 S , and 	 ����
 ���
� HO� ��������� � F��:3:3:3T� �-� F�� . Throughout
the paper, we write � when referring to the set ���*� � � . We extend the definition of the detour from
points to any two subsets � and � of � , by putting

 	� ��� ����� � '
),+� >�� = � >���O9; �
 	� ���%�! :�4�

which we call the � -detour between � and � . We also write
 �� ��� � �  	� ���&���U� . Thus,

 ��� � � 	� ��� � �  	� ��� ��� � and 5 ��� �J�  	� �����4��� . Since � will be fixed throughout this section, we will
omit the subscript � from

 
.

2.1 Overall approach

Since computing the detour is more involved than computing the spanning ratio, we present below
the algorithm for solving the detour problem. Certain modifications and simplifications, noted on
the fly, turn the algorithm into one that computes the spanning ratio.

We first describe an algorithm for the decision problem for the detour: “Given a parameter
C#"�F , determine whether

 ��� �%$ C .” Our algorithm makes crucial use of the following properties
established in [10]. The proof of property (iii) is straightforward. It implies that the maximum
detour is attained by a pair of co-visible points. Property (ii) ensures that one of them can be
assumed to be a vertex. Together, (ii) and (iii) imply property (i).

Lemma 2.1 (Ebbers-Baumann et al. [10]) (i) Let � be the set of vertices in the polygonal chain
� , and let C&" F . There is a pair ���"�
�#�(')� �#� so that

 �����
��� &�C if and only if there is a pair
���+*M�
��* �,'-� � � so that

 ����*M�
��* ��& C and �+* is visible from �.* .
(ii) Assume that the detour attains a local maximum at two points, ���
�/* that are interior points
of edges �#�*� * of � , correspondingly. Then the line segment ��� * forms the same angle with � and
��* , and the detour of ���
�.* does not change as both points move, at the same speed, along their
corresponding edges.

(iii) Let ���
� * be two points on � , and assume that the line segment connecting them contains a
third point, 0 , of � . Then 132�4��  � ���50 �4�  �60 �
� * �!�7"  � ���
� * � . Moreover, if the equality holds, then � �/�50 � �  �60 �
��* � �  � �/�
��* � .
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We observe that a claim analogous to property (i) does not hold for the spanning ratio: while it is
always attained by two vertices, by definition, these vertices need not be co-visible. As an immediate
corollary of Lemma 2.1, we always have

 ��� �!�  ���B�4��� . It thus suffices to describe an algorithm
for the decision problem: Given a parameter C "GF , determine whether

 ���B�4���,$(C . We will then
use a randomized technique by Chan [9] to compute the actual value of

 ��� � �  ���B�4��� .

2.2 Decision algorithm

We orient � from � � to � ��� H . For a given parameter C " F , we describe an algorithm that determines
whether for all pairs ���"�
�#� ' � � � , so that � lies before � , the inequality

 ���"�
�#� $GC holds. By
reversing the orientation of � and repeating the same algorithm once more, we can also determine
whether for all pairs ����� � �,' � �-� so that � lies after � the property

 � ��� �2�,$ C is fulfilled.

For a point �7'#� , we define the weight of � to be

� ���2� � � � ������� �2� ��CN3
Let

�
denote the cone �G� � � S D�� S in 
 , . We map each point � � ���
	I� ����� ' � to the

cone
� - � � D ��� 	 � � � � � ���2�Q� . That is, we translate the apex of

�
(i.e., the origin) to the point
� � ����	I� ���/� � ���2�Q� . If we regard

� - as the graph of a bivariate function, which we also denote by� - , then for any point �#' 
 S , � - � �#� � $ �4� $ D � ���2� holds. Let � � � � - �#� ' �3� . We map a
point �E� � ��	I�
��� � ' � to the point


�E� � ��	I�
��� � � � ���Q� in 
 , . For any subchain � of � , we define
� ��� 
� � � '���� .

Figure 1. Transforming � into a � -dimensional chain.

Lemma 2.2 For any point �#' � and a vertex � ' � that lies before � on � ,
 �����
��� $�C if and

only if

� lies below the cone

� - .
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Proof:

 ���"�
�#�,$ C ��� � � ���"�
�#�$ �4� $ $ C

��� � � �������
�#� � � � ������� �2�$ �4� $ $ C

��� � � ��� � �
�#�
C $ $ �4� $ D � � ��� � � �2�

C
��� � � �#� $ $ �*� $ D � ���2�
��� � � �#� $ � - � ���43

That is,
 ���"�
�#�,$ C if and only if


� lies below the cone
� - . �

Since the cones
� - are erected on the chain


� , the point

� , for any � ' � , always lies below

all the cones erected on vertices appearing after � on � . Therefore, if we denote by � 1 the set of all
vertices � ' � that precede � along � , Lemma 2.2 implies that

 � �T���#�4� 1 �,$ C if and only if

� lies

on or below each of the cones in � , i.e., if and only if

� lies on or below the lower envelope of � .

The minimization diagram of � , the projection of the lower envelope of � onto the
� � -plane, is

the additive-weight Voronoi diagram � 	���������� of � , under the weight function � . For a point �&'
� , let � 	��	�����2� denote the Voronoi cell of � in � 	��
� ����� . � 	��	������� can be computed in

� �����
	������
time [13].

We first test whether � 	��������2� is nonempty for every vertex � ' � . If not, we obtain a pair of
vertices that attain a detour larger than C , namely a vertex � that has an empty Voronoi cell, and a
vertex � whose cone

� 1 passes below

� .

Note that if � 	���� ���2� is empty for some vertex ��' � , then we also know that the spanning
ratio of � is larger than C . Conversely, if the spanning ratio is larger than C , then some Voronoi
cell � 	��
� ��� � must be empty. Thus, the decision procedure for the spanning ratio terminates after
completing this step.

We can therefore assume, for the case of detour, that � 	���� ��� � is nonempty for every vertex
� ' � . To check whether


� lies below the lower envelope of � , we proceed as follows. We
partition � into a family 	 of maximal connected subchains so that each subchain lies within a
single Voronoi cell of � 	��
������� . Since � 	��	����� � is nonempty for every vertex � ' ���O� is the only
vertex of � that lies in � 	��
� ���2� . Therefore every subchain in 	 is either a segment or consists
of two connected segments with � as their common endpoint. For each such segment � ' 	 , if
� lies in � 	��	�����2� , we can determine in

� �?FT� time whether

� lies fully below

� - . If this is true
for all segments, then


� lies below � . The total time spent is
� ����� plus the number of segments.

Unfortunately, the number of segments may be quadratic in the worst case, so we cannot afford to
test them all.

We circumvent the problem of having to test all segments by using the observation (i) from
Lemma 2.1 that it is sufficient to test all � '7� that are visible from � . More precisely, let � denote
the planar subdivision obtained by overlaying � 	���� ��� � with � . Each edge of � is a portion of an
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edge of � or of � 	��
������� . For a vertex � ' � , let � - denote the set of (at most two) faces of �
containing � , and let 	 - denote the set of edges of � that are portions of � and that bound the faces
in � - . The discussion so far implies the following lemma.

Lemma 2.3

� lies below all the cones of � if and only if � � 
� ��� ' 	 - � lies below all the cones of

� .

The algorithm thus proceeds as follows: We compute the Voronoi diagram � 	�� � ��� � in
� ������	������

time [7]. By using the red-blue-merge algorithm of Guibas et al. [15] (see also [11, 25]), we compute
the sets of faces � - for all � ' � , which in turn gives us the sets 	 - for all � ' � . By the
Combination Lemma of Guibas et al. [15], � - ��� � 	 - �%� � ����� , and the set �T	 - � �)' � � can be
computed in

� �����
	��
��� time. Finally, for each edge � ' 	 - , we determine whether

� lies below

� -
in

� �?FT� time. The overall running time of the algorithm is
� �����
	��
��� .

As mentioned in the beginning, we next reverse the orientation of � and repeat the algorithm to
determine whether for each vertex �7' � lying after a point � '-� the inequality

 �����
��� $ C holds.
(Note that this reversal is not required in the decision procedure for the spanning ratio.) Putting
everything together, we obtain the following.

Lemma 2.4 Let � be as polygonal chain with � vertices embedded in 
 S , and let C " F be a
parameter. We can decide in

� �����
	�� ��� time whether
 �����,$ C or 5 ��� � $ C .

Let � � � be a subset of vertices of � , and let � be a subchain of � ; set � � ��� � D ��� � . Assuming
that the weights of all vertices in � have been computed, the decision algorithm described above
can be used to detect in

� ��� ��	��
� � time whether 5 ��� �	�&� $ C . However, unlike
 ��� ��� � , the

detour of the entire chain � ,
 ��� �	� � need not be realized by a co-visible pair of points in � �
� ,

so it is not clear how to detect in
� ��� �
	�� � � time whether

 ��� �	� � $ C . Instead we can make a
weaker claim. Let

 � ��� �	� �J� '
),+�� -�
 1�� �������  �����
��� , where the supremum is taken over all pairs
of points such that the interior of the segment �V� does not intersect the interior of an edge of � .
Obviously,

 � ��� �	� �($  ��� �	� � . Clearly, the above decision algorithm can detect in
� ��� ��	��
� �

time whether
 � ��� �	� � $ C . Lemma 2.1 (iii) implies that if

 ��� �	�&� �  ��� � , then
 � ��� �	� � � ��� �	� � , and in this special case we can detect in

� ��� �
	��
� � time whether
 ��� �	� �%$(C . Hence,

we obtain the following.

Corollary 2.5 Let � be a polygonal chain with � vertices in 
 S . After
� ����� preprocessing, for a

given subset � of vertices of � , a subchain � of � , and a given parameter C " F , we can decide,
in

� ��� �
	�� � � time, whether
 � ��� �	� �,$ C or 5 ��� �	�&� $ C , where � � ��� �OD ��� � . Moreover, if ��� �	� � �  ��� � , then we can also detect in

� ��� ��	��
� � time whether
 ��� �	� � $ C .

2.3 Computing ������� and �������
So far we have shown how to solve the decision problems associated with finding the detour and
spanning ratio of a path. Now we apply a randomized technique of Chan [9], which does not
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affect the asymptotic running time of our decision algorithms, to compute the actual detour
 ����� or

spanning ratio 5 ��� � . Suppose we have precomputed the weights of all vertices in � . Let � be a
subset of vertices of � , and let � be a subchain of � ; set � � ��� � D ��� � . We describe an algorithm
that computes a pair �������7�,' � � � so that

 � ��� �	�&� $  �������7�,$  ��� �	�&� .
If ��� � or ��� � is less than a prespecified constant, then we compute

 ��� �	� � using a naive
approach and report a pair �������7� that attains it. Otherwise, we partition � into two subsets �(H:�	� S
of roughly the same size, and partition � into two subchains � H �	� S of roughly the same size. We
have four subproblems ��� � �	��� � , F $ �*��� $	� , at our hand. Note that

 ��� �	�&� � 132�4 �  ��� HT�	��H4�4�  ��� S#�	��H4�4�  ��� H �	�USO�4�  ��� S#�	� S:�!� � (1) � ��� �	�&� $ 132�4 �  � ��� H �	� H �4�  � ��� S �	� H �4�  � ��� H �	� S �4�  � ��� S �	� S �!� � (2)

where (2) is an easy consequence of the visibility constraints in the definition of
 � .

Following Chan’s approach [9], we process the four subproblems in a random order and main-
tain a pair of points ���I���,� ' � � � . Initially, we set �������7� to be an arbitrary pair of points in
� � � . While processing a subproblem ( � � �	� � ), for F $ �
���-$
� , we first check in

� ��� ��	��
� �
time whether

 � ��� �?�	���T��&  ���I���7� , using Corollary 2.5. If the answer is yes, we solve the subprob-
lem ��� �?�	��� � recursively and update the pair �������7� ; otherwise, we ignore this subproblem. By (1),
(2), and induction hypothesis, the algorithm returns a pair ���I���,� such that

 � ��� �	�&� $  ���I���,� $ ��� �	� � . Moreover, if
 ��� �	� � �  ����� , then

 � ��� �	�&�U�  ��� �	� � , so the algorithm returns the
value of

 ��� �	�&� . Chan’s analysis [9] (cf. proof of Lemma 2.1) shows that the expected running
time of the algorithm on an input of size � is

� ��� �
	��
� � . Hence, by invoking this algorithm on
the pair ��� ����� ,  ��� ��� � �  ��� � can be computed in

� �����
	��
��� expected time.

The case of the spanning ratio is handled in a similar and simpler manner, replacing (1) and (2)
by 5 ��� �	�&��� 1 2�4(� 5 ��� HO�	��HR�4� 5 ��� S��	��HR�4� 5 ��� HT�	�USO�4� 5 ��� S#�	�UST�!� (3)

and applying Chan’s technique using this relationship. Hence, we obtain the following main result
of this section.

Theorem 2.6 The detour or spanning ratio of a polygonal chain � with � vertices embedded in 
 S
can be computed in

� �����
	�� ��� randomized expected time.

Remark. One can obtain an alternative deterministic solution that uses parametric search [22], and
runs in time

� �����
	�� � ��� , for some constant � . However, the resulting algorithm is considerably
more involved on top of being slightly less efficient. We therefore omit its description.

We extend the definition of
 � �
� ����� to two disjoint subchains � and � of � as follows. Let ���

(resp. ��� ) be the set of vertices in � (resp. � ). Define
 � ��� ���&� � 132�4 �  � ��� � ���&�4�  �����������!� .

Using the same argument as in the proof of Lemma 2.1, we can argue that if
 ��� ���&� �  ��� � , then ��� ���&� �  � ��� ���&� . The following corollary, which will be useful in the next section, is an obvious

generalization of the above algorithm.
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Corollary 2.7 Let � and � be two disjoint subsets of a polygonal chain � in 
 S , with a total of �
vertices, preprocessed to report weights in

� �?FT� time. Then 5 ��� ���&� can be computed in
� �����
	������

randomized expected time. We can also compute within the same time a pair ���"�
�#�(' �'� � such
that

 � ��� ���&� $  ���"�
�#�,$  ��� ���&� . Moreover, if
 ��� ���&� �  ��� � , then

 ���"�
�#� �  ��� ���&� .

As to lower bounds, it was shown by Narasimhan and Smid [23] that computing the spanning
ratio of a planar polygonal chain requires � �����
	������ time if self-overlapping chains are allowed as
input. Gr üne [14] has shown that the same lower bound holds if the input is restricted to polygonal
chains that are monotonic, hence simple. It is unknown whether the � �����
	�� ��� lower bound also
holds for computing the detour of a polygonal curve.

3 Planar Cycles and Trees

In this section we show that the tools developed for planar paths can be used for solving the detour
and spanning ratio problems on more complicated graphs. Again, we consider only the problem of
computing the detour, because the resulting algorithms can easily be adapted (and simplified) so as
to compute the spanning ratio.

3.1 Polygonal cycles in the plane

Let us now consider the case in which ���K�����
	�� is a closed (simple) polygonal curve. This case
is more difficult because there are two paths along � between any two points of � . As a result,
the detour of � might occur at a pair of points neither of which is a vertex of � . For example, the
detour in a unit square occurs at the midpoints of two opposite edges; in this case the lengths of the
two paths between the points must be equal.

π(x)

x

yπ(y)

Figure 2. Dotted lines indicate (the only two) pairs of points that attain the maximum detour.

For two points �"�
� ' � , let � 
 �"�
� � denote the subsets of � from � to � in counterclock-
wise direction. We use here the notation � � ���"�
�#� to denote the length of � 
 ���
� � ; thus, in general,

8



� � ���"�
�#� �� � � � ��� �2� and � � ���"�
�#� D(� � � �/� � � is the length � � � of the entire curve � . For a point
� ' � , let �����2� denote the point on � such that � � ���"� �����2�Q�U�K� � � �����2�4� � � � � � � � � ; obviously,
��� �����2�Q� � � . Let � - denote the polygonal chain � 
 �"� �����2� � .
Lemma 3.1 Let � be a point on � , and let � ��� be two portions of � - , then

 	� ��� ����� �  	� 8 ���&��� � .
This follows from the fact that the shortest path along � between any two points �%�! ' � � � is
contained in the polygonal chain � - .

Now the � -detour between two points �"�
� '7� is defined as

 	� ���"�
�#��� 1���� �T� � ���"�
�#�4� � � � ��� �2�!�$ �%� $ �

and the detour of the whole of � is defined as

 ����� � 132�48R= <?>��8O9;�<
 	� ���"�
�#�43

Lemma 3.2 The detour
 ����� of � is attained by a pair of points �"�
� '&� , such that either one of

them is a vertex of � , or �&� ����� � .

Proof: Suppose
 ��� � �  � ���"�
�#� , where neither � nor � is a vertex, and � �� �����2� . Suppose

� � � � �
� � � ���"�
�#��� � &.( . We extend, on either end, � 
 ���
� � by subpaths � 
 � * � � � and � 
 ���
��* � of � ,
each of length � � � , and thereby obtain a polygonal sub-chain � * ��� 
 � * �
� * ��� � of length � � � � � .
Since a shortest path in � between any two points of � * is contained in � * , we have

 ��� ���  	� �����
��� $  ��� * �,$  �����43
Thus, the maximum detour of � * is attained at � and � . By Lemma 2.1 (ii), the detour does not
change as we simultaneously move � toward � * and � toward � * at equal speed, along their edges
in � * . This motion continues until one of the two points reaches a vertex of �3* —which must be a
vertex of � , too—or both endpoints � * �
� * � ����� * � of � * are reached. �

By using a rotating-caliper approach, we can compute 132�4 - � �� 	� ���"� �����2�Q� in
� ����� time, so

we focus on the case in which one of the points attaining the detour is a vertex of � . We present
a different divide-and-conquer algorithm, which will use the algorithm described in Section 2.2
repeatedly. We can preprocess � in

� ����� time, so that, for any two points �"�
�-' � , � � �����
��� can
be computed in

� �?FT� time.

Let 	4HO�
	?S �! THO�! 4S be four points of � appearing in this counterclockwise order along � , so that
the following condition is satisfied.

 TH�� ����	4HR� and  RS � ����	?ST�43 (4)
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���� ����
�

�
� �

� �
�
�

� �
Figure 3. An instance of the recursive problem; 	 ��

� ��� � ����� 	 ��
�� ��� � �������

, 	 ��

� ��� � ����� 	 ��
�� ��� � �������
, � ��� � 
 �"!#�$� , 	 � 

� � � � �%� 	 � 
�� � � � �%�'&

.

We observe that condition (4) implies � � ��	*HO�
	?SO� � � � �  TH:�! RST� and � � ��	 S��! THR��� � � �  RS��
	4HR� . Let
� � � * be the number of edges in � 
  H:�! RS�� and � 
 	4HO�
	?S!� , respectively. Define( ��	*HO�
	?S��! THO�! 4SO���  	� ��� 
 	*HO�
	?S������ 
  THO�! RS��M�

We describe a recursive algorithm that computes a pair of points �����
��� ' � 
  H �! S � � � 
 	 H �
	 S �
such that

 �����
���B� ( ��	4HO�
	?S �! OHO�! RST� if ( ��	*H:�
	?S��! THO�! 4ST�!�  ��� � . If ( ��	4HO�
	 S �! THO�! RST�*)  ����� , it returns
an arbitrary pair of points in � 
  �HO�! RS�� �-� 
 	4HO�
	 S � .

If 1������ � � � * � � F , then we can compute ( ��	AHO�
	 S �! THO�! RST� in
� ��� D � * � time. Otherwise,

suppose, without loss of generality, that � * " � , and let 	 be the middle vertex of � 
 	AH:�
	 S�� (i.e., the
vertex for which each of � 
 	RHO�
	 � , � 
 	R�
	?S!� has � * � � edges), and let  � ����	Q� . It is easily seen that
 '7� 
  H �! S � (by condition (4)). Clearly,( ��	4HO�
	?S �! THO�! RST� � 1 2�4 � ( ��	*HO�
	R�! �! RST�4� ( ��	R�
	 S��! THO�! :�4� ( ��	4HO�
	R�! OHO�! :�4� ( ��	4�
	?S��! �! RS �!�#3
Since � 
 	4HO�
	 � and � 
  T�! AS�� lie in � 
  �
	 � � � 
 ����	Q�4�
	 � , using Corollary 2.7, we can compute in� �Q��� * D � ���
	��V��� * D � �Q� randomized expected time a pair ���"�
�#� ' � 
 	 H �
	 ���)� 
  T�! S � so that ���"�
�#� � ( ��	*H:�
	R�! T�! RS � if ( ��	4HO�
	R�! T�! RST� �  ��� � . We can compute a similar pair in � 
 	4�
	*S����
� 
  THO�! !� within the same time bound. Each of the two + -tuples ��	OH:�
	4�! THT�! :� and ��	R�
	?S��! �! RST� satisfies
condition (4), and we solve the problem recursively for them. Among the pairs computed by the
four subproblems, we return the one with the largest detour. The correctness of the algorithm is
straightforward.

Let � H be the number of edges in � 
  HO�! !� . Then � 
  �! RS�� contains at most � � � H D F edges.
Let ,���� * � � � denote the maximum expected time of computing ( ��	OHO�
	 S �! THO�! RST� , with the relevant
parameters � * and � . Then we obtain the following recurrence:

,���� * � � � $�, - � *
� � � H�. D/, - � *

� � � � � H�D(F0. D � �Q��� * D � ���
	��%��� * D � �Q�4� for � * " � �

with a symmetric inequality for � "'� * , and ,���� * �OFT�B� � ��� * �4��,��?F�� � � � � ��� � . The solution
to the above recurrence is easily seen to be,���� * � � ��� � �Q��� * D � ���
	�� S ��� * D � �Q�43

10



Returning to the problem of computing
 ����� , we choose a vertex P-' � . Let � HJ��� 
 P � ���MP,� �

and � S � � 
 ���MPI�4�QP�� . Then

 ����� � 1 2�4��)132�4	 
 � � � �  	� � � � �,�4�,132�4	 
 � � � �  	� � � � �7�4�  	� ��� HT����ST���
� 1 2�4��  ����H:�4�  ��� S �4� ( �MP � ���MPI�4� ���MP,�4�QPI�!�#3

The last equality follows from the fact that the + -tuple �MP � ���MP,�4� ���MPI�4�QPI� satisfies (4). We can com-
pute

 ��� HA�4�  ��� S � in
� �����
	������ randomized expected time, using Theorem 2.6. Next we invoke

the above algorithm on the + -tuple �MP � ���MP,�4� ���MPI�4�QPI� . We return the maximum of these values.
If ( �MP � ���MP,�4� ���MPI�4�QP,� �  ��� � , then the above recursive algorithm computes ( �MP%� ���MPI�4� ���MP,�4�QPI� .
Hence, the total expected time spent in computing

 ��� � is
� �����
	�� S ��� .

The same method also applies to the computation of the spanning ratio of � , and we thus obtain:

Theorem 3.3 The detour or spanning ratio of a polygonal cycle � with � edges in 
 S can be
computed in

� ������	�� S ��� randomized expected time.

3.2 Planar trees

Let , �6��� �
	�� be a tree embedded in 
 S . With a slight abuse of notation, we will use , to
denote the embedding of the tree as well. We describe a randomized algorithm for computing � , � . Without loss of generality, assume , is rooted at a vertex P � so that if we remove P�� and the
edges incident upon P�� , each component in the resulting forest has at most ��� � vertices; P � can be
computed in linear time; refer to Figure 4. We partition the children of P � into two sets � and � .
Let ,�� (resp., ,�� ), denote the tree induced by P � and all vertices having ancestors in � (resp., � ).
The partition � , � is chosen so that

F+ � $ $ , � $ � $ , � $ $	�+ � 3
Since no descendent of P � is the root of a subtree with size more than ��� � , such a partition can be
found with a linear-time greedy algorithm.

We recursively compute
 � , � � and

 � , � � . Let C � � 132�4 �  � , � �4�  � , � �!� . If
 � , � ��, � � & C � ,

then we need to compute
 � , � ��, � � . The following lemma, whose proof is identical to that of

Lemma 2.1 given in [10], will be useful.

Lemma 3.4 Let , � and , � be two subtrees of , , and let � � (resp. � � ) be the set of vertices in,�� (resp. ,�� ). There exists a pair of points ���"�
�#� ' ���
� � ,������ ���
�.� ,�� � such that
 ���"�
�#� � � , � ��, � � . Moreover, if

 � , � ��, � ���  � , � then � is visible from � with respect to , � � , � .

By Lemma 3.4, it suffices to compute
 ��� � ��, � � and

 ��� � ��, � � , where � � and � � are the sets
of vertices in , � and , � , respectively. As in Section 2, we first describe a decision algorithm that
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Figure 4. Partitioning � into subtrees � � and � � .

determines whether
 � , � ��, � � $ C for some parameter C " C � . We define the weight � ���2� of a

point �#'', to be
� ��� ��� ��� �����QP.�T�

C 3
Let

�
be the cone � � � � S D � S . To determine whether

 ��� � ��, � �7$ C , we map each point
L ���ML 	 �QL � � ' � � to the cone

��� � � D(�ML 	 �QL � � � � �ML �Q� , and map each point P�� �MP 	 �QP � � ' ,��
to the point


P�� �MP 	,�QP �#� � �MP,�Q� . Let

, � � � 
P � P ' , � � be the resulting tree embedded in


 , . Following the same argument as in Lemma 2.2, we can argue that, for any �ML��QPI� ' � � � , � , �ML"�QPI�%$ C if and only if

P lies below the cone

� �
. If

 � , � ��, � � & C7" C � , then
 � , � ��, � ���  � , �

and, by Lemma 3.4, there is a co-visible pair of points in � � � , � whose detour is greater than C . So
we can restrict our attention to co-visible pairs in ��� �#,�� . Using this observation and Lemma 3.4,
we can determine whether

 ��� � ��, � � $ C , in
� �����
	������ time, by the same approach as in Section 2.

Similarly, we can determine whether
 �����B��,�� � $ C in

� ������	������ time.

Finally, returning to the problem of computing
 � , � , we first use the decision algorithm to

determine whether
 � , � ��, � � & C � . If the answer is no, we return C � and a pair of points, both from, � or both from , � , realizing this detour. Otherwise,

 � , � �  � , � ��, � � . Since each of , � ��, �
can be decomposed into two subtrees, each of size at most � � + the size of , � or , � , respectively,
we can plug this decision algorithm into Chan’s technique, with the same twist as in Section 2, to
obtain an algorithm that computes

 ���
� ��,�� � in
� �����
	�� ��� randomized expected time.

Putting everything together, the expected running time of the above algorithm is given by the
recurrence ,������ � ,���� ��� D FT�ND ,����7�ND � �����
	������4�
with ��� + $��&$ � ��� + . The recurrence solves to

� �����
	�� S ��� . (As in the case of chains, we need
one preliminary global pass that computes the distances along , from P � to each of the vertices.)
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The algorithm for computing the spanning ratio proceeds in a similar but simpler manner, as in
the case of chains, and has the same randomized expected running time bound. We thus conclude
the following.

Theorem 3.5 The detour or spanning ratio of a planar tree with � vertices can be computed in� ������	�� S ��� randomized expected time.

4 Polygonal Chains, Cycles, and Trees in
���

Let � be a polygonal chain with � vertices embedded in 
 , . We describe subquadratic algorithms
for computing the detour and spanning ratio of � , and a reduction showing that the problem of
computing the detour is at least as hard as Hopcroft’s problem.

4.1 Computing the spanning ratio

We begin with the simpler problem of computing the spanning ratio 5 ����� of � . We solve this
problem by adapting the technique for computing spanning ratios in the plane, as described in
Section 2. Specifically, consider the decision problem, where we want to determine whether 5 ��� � $
C . We take the set � of vertices of � , and map each �#' � to the point


� �����"� � ��� �Q�,'���* , where� ���2��� � � ����� � �2� ��C and ��� is the starting point of � . We take the cone

��� �
* �

� � S H D � SS D � S, �
and define, for each �7' � , the cone

� - to be

� D � . As in the planar case, 5 ��� � $ C if and only if

each point

� , for �#' � , lies on the lower envelope of � � � � 1 ��� ' � � .

Let � � ��� HO���/S ����,T� be a point in � , and let � ���2�!��� * . A point � � ����H:���OS���� ,���� * � lies below
the cone � - � � * �)� * �

� � � H�� �7H4� S D � � S �)�/ST� S D(� � , �)��,T� S
if and only if the point �

���#� � ��� H ��� S ��� , ��� * ���
S
* � � SH � � SS � � S, �

in 

	 lies in the halfspace� - � � 	 $ � �.� H � H�� �.��S � S � �.��, � ,�D �.� *
�
* D ��� S H D � SS D � S, � � S* �43

Therefore a point � ' 
 * lies in the lower envelope of � if and only if
�
��� � lies in the convex polyhe-

dron � - ��� � - . Hence, the problem of determining whether 5 ��� � $(C reduces to locating � points
in a 
 -dimensional convex polyhedron defined by the intersection of � halfspaces. This problem
can be solved in

� ��� * �", #%$ � time using a data structure for halfspace-emptiness queries [1]. Using
Chan’s technique, as in the planar case, we can compute 5 ����� itself within the same asymptotic
time bound. Finally, as for the planar case, the algorithm can be extended to compute the spanning
ratio of a polygonal cycle or tree embedded in 
 , . That is, we have shown:
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Theorem 4.1 The spanning ratio of a polygonal chain, cycle, or tree with � vertices embedded in

 , can be computed in randomized expected time

� ��� * �", #%$ � , for any ��&.( .

4.2 Computing the detour

We next consider the problem of computing the detour
 ��� � of � . Here the algorithm becomes

considerably more involved and less efficient, albeit still subquadratic. As in some of the preceding
algorithms, we use a divide-and-conquer approach to compute

 ����� . That is, we partition � into two
connected portions, ��H , � S , each consisting of ��� � edges, recursively compute

 ���BHA� and
 ��� S � , and

then compute explicitly the detour between � H and � S , as follows. Let / be the common endpoint
of � H and � S . For any point

�
in � , let � � � � �(� � � /�� � � be the arc length of � (that is, either of �!H

or of � S ) between / and
�

. For any
� '7��HO� � '-� S , we have

 	� � � � �7���
� � � �ND � � �7�$ � � $ 3

For a pair of edges � '-� H and � * '#��S , define, as above,
 � �#�*� * ���  	� � �#�*� * � � 132�4	 ��� 
 	�� ��� �

 	� � � � � * � �

as in Section 2, we drop the subscript � in the function
 
. Then

 ��� ��� 132�4 �  ����H:�4�  ��� S �4� 1 2�4�*� � � 
 � � � � �  � ���*� * ��� 3
Let � ��� denote the set of edges of ��H and � S , respectively. It suffices to compute the third term,

 ��� ��� � � 132�4
� � � 
 � � �  ���%�! :�43

Unlike the planar case, the detour of � is not necessarily attained at a vertex of � (for example, there
� might contain two long edges that orthogonally pass near each other at a very small distance,
and the detour could then be obtained between the two points that realize the distance between
the segments.) This makes the 3-dimensional algorithm considerably more complicated, and less
efficient, than its 2-dimensional counterpart. Consider first the decision problem, in which we wish
to determine whether

 ���&��� �,$ C , for some given C-" F .
For an edge � '&� �7� , let � # denote the ray that emanates from the endpoint, � # , of � closer

to / along � and that contains � ; see Figure 5. Similarly, let � � denote the ray emanating from the
point � � of � farther from / and containing � . We extend the definition of � �
��� for points on the
rays � # �*� � even though these points might not lie on � . For a point

� ' � # (resp.,
� ' � � ), we

define � � � �J� � � � # ��D $ � # � $ (resp., � � � �J� � � � � ��� $ � � � $ ). Note that these definitions of �
are consistent with the earlier definition, in the sense that all of them assume the same value for the
points on � . We can now define

 �
� ����� for points lying on the rays supporting the edges of �JH and
� S . Namely, for a given pair �%�! , where �%�! are either edges of � or the rays supporting the edges, ��� �! :� � 132�4 	 � � 
 � � � � � � � �"D � � �,�Q� � $ � � $ .
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Figure 5. Decomposition of � and rays � � � � � .

Lemma 4.2 Let � '7� and  '7� be a pair of edges. The following four conditions are equivalent:

(i)
 ��� �! :� & C ;

(ii)
 ��� # �! :��& C and

 ��� � �! :��& C ;

(iii)
 ���%�! # ��& C and

 ���%�! � ��& C ;

(iv)
 ��� # �! # � & C ,

 ��� # �! � ��& C ,
 ��� � �! # ��& C , and

 ��� � �! � � & C .

Proof: Let � � (resp.,  � ) be the line supporting the edge � (resp.,  ) oriented in the direction of the
ray � # (resp.,  # ). Parametrize the lines � � and  � by the signed distances along these lines from
appropriate respective initial points � '#� ��� '# , and denote these distances by 	 and � , respectively.
Regard � � �3 � as the parametric 	�� -plane. Let L"�QP denote the positively oriented unit vectors along
� � and  � , respectively. For

� � �JD 	 L ' � � and � � � D��OP7'  � , the condition
 � � � �7��& C can

be written as:  � � � �7� �
� ��� �ND � ���,�ND 	 D	�$ ��� � �,�ND 	 L �
�OP $ & CN�

or
C $ ��� � �,�ND 	 L �
�OP $ � � ��� ��� � ���7�+� 	 �
� ).(I3 (5)

The left-hand side of (5) is a convex function on the � 	 -parametric plane, being the difference of
a convex function and a linear function. The lemma is then an easy consequence of this convexity
property. Indeed (i) implies (ii)–(iv) because � � � #�� � � and  �  #��  � . For the converse
implications, consider the implication (ii) � (i). Suppose that

 � � # � � # ��&(C for
� # '7� # � � # '# 

and
 � � � � � � ��& C for

� � '#� � � � � '7 . By construction,
� # � �
� � ���� . Moreover, by convexity

of (5),
 � � * � � * � & C for all

� * ' � # � � � � * ' � # � � , thereby implying that
 ��� �! :� & C . Similar

arguments imply that (iii) or (iv) implies (i). �

Using Lemma 4.2(iv) and the standard random-sampling technique [16], we construct a four-level
data structure to decide whether

 ��� ��� ��& C . The first level constructs a complete bipartite decom-
position for the set �/���%�! :� ' � � � �  ��� # �! # � & C � . The second level processes each bipartite
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clique �(�+�7� � in the decomposition, and represents the set �/��� �! :� '7� �+�7� � �  ��� � �! # ��&(C � as
the union of complete bipartite subgraphs. The third level then refines further this decomposition, to
collect pairs that also satisfy

 ��� # �! � ��& C , and the fourth level finally tests whether
 ��� � �! � ��& C

for any of the surviving pairs.

We compute the first-level decomposition of �/���%�! :� ' � � � �  ��� # �! # � &KC � , as follows.
(Similar procedures are then applied at each of the three other levels of the data structure.) For each
edge �)' � , we map the ray � # to a point � ��� # � � ��� H �:3:3:3 ��� � � in � � , where ��� H ��� S ��� , � are the
coordinates of the endpoint � # of � # , ��� * ��� 	 � is an appropriate parametrization of the orientation
of � # , and � � � � � � # � . A similar parametrization will be used for the rays � � . Next, we map each
edge  ' � to a surface � �  # � that represents the locus of all rays � # for which

 ��� # �! # � � C .
Since

 
increases as the parameter � � increases, and each 
 -tuple ����HO�:3:3:3O��� 	 � defines a unique ray

in 
 , , it follows that � �  # � is the graph of a totally defined 
 -variate function and
 ��� # �! # ��&�C

(resp.,
 ��� # �! # � )(C ) if and only if � ��� # � lies above (resp., below) � �  # � . We can thus regard the

problem at hand as that of collecting, in compact form, all pairs ���%��� # �4��� �  # �Q� for which �%��� # �
lies above � �  # � . Abusing the notation slightly, set � � �#� � and � �-��� � .

We fix a sufficiently large constant 0 , draw a random sample � of ��0 �
	�� 0 edges of � , where
� is a sufficiently large constant independent of 0 , and compute the vertical decomposition �

(
of

the arrangement � of the surfaces ��� �  # � �+ ' � � . It is easily verified that these surfaces are all
semi-algebraic of constant description complexity. Hence, we can apply the result of Koltun [19],
to conclude that �

(
has

� �60�� #%$ � cells, for any � & ( . For each cell � ' �
(
, let �
	 � � � ' � �

� � � # � '�� � , let � 	 � � be the set of edges  for which the surface � �  # � crosses � , and let � �	 � �
be the set of edges  for which the surface � �  # � lies completely below � . The sets � 	 ��� 	 can be
computed in

� ���KD ��� time under an appropriate model of computation, in which we assume that
the roots of a constant degree polynomial can be computed in

� �?FT� time; see [25].

Set � 	 � � � 	 � and � 	 � � � 	 � . Obviously, � 	 � 	 � � and � � �	 � $ � . By the theory of
random sampling [16, 25] (where we use the fact that the VC-dimension of the underlying range
space is finite), � 	 $ � � 0 for all � , with probability at least F � � , where � � �2�60 � is a constant
that can be made arbitrarily small by choosing the value of 0 sufficiently large. If � 	 & � � 0 for
a cell, we choose another random sample and restart the above step. Since the probability of this
event is a sufficiently small constant, it does not affect the asymptotic expected running time of the
algorithm and we can ignore this step. Moreover, by splitting the cells into subcells, if needed, we
may also assume that � 	 $ ��� 0�� for each � ; the number of cells remains

� �60�� #%$ � . By construction, ��� # �! # � & C for any pair � ' �
	 and  ' � �	 . We use the second-level data structure, sketched
below, to determine whether

 ��� 	 ��� �	 � & C . If � 	 or � 	 is less than a prespecified constant,
then we use a naive procedure to determine whether

 ��� 	 ��� 	 � & C . Otherwise, we recursively
determine (using the first-level data structure) whether

 ��� 	 ��� 	 � & C . For an edge � '7� 	 and for
an edge  '7� such that � �  # � lies above � ,

 ��� # �! # � ) C , so there is no need to compare � 	 with
such edges.

To exploit the symmetry in the condition
 ��� # �! # ��& C between � and � , we next switch the

roles of � 	 and � 	 , by mapping the rays  # , for  #'�� 	 , to points in � � , and the rays � # , for
� ' � 	 , to surfaces � ��� # � , as above. We take a random sample of ��0 �
	�� 0 of these surfaces, and
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construct the vertical decomposition of their arrangement, as above. Repeating this for each cell
� , we end up with

� �60 H�� #%$ � subproblems, each involving at most ��� 0 ! segments of � and at most
� � 0 ! segments of � , which we proceed to solve recursively, using the first-level data structure. In
addition, we have subproblems involving pairs of sets of the form � 	 , � �	 , or � 	 � , � �	 � , which we
pass to the second level of the structure.

The second-level structure is constructed in an analogous manner, with the only difference that
we use the rays � � instead of the rays � # . Thus, starting with a pair of subsets � 	 , � 	 , we obtain a
decomposition into

� �60 H�� #%$ � subproblems, each involving at most � � 	 � � 0 ! segments of � 	 and at
most � � 	 � � 0 ! segments of � 	 , which we process recursively using the second-level structure, and a
collection of other subproblems that we pass to the third level. The third level is again constructed
in complete analogy, using the rays � # for the segments in � and the rays  � for the segments
in � . The fourth-level structure is constructed for the rays � � �! � , and is a little simpler than the
preceding levels, in the sense that whenever we detect a cell that lies fully below a surface ( � ��� � �
or � �  � � ), we stop and report that

 ���&��� � & C . Otherwise, we continue the processing recursively,
as in the preceding levels.

For � � F��:3:3:3 ��+ and for integers � � �.& ( , let , � � � ��� � � � denote the maximum running time
of the � th level data structure on a set of � edges of �BH and a set of � edges of � S . Then, � * � ��� � � � � � �60 H�� #%$ � � , � * � � �

0 ! �
�
0 !�� D � ���KD ���4�

and , � � � ��� � � ��� � �60 H�� #%$ � ����, � � � � �
0 ! �

�
0 ! � D , � ��#�H � ��� � � ��� D � ���KD ���4�

for � $ � . The solutions to the above recurrences are easily seen to be , � � � ��� � � ��� � �Q��� ��� � �"! #%$ � ,
for any �-&.( and for each � .

Hence, we obtain the following.

Lemma 4.3 Given a polygonal chain in 
 , , two disjoint subchains � and � of � with a total of
� vertices, and a parameter C " F , we can determine, in

� ��� H�� �"! #%$ � randomized expected time,
whether

 ��� ����� & C .

As in the planar case, we can use the randomized technique of Chan [9] to compute the actual ���&��� � within the same asymptotic expected running time bound. The algorithm extends to polyg-
onal cycles and trees in 
 , .

In conclusion, we obtain the following.

Theorem 4.4 The detour of a polygonal chain, cycle, or tree with � edges in 
 , can be computed
in randomized expected time

� ��� H�� �"! #%$ � , for any � &.( .

Remark. We remark that it is also possible to use the parametric search technique [22], as
in [3], to obtain a deterministic alternative solution. This however (a) results in a considerably
more involved algorithm, and (b) requires us to derandomize the decision algorithm, i.e., its vertical
decomposition step. This too is doable, but is considerably more complicated.
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4.3 Lower bound

Finally, we show that computing the detour of a 3-dimensional path is as hard as Hopcroft’s problem:
Given a set � � ��� H �:3:3:3O��� � � of � lines in � S and a set � � �Q� H �:3:3:3O� � � � of � points in � S ,
determine whether any line of � contains any point of � . There is an abundance of evidence that
suggests that Hopcroft’s problem has an � ��� * �", � lower bound [12]. The best known upper bound
in any reasonable model of computation is

� ��� * �", ��� �����
	 # � � � [21].

To reduce an instance of Hopcroft’s problem to that of computing the detour of a 3-dimensional
path, we will first build a 3-dimensional path � that is self-intersecting, i.e., has infinite detour, if
and only if the answer to Hopcroft’s problem is affirmative. Then we show how the proof can be
modified to cover the case where we know a priori that the polygonal chains we are given as input
do not self-intersect. The construction uses techniques presented in Erickson [12].

Without loss of generality, we may assume that none of the given lines is � -vertical. We be-
gin by sorting the lines in � in increasing order of their slopes and the points in � in increasing
lexicographic order. Let �
��H:�:3:3:3T���	��� be the resulting sequence of lines, and let ��� HO�:3:3:3T� �+��� be the
resulting sequence of points. We compute a bounding rectangle � so that each line of � intersects
the two � -vertical edges of � , and all the points of � , as well as all the intersection points of lines
in � , lie inside � . These steps require

� �����
	�� ��� time.

By construction, the ordering of � along the left edge of � in � � -direction is � H �:3:3:3O��� � , and
its ordering along the right edge of � is � �J3:3:3O��� H . For each F $ �,$'� , we lift the segment � � � �
orthogonally to the plane � � � , to obtain a line segment � � . Next, we transform each input point
� � '-� to a line segment � � that is parallel to the � -axis, whose endpoints are ������� ( � and ��� ��� � D FT� ;
see Figure 6.

� � �
��� � � - ���� - �

- � - � �
�
� �� �

� �

� �

� �� �� �

(i) (ii)

Figure 6. Reducing Hopcrofts’s problem to computing the detour of a 3-dimensional path. (i) An instance of Hopcroft’s
problem. (ii) Construction of the polygonal chain � .

This gives us a set of line segments so that the answer to Hopcroft’s problem for the original
lines and points is “yes” if and only if some segment � � intersects some segment � � . It remains
to construct a polygonal chain that contains all these segments without introducing any additional
crossings. To do this, we first form a chain containing all segments ��� . It starts at the left endpoint
of ��H . The right endpoint of � H is connected to the right endpoint of � S . This connection consists
of two segments; the first one is parallel to the � -axis and leads from the plane � � F to the plane
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���
� , and the second one, contained in ��� � , is parallel to the � -axis. Next, � S is traversed, and its
left endpoint is connected to the left endpoint of � , in an analogous way. We continue until the last
endpoint of ��� is reached. Clearly, the resulting chain is simple.

Next, we connect the segments � HO�:3:3:34� � into a simple polygonal chain by connecting the upper
endpoints of � � to � ��#�H if � is odd and the lower endpoints if � is even. This chain is clearly not
self-intersecting since its

� � -projection is monotone in the lexicographic order. Finally, we connect
the left endpoint of � H in ��� F to the free endpoint of � H in ��� ( by two additional segments. The
resulting concatenation of the two chains has the desired property. See Figure 6.

One might state the problem of computing the detour of a � -dimensional chain in such a way
that the input chains are known apriori not to have self-intersections. The above lower bound proof
can be adapted to this situation in the following way. First, we move each of the original lines � �
a distance of � to the right, where � is a formal infinitesimal, i. e., � is positive, but smaller than
any real number. Then we construct the polygonal chain in the same way as before. It will always
be non-intersecting, but its detour is bigger than � ��� , for some appropriate constant � & ( , if and
only if there was a point-line incidence in the original instance of Hopcroft’s problem. Reductions
using infinitesimals were formally shown to be correct, in the algebraic decision tree model, by
Erickson [12].

In conclusion, we have shown:

Theorem 4.5 An algorithm with running time � ����� for computing the detour of 3-dimensional
polygonal chains with � vertices implies an

� �����
	�����D � �����Q� time algorithm for Hopcroft’s prob-
lem.

Remark. It is interesting to note that we have almost matched this lower bound with the algorithm
in Theorem 4.1 for computing the spanning ratio of � . We do not know whether the preceding
construction can be extended to yield a lower bound argument for computing spanning ratios.

5 Conclusions

We have given
� ������	������ -time randomized algorithms for computing the detour and spanning ratio

of planar polygonal chains. These algorithms lead to an
� �����
	�� S ��� -time algorithms for computing

the detour and spanning ratio of planar trees and cycles. In three dimensions, we have given sub-
quadratic algorithms for computing the detour and spanning ratio of polygonal chains, cycles, and
trees. Previously, no subquadratic-time (exact) algorithms were known for any of these problems.

There are many open problems in this new area. The most obvious is: Which other classes
of graphs admit subquadratic-time algorithms for computing their detour or spanning ratio? Also,
it remains open to prove an �&�����
	������ lower bound for computing the detour of a simple planar
polygonal chain of � vertices; at present, such a bound is only known for computing the spanning
ratio. Finally, it seems likely that the algorithm for computing the detour in 
 , can be improved.

19
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[14] A. Gr üne. Umwege in Polygonen. Master’s thesis, Institut f ür Informatik I, Universit ät Bonn, 2002.
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[21] J. Matoušek. Range searching with efficient hierarchical cuttings. Discrete Comput. Geom., 10(2):157–
182, 1993.

[22] N. Megiddo. Applying parallel computation algorithms in the design of serial algorithms. J. ACM,
30(4):852–865, 1983.

[23] G. Narasimhan and M. Smid. Approximating the stretch factor of Euclidean graphs. SIAM J. Comput.,
30(3):978–989, 2000.

[24] G. Rote. Curves with increasing chords. Math. Proc. Camb. Phil. Soc., 115:1–12, 1994.

[25] M. Sharir and P. K. Agarwal. Davenport-Schinzel Sequences and Their Geometric Applications. Cam-
bridge University Press, New York, 1995.

21


