Online Routing in Geometric Graphs

By
Patrick Ryan Morin

A thesis submitted to
the Faculty of Graduate Studies and Research
in partial fulfilment of
the requirements for the degree of

Doctor of Philosophy

Ottawa-Carleton Institute for Computer Science
School of Computer Science
Carleton University

Ottawa, Ontario

January 2001

© Copyright
2001, Patrick Ryan Morin

The undersigned hereby recommend to
the Faculty of Graduate Studies and Research

acceptance of the thesis,

Online Routing in Geometric Graphs
submitted by

Patrick Ryan Morin

Dr. Frank Dehne
(Director, School of Computer Science)

Dr. Prosenjit Bose
(Thesis Supervisor)

Dr. Jorg-Ridiger Sack
(Thesis Supervisor)

Dr. Binay Bhattacharya
(External Examiner)

Carleton University
January 2001

i

Abstract

This thesis considers the problem of finding a path from a source to a destination in
a graph in which only local information is available. This type of routing problem
occurs regularly in robotics, parallel and distributed computing, mobile networks,
and everyday life. In particular, the research focuses on the case where the graph is
geometric (nodes of the graph have locations in space) and planar (edges of the graph
do not cross).

The results in this thesis fall into four categories:

1. natural and intuitive algorithms that work on some well known and structured

geometric graphs,

2. algorithms for special classes of graphs that find paths approximating shortest

paths,
3. algorithms for arbitrary planar graphs,

4. algorithms for embedding graphs nicely so that simple algorithms can be used

to find paths between vertices, and

5. simulation results that help to determine which routing algorithms work best

in different settings.

In studying these problems we draw on a wide range of techniques from computer
science and mathematics, improve some previous results, and report a number of open

problems and directions for continuing research.

iii

Acknowledgements

I would like to thank Binay Bhattacharya, Jit Bose, David Bremner, Jason Gao,
Silvia Go6tz, Danny Krizanc, Anil Maheshwari, NSERC, Jorg Sack, Ivan Stojmenovic,
Jorge Urrutia, and Tanya Whitehead for having contributed, in one way or another,

to the completion of this thesis.

v

Contents

Abstract iii
Acknowledgements iv
Guide to Notation xii
1 Introduction 1
1.1 The Model and Terminology 2
1.2 Motivation 3
1.2.1 Walking in Strange Cities 3

1.2.2 Fault-Prone Meshes)

1.2.3 Mobile ad hoc Wireless Networks 6

1.3 Bibliographic Notes 7

2 Summary of the Thesis 8
2.1 Chapter 1 e 8
2.2 Chapter3 e 9
2.3 Chapter4d e 9
2.4 Chapterd e 10
2.5 Chapter 6 e 11
2.6 Chapter 7 e 12
2.7 Summaryo 12

3 Simple Routing Algorithms

3.1 Preliminaries
3.2 Classification of Routing Algorithms
3.2.1 Deterministic Memoryless Algorithms
3.2.2 k-Bit Randomized Memoryless Algorithms
3.2.3 k Memory Algorithms 0oL
3.3 Routing on Triangulations Lo
3.3.1 The GrREEDY Algorithm
3.3.2 The compass Algorithm
3.3.3 The GREEDY-COMPASS Algorithm
3.4 Routing on Convex Subdivisions
3.4.1 An Impossibility Result
3.4.2 The RANDOM-COMPASS Algorithm
3.4.3 The RIGHT-HAND Algorithm
3.5 Summary and Open Problems
3.6 Bibliographic Notes Lo o000

Competitive Algorithms for Triangulations
4.1 EBuclidean Length o000
4.1.1 Negative Results o000
4.1.2 A Competitive Algorithm for Delaunay Triangulations
4.1.3 Layered Digraphs and Hamiltonian Polygons
4.1.4 A Competitive Algorithm for Triangulations with the Diamond
Property
4.1.5 A Lower Bound for Arbitrary Triangulations
4.2 Link Length o
4.3 Summary and Open Problems
4.4 Bibliographic Notes L 0 L.

Routing in Planar Geometric Graphs
5.1 Routing, Broadcasting and Geocasting
5.2 The Face Tree

vi

7

5.2.1 The <, Order and Entry Edges

5.2.2 Defining the Face Tree
5.3 Algorithms Using the Face Tree
5.3.1 Point-to-point Routingo
5.3.2 Broadcastingo oo 0o
5.3.3 Geocasting. Lo
5.4 Summary and Open Problems
5.5 Bibliographic Notes o o000

Geometric Network Design

6.1 Graph Theory Review
6.2 The Ultimate Combination?
6.3 Embeddings for Simple Routing Algorithms
6.3.1 Negative Results,
6.3.2 Embeddings for cOMPASS oL
6.3.3 The LEFT-COMPASS Algorithm
6.4 Summary and Open Problems
6.5 Bibliographic Notes L L0000

Experimental Results

7.1 Delaunay Triangulations
7.2 Graham Triangulations oL oL oL
7.3 Meshes with Faults 00000
7.4 Unit Disk Graphs o
7.5 Summary and Open Problems
7.6 Bibliographic Notes o o000
Summary and Conclusions

8.1 Summary of Contributions,
8.2 Open Problems 0o
83 Final Note

vii

71
72
72
76
76
7
79
84
36

88
89
92
94
95
99
101

Bibliography 107

viil

List of Figures

1.1
1.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15

4.1
4.2
4.3

4.4

A map of Toronto. oo 4
A 10 x 10 mesh with and without faults. 5
A Voronoi diagram and its dual Delaunay triangulation. 15
Triangulations that defeat the greedy routing algorithm. 19
The proof of Theorem 1. 20
A triangulation that defeats the COMPASS routing algorithm. 21
The proof of Lemma 3. 22
The proof of Lemma 4. 23
Definition of cw(v) and cew(v).o 24
The proof of Theorem 3. 25
All vertices on the convex hull must have the same color. 27
A cannot visit z after vy, L 27
A is defeated by this subdivision. 28
Traversal of the face f using the “right-hand rule.” 30
The planar geometric graphs T'and 7", 30
The proof of Theorem 6. 31
The limits of memoryless deterministic algorithms (shaded) 32
The proof of Theorem 7. 38
A path obtained by the voroNoI algorithm. 40
The VORONOI algorithm is not c-competitive for all Delaunay triangu-

lations. e 41
The proof of Lemma 7. 43

X

4.5
4.6

4.7

4.8

5.1
5.2
9.3
0.4
9.5
2.6
2.7

6.1
6.2
6.3
6.4
6.5
6.6
6.7

7.1

7.2

7.3
7.4

7.5
7.6

Alayered graph
Examples of (a) a triangulated simple polygon and (b) the correspond-
ing layered graph. oo oo
(a) The triangulation T with the path found by A indicated. (b) The

resulting triangulation 7" with the “almost-vertical” path shown in bold.

The point sets (a) Sigo and (b) Sig5 along with their Delaunay trian-

gulations.o Lo

How the 4 key values are used to show that (u,v) <, (w,z).
Example of entry(f,p).o
The proof of Lemma 11.
A planar geometric graph and its corresponding face tree.
The path taken by a packet in the FACE-ROUTE algorithm.
The path taken by a packet in the FACE-BROADCAST algorithm. . . .
The path taken by a packet in the FACE-GEOCAST algorithm.

The definitions of (a) ¢, and (b) €a.
A graph that defeats COMPASS, GREEDY, and GREEDY-COMPASS.

The operation of the COMPASS-EMBED algorithm.
The graphs G and G°. oL oL
The proof of Lemma 21.
The operation of the LEFT-COMPASS-EMBED algorithm.

The proof of Lemma 22.

Average Euclidean dilation of routing algorithms on Delaunay trian-

gulations. L

Average Link dilation of routing algorithms on Delaunay triangulations.

Success rates of routing algorithms on Graham triangulations.
Average Euclidean dilation of routing algorithms on Graham triangu-
lations. L
Average Link dilation of routing algorithms on Graham triangulations.

Success rates of routing algorithms on faulty meshes.

46

49

20

o8
o8
39
60
62
64
67

73
7
78
80
81
82
84

90
90
92

93
93

7.7 Average dilation of routing algorithms on faulty meshes. 96

7.8 Average dilation of FACE-ROUTE on faulty meshes. 96
7.9 Success rates of routing algorithms on unit graphs. 97
7.10 Average Euclidean dilation of routing algorithms on unit graphs. . . . 98
7.11 Average link dilation of routing algorithms on unit graphs. 98
7.12 Average Euclidean dilation of FACE-ROUTE on unit graphs. 100
7.13 Average link dilation of FACE-ROUTE on unit graphs. 100

7.14 Average link dilation of GFG algorithm, proposed by Bose et al. [12]. 102

xi

Guide to Notation

Here are some of the notations that are used frequently in this thesis, in no particular

order.
t the vertex being routed to (the target vertex)
s the vertex at which routing begins (the source vertex)
dist(a, b) the Euclidean distance between points a and b
dist(e, a) the radius of the smallest circle centered at point a that intersects
segment e.
CZV a,b,c the counterclockwise angle formed by points a, b, and ¢
CZ a,b,c the clockwise angle formed by points a, b, and ¢
Za,b,c min{cz a, b, c, CZV a, b, c}
E[X] the expected value of the random variable X
G a geometric graph
T a triangulation
Vv a set of vertices (points)
E a set of edges (segments)
F a set of faces (polygons)
MST(S) the minimum spanning tree of the point set S
GG(S) the Gabriel graph of the point set S
VD(S) the Voronoi diagram of the point set S
DT(S) the Delaunay triangulation of the point set S
|P| the number of edges in the path P
length(P) the sum of the lengths of edges in the path P
=p defined in Section 5.2.1 beginning on page 57

xii

FT(G,p)

A(u,v)
o(u, v)
1 (a,b)

P(G)
S(A,G)
W(A,G,s,t)
SEP(G, s, 1)
SLP(G, s, t)
SR(A, G)

AED(A, G)
ALD(A, G)

the face tree of G with respect to the point p

the zth harmonic number Y7 | 1/i

the triangle to the left of the edge (u,v)

the face to the left of edge (u,v)

the perpendicular bisector of a and b

the boundary of the point set X

the set of all pairs of vertices (u,v) in G such that u is in the same
conntected component of G as v

the set of all pairs of vertices (s,t) in G such that routing algorithm
A succeeds in routing from s to ¢

the walk taken by routing algorithm A when routing from s to ¢ in
G

the shortest Euclidean path from s to ¢ in G

the shortest link path from s to ¢t in G

the success rate of 4 in G

the average Euclidean dilation of A in G

the average link dilation of A in G

xiil

Chapter 1
Introduction

Path-finding or routing is a problem that is central to a number of fields, including ge-
ographic information systems, robotics, and communication networks. In many cases,
knowledge about the environment in which routing takes place is incomplete, and the
vehicle/robot/packet must find its way by learning the environment. Algorithms for
routing in these types of environments are referred to as online algorithms.

In many applications involving routing, the networks in which routing takes place
also contain geographic or geometric information. For instance, in road networks the
locations of intersections can be described by longitude and latitude. In robotics,
robots can sometimes determine their position by triangulating using three broadcast
beacons in known locations. In wireless networks, hosts can be equipped with global
positioning system devices so that they know their location in space.

In this thesis we study online routing problems in geometric networks, with a focus
on the particular case in which the underlying network is planar. In the remainder of
this chapter, we give a formal model for the study of these problems, give examples
which motivate the study of these problems and provide an outline of the rest of the

thesis.

CHAPTER 1. INTRODUCTION 2

1.1 The Model and Terminology

A geometric graph is a graph G = (V, E) in which the vertex set V' is a set of n points
in R?, and the edge set E consists of m pairs from V. A planar geometric graph G
is a geometric graph in which the vertex set is taken from R2, and the line segments
defined by the edges of G intersect only at their endpoints (i.e., at the vertices of G).
The edges of G partition the plane into a set of faces F', including an external face.
In many instances, it is convenient to abuse notation slightly and say that a vertex v
is in GG, denoted v € G, when in fact we mean v € V. Similarly, for an edge e we use
the notation e € G to mean e € E. Along the same lines, for two graphs Gy = (V, E)
and Gy = (V, Ey) we set G1 NGy = (V, E1 N Ey).

The neighbourhood N(v) of a vertex v € V is the set of all vertices adjacent to
v, i.e., all u such (u,v) € E. A walk from s to ¢t in G is a sequence of vertices
s =wi,...,v; =t of G such that (v;,v;41) € E for all : <7 < k. A path in G from s
to ¢ is a walk from s to ¢ such that v; # v; for all ¢ # j. The graph G is connected
if for every pair of vertices s,t € FE, there exists a path in G from s to t. In the
remainder of this thesis we will assume that all graphs are connected, unless specified
otherwise.

The simplest routing problem we study is the (online) point-to-point routing prob-
lem, in which the input consists of two vertices s,t € V. A solution to the problem
consists of a walk from s to ¢. Initially, the algorithm for solving the point-to-point
routing problem knows only s, ¢, and N(s). The algorithm learns N(v) only after
examining (visiting) v.

We say that a routing algorithm A succeeds in routing from s to t if the algorithm
terminates in a finite number of steps, otherwise A fails to route from s to . We say
that a routing algorithm A is defeated by a graph G if there exists a pair of vertices
s,t € V such that A fails to route from s to t.

In this thesis we are primarily concerned with algorithms for routing in planar
geometric graphs. As we will see in the following section, even by restricting our

attention to planar graphs this work has a number of applications.

CHAPTER 1. INTRODUCTION 3

1.2 Motivation

There are a number of reasons for studying online routing problems in planar geomet-
ric graphs. First and foremost (for the author) is that they are interesting theoretical
problems. In studying these problems we will make use of elements of computer
science, computational geometry, planar graph theory, and even classical polytope
theory.

However, for the more practically oriented reader, we provide three examples of
applications of this work. The first example is an everyday occurence in which online
routing is performed by human beings. The second example is from the field of

fault-tolerant parallel computing. The third is from the field of mobile computing.

1.2.1 Walking in Strange Cities

Consider a tourist who is walking for their first time in the city of Toronto and trying
to find their way to the CN Tower ¢ (see Figure 1.1).! The CN Tower is tall enough
that it can be seen from most anywhere in the city, and the streets of Toronto are
straight enough that when standing at one intersection it is possible to see the next
intersection in each direction. Since the person is on foot, highways and the resulting
over and underpasses can be ignored.

Thus, Toronto can be represented by a planar geometric graph G in which the
vertices represent intersections and the edges represent portions of streets joining two
intersections. The problem of finding a path to the CN tower then becomes a problem
of online routing in a planar geometric graph.

We can hardly expect our pedestrian to execute an elaborate algorithm to find
their way to the CN tower. Rather, we expect that our pedestrian will use some
greedy heuristic algorithm A such as always moving to the next intersection that
takes her closest to ¢. Thus, studying and understanding A can help in planning the
layouts of city streets and of placing appropriate signage in cases when A fails.

The above example may seem overly-contrived, in particular since it is one of only

1 The map of Toronto in Figure 1.1 is taken from é\)"(/cite_ Maps, online at http://city.net/maps/

CHAPTER 1. INTRODUCTION 4

Al
BATHURST || 8T

HARBORD

Hler

ougzu!i"'.:sfréz’dws;m;l« :

e STREET)Wear
] ~

g

3 ARDINER|L FREWY

Ontario

Toronto Inner
Harbour

Downtown
Toronto

@1995 MAGELLAN Geographix ™ Santa Barbara 04 1-800-919-4MAP

Figure 1.1: A map of Toronto.

a few examples in which the destination is always visible and hence known to the
pedestrian. However, the technology of global positioning system (GPs) devices are
becoming increasingly common. These are units that can determine their location on
the surface of the earth through communication with satelites. For a modest price,
handheld units are available for hikers, climbers and even pedestrians. Furthermore,
it also expected that in a few years most new cars will come equipped with an onboard
GPS device [46]. Thus, it may very well soon be the case that anyone driving a car

or walking in a city can apply online routing techniques to reach a destination whose

geographic location is known.

CHAPTER 1. INTRODUCTION)

0 9o

"1

* o I [] [o

I_._::I—I_‘ * o o
(a) (b)

Figure 1.2: A 10 x 10 mesh (a) without faults and (b) with vertex and edge faults.

1.2.2 Fault-Prone Meshes

An n x n mesh M = (V, E) is a geometric graph in which the vertex set

(1,1), ..., (n,1),

(L,n), ..., (n,n)

and an edge is (v, vy) is present in E if and only if dist(vy,v,) = 1, where dist(z, y)
denotes the Euclidean distance between x and y (see Figure 1.2 (a)). Meshes are an
interconnection network studied extensively in the field of parallel algorithms (c.f.,
Leighton [53]). The folklore algorithm for routing between two vertices of a mesh
moves the packet first to the correct column (z coordinate) and then to the correct
row (y coordinate).

This simple algorithm works well provided that all the processing elements (ver-
tices) and communication elements (edges) of the mesh are working properly. How-
ever, sometimes these elements may have faults (Figure 1.2 (b)), in which case this
routing algorithm might fail. Furthermore, these failures are unpredictable, and ver-
tices may not have information about which vertices and/or edges of the mesh have
failed. In this case, the problem of routing between two vertices of M becomes an

(online) point-to-point routing problem in a planar geometric graph.

CHAPTER 1. INTRODUCTION 6

1.2.3 Mobile ad hoc Wireless Networks

Mobile ad hoc networks (MANETs) consist of wireless hosts that communicate with
each other in the absence of fixed infrastructure. Two nodes in a MANET can commu-
nicate if the distance between them is less than the minimum of their two broadcast
ranges [5]. In many cases, MANETs are pieced together in an uncontrolled manner,
changes in topology are frequent and unstructured, and hosts may not know the
topology of the entire network. Thus, routing between the nodes of a MANET is often
an online routing problem.

The unit disk graph U = (V, E) is a geometric graph in which the edge (u,v) is
present if and only if dist(u,v) < 1. Unit disk graphs are a generally accepted model
of MANETs in which all nodes have the same broadcast range.

Note that, unlike the mesh, the positions of the vertices of U are arbitrary, and
therefore U may not be planar. However, we will show that if U is connected, then
a planar subgraph U’ of U can be extracted using only local information. Indeed,
the subset of edges U incident on a vertex u of U’ can be computed given only N(v).
Therefore, the problem of routing on U can be reduced to a problem of routing on a
planar geometric graph.

For two vertices u,v € U, let disk(u,v) be the disk with diameter (u,v). Then,
the Gabriel graph [26] GG(S) is a geometric graph in which the edge (u, v) is present
if and only if disk(u,v) contains no other points of S. Let U’ = GG(S) N U. The
following lemma shows that the Gabriel graph is useful for extracting a connected

planar subgraph from U.
Lemma 1. If U is connected then U’ is connected.

Proof. Tt is well known that a minimum spanning tree MST (V) is a subset of GG(V)
[70]. Thus, we need only prove that MST(V) C U if U is connected. Assume for the
sake of contradiction that MST(V) contains an edge (u,v) whose length is greater
than 1. Removing this edge from MST(V) produces a graph with two connected
components, C,(V) and C,(V). Since U is connected it contains an edge (w,z) of
length not greater than 1 such that w € C,(V) and z € C,(V). By replacing the
edge (u,v) with (w,z) in MST(V') we obtain a connected graph on S with weight less

CHAPTER 1. INTRODUCTION 7

than MST(V), a contradiction. O

Let (u,v) be an edge of U such that (u,v) ¢ GG(V). Then, by the definition of
GG(V) there exists a point w that is contained in the disk with v and v as diameter,
and this point acts as a witness that (u,v) ¢ GG(V). The following lemma shows
that every such edge can be identified and eliminated by u and v using only local

information.

Lemma 2. Let u and v be vertices of U such that (u,v) ¢ GG(V) and let w be a
witness to this. Then (u,w) € U and (v,w) € U.

Proof. Let m be the midpoint of (u,v). Then dist(u,m) < 1/2, dist(v,m) < 1/2 and
dist(w, m) < 1/2. Therefore, by the triangle inequality, dist(u,w) < 1, dist(v,w) <1

and (u,w) and (v,w) are in U. O

Thus, upon reaching a vertex v € S, a packet can eliminate the edges incident on
v that are not in U’ by simply eliminating any edge that is not in GG(N(v) U {v}).
Lemma 1 guarantees that if we apply this algorithm to each vertex of U then the
resulting graph is connected. Since GG(V') is planar [67, 65, 26], U’ is also planar.
Thus, we have reduced the problem of routing in a unit graph to one of routing in a
planar geometric graph. This reduction can be used as the basis of routing algorithm

for MANETs [12, 47].

1.3 Bibliographic Notes

The example used in Section 1.2.1 of a pedestrian walking to the CN tower appears in
the paper by Kranakis et al. [52]. The technique used to extract a connected planar
subgraph from a unit graph described in Section 1.2.3 is described by Bose et al. [12].
The same reduction is also discussed by Karp and Kung [47].

Chapter 2
Summary of the Thesis

In this chapter we summarize, chapter by chapter, the new results obtained in this
thesis. This discussion is included mainly for evaluation purposes, and most of the
contents in this chapter are available in the sections entitled “Summary and Open
Problems” and “Bibliographic Notes” that are available at the end of each chapter.

In order to avoid too much repetition, we assume the reader knows some basic
definitions that are provided in the subsequent chapters, but which are common in
the field of computational geometry. Most of these terms can be found in the index
at the end of this thesis.

2.1 Chapter 1

In Chapter 1, we introduce the online routing problem studied in this thesis and
attempt to demonstrate its importance by way of 3 examples. The example of online
routing in ad hoc wireless network, i.e., unit disk graphs, shows how a problem of
routing on a non-planar graph that is common in wireless networks can be reduced
to a problem of routing on a planar graph.

The paper by Bose et al. [12] describes the process of reducing the problem of
routing on a unit disk graph to problem of routing on a planar graph and presents ex-
perimental results for several different routing algorithms. The reduction introduced
by Bose et al. is also further studied by Karp and Kung [47].

CHAPTER 2. SUMMARY OF THE THESIS 9

2.2 Chapter 3

In Chapter 3, we study very simple routing algorithms. These are intuitive algorithms
based on notions like distance and direction, and resemble techniques we would use
in day to day life when getting from one place to another. Some of the algorithms we
study have been studied previously and some are new.

The main focus of this chapter is to determine the limits of various classes of
algorithms. We say that an algorithm is memoryless if the decision about which
vertex to visit when situated at vertex v and destined for ¢ is only a function of v,
t, and N(v). An algorithm is randomized if the next vertex visited is taken from a
random distribution on N(v), and is deterministic otherwise.

The main new results in this chapter are:

1. There is a deterministic memoryless routing algorithm (called GREEDY-COMPASS)

that works for all triangulations.

2. There is no deterministic memoryless routing algorithm that works for all convex

subdivisions.

3. There are algorithms that use randomization or memory that work for all convex

subdivisions.

The results in Chapter 3 appear in the papers by Bose et al. [8, 10].

2.3 Chapter 4

In Chapter 4, we continue our study of routing algorithms with an emphasis on
efficiency. We measure efficiency by means of the competitive ratio, i.e., the ratio
between the length of the path found by the routing algorithm and the length of the
shortest path. We study the problem under both the Euclidean distance measure and
the link distance measure.

Our main results for Euclidean distance are:

CHAPTER 2. SUMMARY OF THE THESIS 10

1. There are online routing algorithms that achieve a constant competitive ratio
for Delaunay, greedy, and minimum-weight triangulations. These algorithms
are obtained by combining results of Papadmitriou and Yannakakis [69] for
online routing in layered digraphs with results of Dobkin et al. [21] and Das

and Joseph [16] for planar spanners.

2. There is no algorithm that achieves a competitive ratio of o(y/n) for all trian-

gulations with n vertices.
For the link distance measure we obtain the following result:

1. Unlike the Euclidean case, there is no algorithm that achieves a competitive

ratio of o(y/n) for Delaunay, greedy, or minimum-weight triangulations.

The contents of Chapter 4 are reported in the papers by Bose et al. [8, 10].

2.4 Chapter 5

In Chapter 5, we stop considering special classes of input graphs and instead con-
sider general planar graphs. We also consider two other routing problem, broacasting
(visiting every vertex of the graph), and geocasting (visiting all vertices of the graph
contained in a specific geographic region).

The work in this chapter is an extension and refinement of the pioneering work by
de Berg et al. [19] on traversing a planar subdivision using only a constant amount

of additional storage. The results we obtain are the following:

1. Thereis an O(1) memory routing algorithm for routing between any two vertices
of any connected planar geometric graph. (This result is not new; a different
algorithm achieving the same result was previously reported by Kranakis et al.
[52].)

2. There is an O(1) memory broadcasting algorithm that works for any connected

planar graph and uses only O(nlogn) steps.

CHAPTER 2. SUMMARY OF THE THESIS 11

3. There is an O(1) memory geocasting algorithm that works for any connected
planar graph and requires only O(klogk) steps, where k is the complexity of

all faces of the graph that intersect the geocasting region.

In addition to this, our results have the effect of reducing the running time of the
original algorithm of de Berg et al. from O(n?) to O(nlogn).
The results in Chapter 5 appear in the paper by Bose and Morin [11] in the context

of traversing a planar subdivision stored in a pointer based representation.

2.5 Chapter 6

In Chapter 6, we consider the problem of embedding a non-geometric planar graph
so that routing algorithms can be used to route between its vertices. We achieve the

following results:

1. If we allow arbitrarily precise coordinates, it is possible to obtain a planar em-
bedding of any planar graph so that a (rather complicated) memoryless routing

algorithm can perform shortest path routing on the graph.

2. Any graph that supports a convex embedding (one in which all faces are convex)
can be embedded so that a simple memoryless routing algorithm can be used

to route between its vertices.

3. There is a deterministic memoryless routing algorithm that works for all regular

subdivisions.

This second result makes use of two classical results, one from graph theory
(Tutte’s convex-embedding theorem) and one from polytope theory (Steinitz’ the-
orem) and provides a link between the two. A byproduct of our proof is that the set
of graphs with convex embeddings (so called subdivided circuit graphs) is exactly the

set, of subdivisions of lower convex hulls of 3-polytopes.

CHAPTER 2. SUMMARY OF THE THESIS 12

2.6 Chapter 7

In Chapter 7, we describe experimental results for some of the routing algorithms
described in this thesis. These results are for randomly generated graphs of different
types, including Delaunay triangulations, Graham triangulations, meshes with faults,
and unit disk graphs.

Some of the results in Chapter 7 appear in the papers by Bose et al. [10, 12].

2.7 Summary

This thesis represents an in-depth study of online routing problems in planar geomet-
ric graphs. Table 2.1 shows the results obtained in this thesis for routing on different
types of graphs, along with a reference to the chapter containing the result. A “Yes”
indicates that a routing algorithm is known that achieves this result while a “No”
indicates a negative result showing that no such routing algorithm is possible. An
arrow in a reference indicates that the result is implied by the more general result
pointed to by the arrow. An F indicates that the result is trivial, and/or folklore.
Overall, the primary contribution of this thesis is a better understanding of which
routing algorithms can be used in different contexts, and what sorts of guarantees we
can expect from these algorithms, both in terms of efficiency and success rates. In
addition to this, we provide some high-level experimental results that give evidence
about how these algorithms might perform in an actual implementation. We hope
that all our results, both theoretical and experimental, can help serve as a guide to
practitioners about which algorithms make suitable candidates for implementation in

a particular context.

CHAPTER 2. SUMMARY OF THE THESIS

Class of Deterministic | Randomized | Constant

graphs oblivious oblivious® memory

DT Yes 4 | Yes <+ | Yes 4
GT/MWT Yes 4 | Yes + | Yes i)
Triangulations | Yes Ch. 3 | Yes + | Yes J
Conv. Subdv. | No Ch. 3| Yes Ch. 3| Yes 4
Planar graphs | No 1| No F | Yes Ch.5
Class of Euclidean Link Const. Mem.
graphs competitive | competitive | broadcasting
DT Yes Ch.4| No Ch.4 | Yes i
GT/MWT Yes Ch.4 | No Ch.4 | Yes 4
Triangulations | No Ch. 4 | No 1| Yes 4
Conv. Subdv. | No 17| No T | Yes 4
Planar graphs | No 1| No 1| Yes Ch. 5

13

%In this column, we consider only algorithms that use a constant number of random bits per step.

Otherwise, it is well known that a random walk on any graph G will eventually visit all vertices of

G.

Table 2.1: Summary of result for online routing in planar geometric graphs.

Chapter 3
Simple Routing Algorithms

In this chapter we consider simple routing algorithms much like those we use every
day in finding our way from place to place. Two notions occur frequently in our study,
namely distance and direction. We will find that most natural routing algorithms are
based on one or both of these concepts.

We begin our discussion with some definitions related to various specializations of
geometric graphs and give a classification of online routing algorithms based on their
use of memory and randomization. We then discuss some simple routing algorithms

and describe some of the inherent limitations of simple algorithms.

3.1 Preliminaries

A conver subdivision is a planar geometric graph in which each face is a convex
polygon, except the outer face, which is the complement of a convex polygon. A
triangulation is a convex subdivision in which each interior face is a triangle.! Stated
another (equivalent) way, a triangulation is a planar geometric graph with a maximal
number of edges.

We say that a triangulation 7" is a Delaunay triangulation if it has the property

that for every internal face (triangle) ¢ of 7', the circle that circumscribes ¢ does not

!Note that this is different than the graph theoretic notion of a triangulation, in which every face
is a triangle. In graph theory terms, what we are describing is a near-triangulation.

14

CHAPTER 3. SIMPLE ROUTING ALGORITHMS 15

Figure 3.1: A Voronoi diagram and its dual Delaunay triangulation.

contain any point of V in its interior. Note that under this definition, the Delaunay
triangulation of a point set may not be unique if four or more vertices of 7' are
cocircular.

For a point set S = {p1,. .., pn}, the Voronoi diagram is a partitioning of the plane
in to regions Ry, ..., R, where R; is the locus of points that are closer to p; than to
any other point of S. The Voronoi diagram is a planar geometric graph in which
some of the vertices are “points at infinity,” and the edges of the Voronoi diagram are
segments of the perpendicular bisectors of pairs of points in S. When no four points
of S are cocircular, the Delaunay triangulation with vertex set S is the straight-line
face dual of the Voronoi diagram of S and wvice versa [6]. A Voronoi diagram and its
dual Delaunay triangulation are shown in Figure 3.1.

A convex subdivision S = (V, E) is a regular subdivision if and only if V and E are
the orthogonal projection of the vertices and edges, respectively, of the lower convex
hull of some 3-dimensional polytope P onto the z,y-plane. If S is a triangulation,
then it is a regular triangulation. Delaunay triangulations are a special case of regular
triangulations in which all the vertices of P are on a paraboloid.

The greedy triangulation T = (V, E) of a point set V = {vy,...,v,} is defined
by the following greedy (hence the name) incremental algorithm for its construction.

Initially, the edge set E is empty. At each step, find the closest pair (v;, v;) of vertices

CHAPTER 3. SIMPLE ROUTING ALGORITHMS 16

in V such that the line segment (v;,v,;) does not properly intersect any edge already
in E and add the edge (v;,v;) to E. The algorithm terminates when no more edges
can be added.

A triangulation T" = (V, E) is a minimum-weight triangulation if it minimizes
the sum >, ey dist(u, v). Minimum-weight triangulations are an especially elusive
construct, and very little is known about their properties. In particular, the existence
of a polynomial time algorithm for constructing the minimum-weight triangulation
of a point set is still an open question.

Okabe et al. [67] provide an encyclopedic treatment of Delaunay triangulations,
Voronoi diagrams, and their variants and applications. A discussion of regular tri-
angulations (and more generally regular subdivisions) can be found in the book by
Ziegler [81]. Greedy and minimum-weight triangulations are covered in Preparata
and Shamos [70].

3.2 Classification of Routing Algorithms

In this section we give formal definitions of routing algorithms and classify routing
algorithms based on their use of randomization and/or memory. For the most part,
we will not work with these formal definitions as they are too cumbersome. However,

we include them for the sake of mathematical rigour.

3.2.1 Deterministic Memoryless Algorithms

We say that an online routing algorithm A is deterministic and memoryless if the
next node visited from a vertex v depends only on v and N(v), i.e., we can define A

by a transition function § of the form
§: [R? (R®)*, R — R? (3.1)

The first argument of § corresponds to the vertex v currently being visited, the second
argument corresponds to N(v), the third corresponds to the destination ¢, and the

output of § is a point in N(v) that will be visited next.

CHAPTER 3. SIMPLE ROUTING ALGORITHMS 17

If we define &¢ as

,- s ifi=0
= { (7 (5 NG (5,8), 6 otherwise Y

then we see that algorithm A succeeds in routing from s to ¢ if and only if there exists
an 7 > 0 such that &(s,t) = t.

The distinguishing characteristic of memoryless algorithms is that if they visit
the same vertex twice, then they have failed, since they are stuck in a loop. More

formally, A fails to route from s to ¢ if and only if 6°(s,t) = 67(s,t) # t, for some
i # .

3.2.2 k-Bit Randomized Memoryless Algorithms

A routing algorithm A is a k-bit randomized memoryless routing algorithm if the next
vertex visited from a vertex v is a function only of v, N(v), and k£ random bits r. Le.,

if the transition function § of A is of the form
§: [R?, (R?)*,R%,{0,1}}] - R? . (3.3)

The first three arguments and the output of § are as before, while the fourth argument
represents a random k bit string.
We say that a randomized memoryless routing algorithm fails if the probability

that the algorithm reaches t when beginning at s is 0. More formally, we can define

. s if1=0
§'(s,t, R) = , . _ : (3.4)
§(6" (s, t, R),N(6""(s,t, R)),t,7;) otherwise
where R = ry,79,... is an infinite sequence of k£ bit strings. Then A fails to route
from s to ¢ if and only if
§'(s,t, R) #t (3.5)

for all 7 and all R. At first it may seem that this definition of failure is overly weak,
since it may be the case that only one of infinitely many R causes i to succeed.
However, it is not difficult to verify that if A is not defeated by a graph G then for
any pair of vertices s and ¢ of G the probability that A succeeds is 1. (This follows

from the fact that A is memoryless.)

CHAPTER 3. SIMPLE ROUTING ALGORITHMS 18

3.2.3 k Memory Algorithms

An algorithm A is a k¥ memory algorithm if the next vertex visited after a vertex v
is a function only of v, ¢, N(v), and M, where M is a memory of size k that contains
information about previously visited vertices. More formally, the transition function
0 of A must be of the form

§: [R?, (R?)*,R% ¥F] - R? . (3.6)

The first two arguments as well as the output are the same as for other routing
algorithms and the third argument represents the memory used by the algorithm.
The set X is the alphabet of items representable by one unit of memory. For our
purposes, ¥ consists of the set of points in R? as well as all logn bit integers.

Additionally, A defines a carry-forward function v of the form
v : [R?, (R?)*, R?, ©F] — ©F (3.7)

that defines how A uses the memory M. We can then define

Z. A iti=0
v'(s,t) = - - - ' : (3.8)
v(6" (s, t), N(6" (s, 1)), 8,7 *(s,t)) otherwise

where A denotes the empty string, and
4 i 0
Si(s,t) =4 ° | | o (3.9)
86 (s, 1), N(6° (s, 1)), t,v" " 1(s,t)) otherwise

As with memoryless algorithms, A succeeds in routing from s to ¢ if and only if there
exists an i > 0 such that §(s,t) = t.

3.3 Routing on Triangulations

Finally, we are ready to study some routing algorithms. In an intuitive sense at least,
triangulations are the most structured form of planar graph. It is therefore natural
to expect that they represent easier inputs for online routing algorithms. With this

in mind, we begin by studying the simplest routing algorithms for triangulations.

CHAPTER 3. SIMPLE ROUTING ALGORITHMS 19

Figure 3.2: Triangulations that defeat the greedy routing algorithm.

Throughout the remainder of this thesis we will use terminology taken mostly
from packet-switched data networks. Thus, we will describe algorithms as wanting to
route a packet from s to t and forwarding or moving the packet between wvertices or
nodes in order to achieve this goal. We do this only because of the need to fix some
terminology, and the reader should keep in mind that the algorithms we describe can

be applied in more context than packet-switched data networks.

3.3.1 The greedy Algorithm

The GREEDY routing algorithm always moves a packet situated at the vertex v and
destined for vertex ¢ to the neighbor u of v that minimizes dist(u,t). In the case
of ties, one of the vertices is chosen arbitrarily. Formally, GREEDY is defined by the

transition function
gdy(v,N(v),t) = u € N(v) : dist(u,t) < dist(w,t) for all w € N(v) . (3.10)

The GREEDY algorithm can be defeated by a triangulation 7" in two ways: (1)
the packet can get trapped moving back and forth on an edge of the triangulation
(Figure 3.2 (a)), or (2) the packet can get trapped on a cycle of three or more vertices
(Figure 3.2 (b)).

Although GREEDY fails on some triangulations, it always works for Delaunay

triangulations.

CHAPTER 3. SIMPLE ROUTING ALGORITHMS 20

Figure 3.3: The proof of Theorem 1.

Theorem 1. The GREEDY routing algorithm is a memoryless algorithm that is not

defeated by any Delaunay triangulation.

Proof. That GREEDY is a memoryless algorithm follows from (3.10).

Let T = (V, E) be any Delaunay triangulation. We proceed by showing that every
vertex v of T has a neighbor that is strictly closer to ¢ than v is. Thus, at each routing
step, the packet gets closer to ¢ and therefore, after at most n steps, reaches ¢. Refer
to Figure 3.3.

Let VD(V') be the Voronoi diagram of V' and let e be the first edge of VD(V)
intersected by the directed line segment (v,¢). The edge e must exist, because v and
t are contained in two different Voronoi cells. Furthermore, e is on the boundary of
two Voronoi cells, one for v and one for some other vertex u, and the supporting line
of e partitions the plane into two open half planes h, = {p : dist(p,v) < dist(p,u)}
and h, = {p : dist(p,u) < dist(p,v)}. Since the Voronoi diagram is the straight line
face dual of the Delaunay triangulation, the edge (u,v) € T. Also, by the choice of
e, t € hy, i.e., dist(u,t) < dist(v,1). O

3.3.2 The compass Algorithm

The comMPASS routing algorithm always moves a packet situated at the vertex v to

the neighbour u of v that minimizes the angle Zu,v,t. In the case of ties, one of the

CHAPTER 3. SIMPLE ROUTING ALGORITHMS 21

Figure 3.4: A triangulation that defeats the COMPASS routing algorithm.

(at most 2) vertices is chosen using some arbitrary deterministic rule. Formally, the

algorithm is defined by the transition function
cmp(v,N(v),t) =u € N(v) : Lu,v,t < Zw,v,t for all w € N(v) . (3.11)

One might initially believe (as we did) that the COMPASS algorithm can always
be used to find a path between any two vertices in a triangulation. However, the
triangulation in Figure 3.4 defeats coMPAsSS. When starting from one of the vertices
on the outer face of 7', and routing to ¢, COMPASS gets trapped on the cycle shown
in bold.

The following lemma shows that any triangulation that defeats COMPASS causes
the packet to get trapped in a cycle. In the following, and in the remainder of this

thesis, we use the notation cmp(v) as a shorthand for cmp(v, N(v), t).

Lemma 3. Let T be a triangulation that defeats COMPASS, and let t be a vertex such
that COMPASS fails to route a packet to t when given some other vertex as the source.
Then there ezists a cycle C = (vg,...,vk_1) (k> 3) in T such that cmp(v;) = v;1q
for all 0 < i< k.2

Proof. Since T defeats COMPASS, and COMPASS is a memoryless algorithm, then either
there is an edge (u,v) such that cmp(u) = v and cmp(v) = u, or there is the situation

described in the lemma. We prove that there can be no such edge (u,v). Suppose

2Here, and in the remainder of this section, subscripts are taken modk.

CHAPTER 3. SIMPLE ROUTING ALGORITHMS 22

T

Ry o R

Figure 3.5: The proof of Lemma 3.

such an edge (u,v) does exist. Then there is a triangle (u,v,w) in T such that w is
in the same closed half-plane bounded by the line through v and v as t. Referring
to Figure 3.5, the vertex w must be in the one of the regions Ry, Ry, or R3. Now, if
w is in R; or Ry, then fw,u,t < Zv,u,t and if w is in R3 then Zw,v,t < Zu,v,t.
But this is a contradiction, since it violates the assumption that cmp(u) = v and

cmp(v) = u. O

We call such a cycle, C, a trapping cycle in T for t. Next we characterize trapping
cycles in terms of a visibility property of triangulations. Let ¢; and t, be two triangles
in T. Then we say that t; obscures ty if there exists a ray originating at ¢ that strikes
t, first and then t5. Let u and v be any two vertices of 7" such that cmp(u) = v.
Then define <(u,v) as the triangle of 7' that is contained in the closed half-plane
bounded by the line through uv and that contains ¢. We obtain the following useful

characterization of trapping cycles.

Lemma 4. Let T be a triangulation that defeats COMPASS and let C' = v, ..., vx_1 be
a trapping cycle in T for vertex t. Then <(v;,v;11) is either identical to, or obscures
Avi—1,v;), for all 0 <i < k.

Proof. Refer to Figure 3.6. Assume that <(v;,v;11) and <(v;_1,v;) are not identical,
otherwise the lemma is trivially true. Let w be the third vertex of <(v;, v;41). Then
w cannot lie in the cone defined by ¢, v; and v;,; and having apex at v;, otherwise
we would not have cmp(v;) = v;y1. But then the line segment joining w and v;,4

obscures v; and hence <(v;, v;41) obscures <(v;_1, v;). O

CHAPTER 3. SIMPLE ROUTING ALGORITHMS 23

Vi1 v; il
Figure 3.6: The proof of Lemma 4.

Edelsbrunner [22] shows that if 7" is a regular triangulation, then 7" has no set of
triangles that obscure each other cyclically from any viewpoint. This result, combined

with Lemma 4, proves our main result on the COMPASS routing algorithm.

Theorem 2. The COMPASS routing algorithm is a memoryless algorithm that is not

defeated by any reqular triangulation.

3.3.3 The greedy-compass Algorithm

So far we have seen GREEDY and COMPASS, routing algorithms based on distance and
direction, respectively. Both of these algorithms are defeated by some triangulations,
but in different ways. Next we show that, by combining elements of GREEDY and
COMPASS, we obtain a memoryless routing algorithm that is not defeated by any
triangulation.

Let cw(v) be the vertex u € N(v) that minimizes the clockwise angle 7 t,v,u and
let ccw(v) be the vertex u € N(v) that minimizes the counterclockwise angle 7 t,v,u
(See Figure 3.7). We call cw(v) and ccw(v) the compass neighbours of v and denote
by CN(v) the set {cw(v),ccw(v)}.

The GREEDY-COMPASS routing algorithm moves a packet situated at vertex v
to u € CN(v) such that dist(u,t) is minimized, with ties being broken arbitrarily.

Formally, GREEDY-COMPASS is defined by the transition function

ge(v,N(v),t) = u € CN(v) : dist(u,t) < dist(w,t) for all w € CN(v) . (3.12)

Theorem 3. The GREEDY-COMPASS algorithm is a memoryless algorithm that is not

defeated by any triangulation.

CHAPTER 3. SIMPLE ROUTING ALGORITHMS 24

Figure 3.7: Definition of cw(v) and ccw(v).

Proof. Suppose, by way of contradiction that a triangulation 7" and a pair of vertices
s and t exist such that GREEDY-COMPASS does not find a path from s to t.

The same argument used in the proof of Lemma 3 shows that there must be a
cycle of vertices C' = vg,...,v,_1 of T such that GREEDY-COMPASS moves from v;
to v;4q for all 0 < 7 < k, i.e., GREEDY-COMPASS gets trapped cycling through the
vertices of C.> Furthermore, exactly the same argument used in the proof of Lemma 4

shows that the destination ¢ is contained in the interior of C.

Claim 1. All vertices of C' must lie on the boundary of a disk D centered at t.

Proof (of claim). Suppose, by way of contradiction, that there is no such disk D.
Then let D be the disk centered at ¢t and having the furthest vertex of C' from ¢ on its
boundary. Consider a vertex v; in the interior of D such that v;,; is on the boundary
of D. (Refer to Figure 3.8.) Assume, wlog, that v;;1 = ccw(v;). Then it must be that
cw(v;) is not in the interior of D, otherwise GREEDY-COMPASS would not have moved
to v;41. But then the edge (cw(v;),ccw(v;)) cuts D into two regions, R; containing
v; and Ry containing ¢. Since C' passes through both R; and R, and is contained in
D then it must be that C' enters region R; at cw(v;) and leaves Ry at v;11 = cew(v;).
However, this cannot happen because both cw(cw(v;)) and ccw(cw(v;)) are contained
in the halfspace bounded by the supporting line of (cw(v;),ccw(v;)) and containing

t, and are therefore not contained in R;. O

3Here, and in the remainder of this proof, all subscripts are taken modk.

CHAPTER 3. SIMPLE ROUTING ALGORITHMS 25

Ry
R,

Figure 3.8: The proof of Theorem 3.

Thus, we have established that all vertices of C' are on the boundary of D. How-
ever, since C' contains ¢ in its interior and the triangulation 7" is connected, it must be
that for some vertex v; of C, cw(v;) or ccw(v;) is in the interior of D. Suppose that it
is cw(v;). But then we have a contradiction, since the GREEDY-COMPASS algorithm

would have gone to cw(v;) rather than v;41. O

3.4 Routing on Convex Subdivisions

Our study of routing on triangulations has been quite successful, and we managed to
find a deterministic memoryless routing algorithm that works on all triangulations.
This success might make us optimistic that we can generalize this work to convex

subdivisions. Unfortunately, this is not the case.

3.4.1 An Impossibility Result

Next we show that there is no generalization of GREEDY-COMPASS that will work for

all convex subdivisions.

Theorem 4. FEvery deterministic oblivious routing algorithm is defeated by some

convez subdivision.

CHAPTER 3. SIMPLE ROUTING ALGORITHMS 26

Proof. We exhibit a finite collection of convex subdivisions such that any deterministic
oblivious routing algorithm is defeated by at least one of them.

There are 17 vertices that are common to all of our subdivisions. The destination
vertex ¢ is located at the origin. The other 16 vertices V = {vy,...,v15} are the
vertices of a regular 16-gon centered at the origin and listed in counterclockwise
order.* In all our subdivisions, the even-numbered vertices vy, vo, . . ., v14 have degree
2. The degrees of the other vertices vary. All of our subdivisions contain the edges
of the regular 16-gon.

Assume, by way of contradiction, that there exists a routing algorithm A that
works for any convex subdivision. Since the even-numbered vertices in our subdivi-
sions always have the same two neighbours in all subdivisions, A always makes the
same decision at a particular even-numbered vertex. Thus, it makes sense to ask
what A does when it visits an even-numbered vertex, without knowing anything else
about the particular subdivision that A is routing on.

For each vertex v; € V', we color v; black or white depending on the action of A
upon visiting v;, specifically, black for moving counterclockwise and white for moving
clockwise around the regular 16-gon. We claim that all even-numbered vertices in
V must have the same color. If not, then there exists two vertices v; and v;,o such
that v; is black and v;, 5 is white. Then, if we take s = v; in the convex subdivision
shown in Figure 3.9, the algorithm becomes trapped on one of the edges (v;, v;11) or
(vit1,vir2) and never reaches the destination ¢, contradicting the assumption that .4
works for any convex subdivision.

Therefore, assume wlog that all even-numbered vertices of V' are black, and con-
sider the convex subdivision shown in Figure 3.10. From this figure it is clear that,
if we take s = vy, A cannot visit x after vy, since then it gets trapped among the
vertices {v12, V13, V14, V15, Vo, U1, £} and never reaches ¢.

Note that we can rotate Figure 3.10 by integral multiples of 7/4 while leaving
the vertex labels in place and make similar arguments for vs, vs, vz, v9, v11, v13 and
v15. However, this implies that A is defeated by the convex subdivision shown in

Figure 3.11 since if it begins at any vertex of the regular 16-gon, it never enters the

4In the remainder of this proof, all subscripts are implicitly taken mod16.

CHAPTER 3. SIMPLE ROUTING ALGORITHMS 27

Figure 3.9: All vertices on the convex hull must have the same color.

Figure 3.10: A cannot visit x after v;.

CHAPTER 3. SIMPLE ROUTING ALGORITHMS 28

Figure 3.11: A is defeated by this subdivision.

interior of the 16-gon. We conclude that no oblivious online routing algorithm works

for all convex subdivisions. O

The reader may notice that the graphs used in the proof of Theorem 4 are not
strictly convex, i.e., they contain faces whose vertices have interior angle 7. With a
little more work and the addition of more vertices the graphs used in the proof can
be made strictly convex, thus the theorem also holds for strictly convex subdivisions
8].

Intuitively, this proof shows that deterministic oblivious routing algorithms tend
to be either left-biased or right-biased (black or white). In either case, an algorithm
is defeated by a convex subdivision whose faces overlap cyclically, with the direction
of the overlap (counterclockwise or clockwise) depending on whether the algorithm is
left-biased or right-biased.

There are two avenues we can now pursue. We can allow more powerful algorithms,
or we can restrict the class of convex subdivisions. In the next two sections we show
that if we allow our algorithms to use randomization or memory, we can obtain an
algorithm that is neither left-biased nor right-biased. Much later, in Section 6.3.3 we
will see that if we restrict ourselves to regular convex subdivisions then a memoryless

deterministic algorithm suffices.

CHAPTER 3. SIMPLE ROUTING ALGORITHMS 29

3.4.2 The random-compass Algorithm

Next, we show that if we allow randomization, we can overcome the negative result of
the previous section. We consider a 1-bit randomized memoryless routing algorithm.

The RANDOM-COMPASS algorithm moves a packet situated at vertex v to one of
{cw(v),cew(v)} with equal probability. Formally, RANDOM-COMPASS is defined by

the transition function

remp(v, N(v),r) = (3.13)

{ ew(v) ifr=0

cew(v) ifr=1

The following theorem illustrates the power gained by the introduction of ran-

domness.

Theorem 5. The RANDOM-COMPASS algorithm is a 1-bit randomized memoryless

algorithm that is not defeated by any convexr subdivision.

Proof. That RANDOM-COMPASS is memoryless follows from its definition. That it
is a 1-bit randomized algorithm follows from the fact that it selects from at most 2
choices at each step.

Assume, by way of contradiction, that there is a convex subdivision G with two
vertices s and ¢ such that the probability of reaching s from ¢ using RANDOM-COMPASS
is 0. Then there is a subgraph H of G containing s, but not containing ¢, such that
for all vertices v € H, cw(v) € H and ccw(v) € H.

The vertex t is contained in some face f of H. We claim that this face must be
convex. For the sake of contradiction, assume otherwise. Then there is a reflex vertex
v on the boundary of f such that the line segment (¢,v) does not intersect any edge
of H. However, this cannot happen, since ccw(v) and cw(v) are in H, and hence v
would not be reflex.

Since G is connected, it must be that for some vertex v on the boundary of f,
cw(u) or ccw(u) is contained in the interior of f. But this vertex in the interior of f
is also in H, contradicting the fact that f is a convex face of H. We conclude that

there is no convex subdivision that defeats RANDOM-COMPASS. O

CHAPTER 3. SIMPLE ROUTING ALGORITHMS 30

Figure 3.12: Traversal of the face f using the “right-hand rule.”

(a)
Figure 3.13: The planar geometric graphs (a) 7" and (b) 7.

3.4.3 The right-hand Algorithm

The folklore “right-hand rule” for exploring a maze states that if a player in a maze
walks around never lifting her right-hand from the wall, then she will eventually visit
every wall in the maze. More specifically, if the maze is the face of a connected
planar geometric graph, the player will visit every edge and vertex of the face [6] (see
Figure 3.12).

Consider the planar geometric graph 7" obtained by deleting from 7" all edges that
properly intersect the line segment joining s and ¢ (see Figure 3.13). The vertices s and
t are on the boundary of the same face f of 7'. The RIGHT-HAND routing algorithm
uses the right-hand rule to traverse the face f beginning at s and continuing until

reaching ¢.

Theorem 6. The RIGHT-HAND routing algorithm is an O(1) memory routing algo-

rithm that is not defeated by any convex subdivision.

CHAPTER 3. SIMPLE ROUTING ALGORITHMS 31

SRS

U3, U4
Figure 3.14: The proof of Theorem 6.

Proof. To see that RIGHT-HAND is an O(1) memory algorithm we note that the traver-
sal of the face f can be accomplished by remembering the segment (s,%) (in order to
identify edges of T' that intersect it), and the last vertex visited (in order to choose
the next vertex visited by the right-hand rule).

To prove that RIGHT-HAND is not defeated by any convex subdivision we need
only show that s and ¢ are in the same connected components of 7", since s and t are
clearly on the same face of 7. Refer to Figure 3.14 for what follows. Let fi, ..., fx be
the faces of T intersected by (s,t) in order from s to t. Note that, for each 1 <i < k,
fi and f;;; have an edge in common, namely the edge intersected by (s,t). Let v; be
the vertex of f; shared with f;; so that s,¢,v; is a right turn. Then, since each f;
is convex, there is a path P; from v; ; to v; on the boundary of f; that stays on the
right side of the line [through s and ¢. Also because of convexity, there is a path P
from s to v; that intersects [only at s and a path P,_; from v;_1 to ¢t that intersects
[only at ¢t. The path Py, Py,..., P,_; is a path from s to ¢ in T". [

3.5 Summary and Open Problems

In this chapter we have discussed memoryless, randomized memoryless and O(1)
memory algorithms for routing in triangulations and convex subdivisions. We have
shown that the use of memory or randomization allows for routing algorithms that

work on a larger class of planar graphs, and that the separation occurs somewhere

CHAPTER 3. SIMPLE ROUTING ALGORITHMS 32
Planar Graphs
Convex Subdivisions
Regular Subdivisions
Triangulations
Figure 3.15: The limits of memoryless deterministic algorithms (shaded)
Deterministic Randomized Deterministic
Class of graphs memoryless memoryless W. memory
Delaunay triangulations | GREEDY RANDOM-COMPASS | RIGHT-HAND
Regular triangulations | COMPASS RANDOM-COMPASS | RIGHT-HAND

Triangulations
Convex subdivisions

GREEDY-COMPASS
Not possible

RANDOM-COMPASS
RANDOM-COMPASS

Table 3.1: Summary of results so far.

between triangulations and convex subdivisions (see Figure 3.15).5

Qur results so far are summarized in Table 3.1.

RIGHT-HAND
RIGHT-HAND

We have shown that GREEDY, COMPASS, GREEDY-COMPASS, and RIGHT-HAND

reach the destination vertex ¢ after at most O(n) steps. However, our analysis of

RANDOM-COMPASS only shows that a message reaches ¢ with probability 1. It does

not give any upper bound on the expected number of steps when the random bits are

taken uniformly at random from {0, 1}.

The example of a regular convex n-gon and some knowledge of probability can

be used to show that, for some convex subdivisions, the expected number of steps

5In fact, in Chapter 6 we will see that it occurs somewhere between regular subdivisions and

convex subdivisions.

CHAPTER 3. SIMPLE ROUTING ALGORITHMS 33

required by the RANDOM-COMPASS can be in Q(n?). To see see this, note that rout-
ing between two diametrically opposed vertices in a convex n-gon using RANDOM-
COMPASS is equivalent to repeatedly flipping a coin until the number of heads ex-
ceeds the number of tails by n/2, or vice-versa. It is a straightforward exercise in
probability to prove that the expected number of coin tosses required is ©(n?).
Furthermore, the execution of RANDOM-COMPASS can be thought of as a random
walk on a directed graph in which each vertex has out-degree 2 and that has a single
sink, ¢t. Using this view of RANDOM-COMPASS, combined with results on hitting times
for random walks (c.f. Raghavan and Motwani [71]) it should be possible to prove
that the expected number of steps is also O(n?) for any convex subdivision. These

types of questions lead to the following open problem.

Open Problem 1. Study the expected number of steps taken by RANDOM-COMPASS
(or some other randomized routing algorithm) under various assumptions about the

graph G.

Along similar lines, Bose and Devroye [9] study the expected number of intersec-
tion between a line and the Delaunay triangulation of a random point set. This result
is closely related to the number of steps required by RIGHT-HAND to route between
the vertices of a Delaunay triangulation, since the number of steps performed is pro-

portional to the number of edges of the triangulation intersecting the line segment
(s,t).

Open Problem 2. Study the expected behaviour of routing algorithms under various

distributions of input graphs.

3.6 Bibliographic Notes

The results described in this chapter can be found in the two papers by Bose et al.
[8, 10]. An informal classification of algorithms based on randomization and memory
is also included there.

Many authors have studied algorithms similar in nature to GREEDY and COMPASS,

usually in the context of wireless networks modeled as unit disk graphs. For the

CHAPTER 3. SIMPLE ROUTING ALGORITHMS 34

most part, this work is experimental and little, if anything, is proven about these
algorithms.

Lin and Stojmenovi¢ study an O(1) memory variant of the GREEDY algorithm
called GEDIR and show that it does not have trapping cycles (though it can still fail).
They also give empirical results that show that GEDIR is competitive with COMPASS
and MFR (defined below) in terms of success rate and lengths of paths found.

Kranakis et al. [52] introduce the COMPASS algorithm and study it in a theoreti-
cal setting. They prove (among other things) that COMPASS is not defeated by any
Delaunay triangulation. They also give an O(1) memory algorithm that is not de-
feated by any connected planar geometric graph, thus proving a stronger result than
Theorem 6.

A number of routing algorithms have been defined in terms of the notion of
progress. Let v be the vertex at which the packet is currently stored, and let proj(z)
be the orthogonal projection of the point z onto the line containing v and ¢. The
progress of a neighbour u € N(v) is defined as p(u,v,t) = dist(v,t) — dist(proj(u,t)).

Let N'(v) be the set of all u € N(v) such that u has positive progress. Nelson
and Kleinrock [66] define an algorithm that forwards a packet to a randomly chosen
element of N'(v), the idea being that such randomized paths help prevent congestion
when many routing tasks are executing simultaneously.

Hou and Li [40] define an algorithm that always sends a packet to the nearest-
neighbour of v in N'(v). The motivation for this choice is to be able to minimize the
transmission ranges of nodes. This is particularly important in radio networks since
two nodes whose transmission regions overlap cannot transmit simultaneously on the
same frequency.

Takagi and Kleinrock [78] describe the MFR (most-forward within region) algo-
rithm. The MFR algorithm always forwards the packet to the neighbour u of v whose
progress is maximized. The motivation for this choice is to minimize the number of
hops the packet has to take in reaching its destination. Lin and Stojmenovié¢ [54] use
a linear algebra argument to show that MFR does not have trapping cycles, though it
can still fail.

A completely different class of geometric routing algorithms are those based on

CHAPTER 3. SIMPLE ROUTING ALGORITHMS 35

flooding. Although these do not satisfy our definition of a routing algorithm, we
discuss them here for the sake of completeness. Note that many of these algorithms
attempt to solve a more complicated routing problem than those described by our
ideal model. In particular, the algorithms attempt to deal with moving nodes in the
network, resulting in invalid or inaccurate location information.

Although flooding algorithms have their differences, they do share some common
structure. During the execution of these algorithms, nodes forward packets to several
of their neighbours at once. All packets are given serial numbers and these are
memorized by nodes of the network. In this way, if a node receives a packet more
than once it only forwards it the first time. The attribute that distinguishes different
flooding algorithms is how a node v decides which of its neighbours to forward packets
to.

In the LAR (location-aided routing) algorithms [51, 50] the packet is forwarded only
to those neighbours of v that lie within a certain geographic region defined by the
source, destination, and current location of the packet. The definition of this region
is a parameter and the authors suggest certain possibilities such as the minimum
bounding rectangle or convex hull of the source and a disk around the destination.

The DREAM (Distance Routing Effect Algorithm for Mobility) algorithm [5] at-
tempts to take moving nodes into account. The DREAM algorithm forwards packets
only to those nodes contained in the convex hull of the current node v and a disk of
radius d about the node ¢. Here d = s; - dist(v,t) is a function of ¢’s speed and the
distance to ¢. The idea behind this choice being that ¢ is moving and the further it is

from v, the further it will be from its current location by the time the packet arrives.

Chapter 4

Competitive Algorithms for

Triangulations

Thus far we have considered only the question of whether routing algorithms can find
a path between any two vertices in 7. An obvious direction for research is to consider
the length of the path found by a routing algorithm.

The walk taken by a routing algorithm A with transition function 6 while routing
from s to t is simply the sequence of vertices (6°(s),8%(s),...,6%(s)), where k is the
least value such that 6%*(s) = t. The length of a walk W = (vg,...,v;) can be
measured in two ways; the Fuclidean length of W, denoted length(V) is the sum of
edge lengths of W, i.e.,

k-1
length(W) = Z dist(vi, viy1) - (4.1)
i=1
The link length of W, denoted |W|, is simply the number of edges used in W, i.e.,
W=k . (4.2)

The choice of which metric to use depends on the application, and sometimes even
on the various operating parameters in the application. In some robotics applications,
the limiting factor is the ground speed of the robot, in which case the relevant measure

is Euclidean. In other applications, because of timing issues the limiting factor may

36

CHAPTER 4. COMPETITIVE ALGORITHMS FOR TRIANGULATIONS 37

be the number of stops and turns that the robot has to make, in which case the link
metric would be the correct choice. For a discussion of applications in which the link
metric is appropriate, see the survey article by Maheshwari et al.[64].

When analyzing the performance of online algorithms we use the paradigm of
competitive analysis [7]. We say that a routing algorithm A is c-competitive for a
graph G = (V, E), if for every pair of vertices s,t € V, the length (sum of the edge
lengths) of the walk between s and ¢ found by A is at most ¢ times the length of the
shortest path between s and t in G. We say that A has a competitive ratio of c if it
is c-competitive.

In the case of randomized algorithms, we use the expected length of the walk
found by A, where the random bits given as input to A are uniformly distributed
over all bit strings. More precisely, if [is the length of the walk taken by A when
routing from s to t and and !’ is the length of the shortest path from s to ¢ then the
expected stretch of A is E[l]/l'. The competitive ratio of A on G is the maximum
expected stretch taken over all pairs of vertices in G.

For a class C of graphs, we say that routing algorithm A is c-competitive for C' if
for every graph G € C, A is c-competitive for G. If A is c-competitive for C, where
c is a constant, then we say simply that A is competitive for C.

This chapter addresses questions about the competitive ratio in both the Euclidean
and link length metrics. For the former we obtain competitive algorithms for a class of
triangulations that includes Delaunay, greedy, and minimum-weight triangulations.
For the latter, we give lower bounds that show these results cannot be duplicated for

the link length metric.

4.1 FEuclidean Length

In this section we consider the competitiveness of routing algorithms under the Eu-
clidean length metric. Unless otherwise specified, all references to the length of a

path P, including references to competitive ratios, refer to length(P).

CHAPTER 4. COMPETITIVE ALGORITHMS FOR TRIANGULATIONS 38

ot s

Figure 4.1: The proof of Theorem 7.

4.1.1 Negative Results

It is not difficult to contrive triangulations for which none of the algorithms described
in Chapter 3 are c-competitive for any constant c¢. Thus it is natural to restrict our
attention to a well behaved class of triangulations. Unfortunately, even for the class

of Delaunay triangulations none of the algorithms seen so far are c-competitive.

Theorem 7. For any constant c, there exist Delaunay triangulations for which none
of the GREEDY, COMPASS, GREEDY-COMPASS, RANDOM-COMPASS, and RIGHT-HAND

algorithms are c-competitive.

Proof. We begin with GREEDY and GREEDY-COMPASS. Consider the set of points
placed on a circle and then triangulated to obtain the zig-zag triangulation 7" shown
in Figure 4.1.a. The points are placed so that each vertex v has a neighbor on the
opposite side of the line through s and ¢ that is closer to ¢ than v’s two neighbors
on the same side of the line. Since the points are cocircular, this is a valid Delaunay
triangulation.

Note that there exists a path from s to t that traverses the outer face of the
triangulation and has length at most (7/2) - dist(s,t). Thus, (7/2) - dist(s,t) is an
upper bound on the length of the shortest path between s and ¢. The length of the
“zig-zag” path that uses the diagonals of T' between s and t is ©(n)- dist(s, t), and this
is the path taken by the GREEDY and GREEDY-COMPASS algorithms. Thus, GREEDY

and GREEDY-COMPASS are not competitive for this triangulation.

CHAPTER 4. COMPETITIVE ALGORITHMS FOR TRIANGULATIONS 39

To show that the cOMPASS algorithm is not competitive, we again consider a set
of cocircular points and make a zig-zag triangulation. Let v be any point on the circle
with diameter s,¢. Consider the clockwise angle o between the tangent line passing
through v and the line through v and ¢. Compare this with the counterclockwise
angle between the line perpendicular to s and ¢ that passes through v and the line

through v and ¢. Referring to Figure 4.1.b, we have

a = 7/2-0 (4.3)
v = w/2-28, (4.4)

and therefore v+ f = 7/2 — f = a, i.e., the two angles are equal. Thus if compass
routing were to choose between the tangent line and the line crossing the circle it
would be a tie. Now, by placing a point w on the circle close to v we can make
Zw,v,t = a — € for arbitrarily small ¢ > 0. Similarly, by placing a point u on the
opposite side of the circle we can make Zu,v,t = a — ¢ — § for arbitrarily small
d > 0, so that cmp(v) = u. Since € and § can be arbitrarily small, we can repeat this
construction as often as we like, thereby making the COMPASS path arbitrarily long.

To see that the RANDOM-COMPASS and RIGHT-HAND algorithms are not compet-
itive consider a configuration of points like that in Figure 4.1.c. By making s and
t almost collinear with a third point, it is possible to produce arbitrarily long thin
triangles that make the length of the path taken by RIGHT-HAND arbitrarily long.
Furthermore, in this configuration the probability that the path found by RANDOM-
COMPASS is the same as that found by RIGHT-HAND is 1/2, and thus the expected
length of the path taken by RANDOM-COMPASS can be arbitrarily large. O

4.1.2 A Competitive Algorithm for Delaunay Triangulations

Since none of the algorithms described in Chapter 3 is competitive, even for Delaunay
triangulations, an obvious question is whether there exists any algorithm that is
competitive for Delaunay triangulations. In this section we answer this question in
the affirmative. In fact, we prove an even stronger result by giving an algorithm that

finds a walk in a Delaunay triangulation 7' = (V, E) from s to ¢ whose cost is at most

CHAPTER 4. COMPETITIVE ALGORITHMS FOR TRIANGULATIONS 40

/o BERA YN b TS SOVK /oA

~ / -[-- /

Y, \
/ - / \ \
{ b/ 1ba 1 N\\Ds / W /
\

’ \ ‘ ' \ ! \\,

4 ~ \ LN\— - f ———[\ ! 77(
- 4 NG | -=(\
/ L \ \ / _ ’ \

/(\\ S~ ! 2 \

N ! X7 : N / -

Figure 4.2: A path obtained by the VORONOI algorithm.

a constant times dist(s,t), as opposed to the length of the shortest path between s
and t.

Our algorithm is based on the proof of Dobkin et al. [21] that the Delaunay
triangulation approximates the complete Euclidean graph to within a constant factor
in terms of shortest path length. In the following we will use the notation x(p) (resp.
y(p)) to denote the z-coordinate (resp. y-coordinate) of the point p.

Consider the directed line segment from s to t. This segment intersects regions
of the Voronoi diagram of V' in some order, say Ry,..., R,,, where R; is the Voronoi
region of s and R,, is the Voronoi region of . The VORONOI algorithm for routing in
Delaunay triangulations moves the packet from s to ¢t along the path Py = vy,..., v,
where v; is the vertex defining R;. An example of a walk obtained by the VORONOI
algorithm is shown in Figure 4.2. Since the Voronoi region of a vertex can be computed
given only its neighbours in the Delaunay triangulation, it follows that VORONOI is
an O(1) memory routing algorithm.

The VORONOI algorithm on its own is not competitive for all Delaunay triangula-
tions (this would be too easy), as can be seen from Figure 4.3. However, it does have
some properties that allow us to derive a competitive algorithm. Dobkin et al. [21]

prove the following.

Lemma 5 (Dobkin et al.). Py is x-monotone, i.e., x(v;) < x(viy1) for all 1 <i <

m.

This property alone is not enough, and the reader should prepare themselves

for some definitions. Let f denote the boundary of the union of all triangles of T°

CHAPTER 4. COMPETITIVE ALGORITHMS FOR TRIANGULATIONS 41

Figure 4.3: The VORONOI algorithm is not c-competitive for all Delaunay triangula-
tions.

intersected by the segment (s,t). Let by,...,b; be the subsequence of vertices of Py
that are above or on the z axis, (refer to Figure 4.2). Let P;; denote the boundary
of f between b; and b;y1, in clockwise order, and let ¢;1,...,c;,, denote the lower
convex hull! of Py ;. Finally, let Py; ; denote the VORONOI path from c¢; ; to ¢; j41 in
T.

With these definitions, the graph Ggs is defined as follows. Ggg contains the
vertices and edges of all triangles of 7" that intersect the segment (s, t) and the vertices
and edges of Py;; for all 1 <4 <l and 1 < j < n;. Dobkin et al. [21] prove the

following:

Lemma 6 (Dobkin et al.). Let g5 = (1+ \/5)%2 Then, Ggzs contains a path from

s to t whose length is at most cqgs - dist(s,t).

Let G, be the graph containing only the vertices and edges of triangles of T" that
intersect the segment (s,¢). Then Gy, is the graph of a triangulated polygon having
two ears, i.e, it is a Hamiltonian polygon. The following lemma shows that, in terms

of the shortest path from s to ¢, Gy, is as good at G 4.

Lemma 7. Gy, contains a path from s to t whose length is at most cags - dist(s, t).

! The lower convex hull of a point set S is the part of the convex hull of S beneath the line joining
the leftmost and rightmost endpoints of S.
2We call c4gs the Dobkin—Friedman—Supowit constant [21].

CHAPTER 4. COMPETITIVE ALGORITHMS FOR TRIANGULATIONS 42

Proof. Note that G, is a subgraph of Gy and that the only edges of Gy not in
Gm are those of Py, ;, for all applicable ¢ and j. Define P;;; as the boundary of P
between ¢;; and c; j11, in the clockwise direction. We claim that all the vertices of

Py, ; appear in Py, ;. Therefore, by triangle inequality
length(Py,;) < length(Py,;) (4.5)

and the shortest path from s to ¢ in GG, is no more than the shortest path from s to
t in Gqs, as required.

Refer to Figure 4.4 for what follows. Assume for the sake of contradiction that
there is a vertex ¢ in Py, ; that is not in Py; ;. As part of their proof, Dobkin et al.
show that Py, ; remains entirely above the segment (c; j,¢; j+1). Therefore, let) be
the polygon bounded by Py;; and the segment (c;;,c¢;j+1). Since ¢ is on Py, ; and,
by planarity, Py;; is contained in (), it must be that ¢ is contained in Q).

Since, by Lemma 5, @) is monotone in the direction from ¢; ; to ¢; ;+1, it can be
partitioned into trapezoids whose top sides are edges of Py; ;, whose bottom sides
are on the line segment (c;;,¢; j+1) and whose left and right sides are perpendicular
to (¢, Cij+1)- Refer to Figure 4.4.

Let a and b be the two vertices of Py,; ; that define the trapezoid containing g. We
claim that a and b cannot be consecutive on Py;; because their Voronoi regions do
not share an edge that intersects (c;;, ¢ j+1). We will prove this by showing that in
the Voronoi diagram of {g, a, b} the bisector of a and b does not intersect the segment
(¢ij,Cij+1). This is sufficient, since this bisector contains the bisector of @ and b in
the original Voronoi diagram.

Let C be the circle with center on (¢; j,¢;j+1) and with a and b on its boundary.
If the bisector of @ and b in the Voronoi diagram of ¢, a and b intersects the segment
(¢ij,Cij+1) then C' must not contain ¢. However, C' does contain the top, left, right,
and bottom sides of the trapezoid containing ¢. But this can’t be, since then C'
contains the entire trapezoid and contains g. We conclude that there is no point ¢ on
Ps; ; that is not on Py ;. O

The way in which Dobkin et al. prove Lemma 6 is to prove that there is a path

Pyss that contains by, ..., b, in that order, and has length at most cqags - dist(s,t).

CHAPTER 4. COMPETITIVE ALGORITHMS FOR TRIANGULATIONS 43

Figure 4.4: The proof of Lemma 7.

Furthermore, Py has the property that the portion between b; and b;,; is either
Py;i,...,Py;n, or the portion Py; of Py whose endpoints are b; and ;1.
Therefore, to find a competitive routing algorithm for Delaunay triangulations, it
is sufficient to find a competitive algorithm for routing from b; to b; ;. Furthermore,
the above discussion, in conjunction with Lemma 7, shows that this algorithm needs
only use edges of Py; and Py,. The following algorithm, which we call PARALLEL-
SEARCH shows how we can search any two paths P = vy,...,n, and Po = uy, ..., Uy, ,
where v; = u; = a and v,, = u,, = b are common start and and vertices.
Informally, the algorithm works by taking one step along P;, then taking two steps
along P,, then four steps along P, and so on until the destination vertex b is reached.

More precisely:

1: let d = min{dist(a,ve), dist(a,us)}

2: repeat

3: travel along P; until reaching b or a vertex v; such that length(v;, ..., vi41) > d
4: if b was reached then quit

5: return to a

6: d<+ 2d

7: travel along P, until reaching b or a vertex u; such that length(u;, ..., u;41) > d

CHAPTER 4. COMPETITIVE ALGORITHMS FOR TRIANGULATIONS 44

8 if b was reached then quit
9: return to a
10: d<+2d

11: until reaching b

Lemma 8. PARALLEL-SEARCH reaches b after travelling a total distance of at most
9 - min{length(P,), length(P,)}

Proof. Let d; = 2¥c be the value of d during the final exploration step (Line 3 or 7)
of the algorithm. Therefore, the total distance travelled by the algorithm is equal to

k—1

D = 2-) 2c+ua (4.6)
i=1

< 2"ley g, (4.7)

where z is the distance travelled during the last exploration step. There are now two
cases to consider:

Case 1: The algorithm terminated while exploring the shorter of the two paths P, or
P,. Then df < 4 - min{length(P,),length(F,)}, otherwise the algorithm would have

reached b in the previous iteration of the algorithm. Therefore
D < 8-min{length(P),length(FP)} + = (4.8)
= 9-min{length(P,),length(P,)} . (4.9)
Case 2: The algorithm terminated while exploring the longer of the two paths P; or

Py. Then z < dy < 2 - min{length(P,), length(P%)}, otherwise the algorithm would

have reached b in the previous exploration step. Then

D < 4-min{length(P,),length(P)} + z (4.10)
< 6 - min{length(Py),length(P,)} . (4.11)
In either case, the conditions of the lemma are satisified. O

In summary, a competitive algorithm for travelling between s and ¢ in a Delaunay

triangulation proceeds by using PARALLEL-SEARCH to find 9-competitive paths from

CHAPTER 4. COMPETITIVE ALGORITHMS FOR TRIANGULATIONS 45

uy Uy u3 Up
e
v vy U3 Up,
Figure 4.5: A layered graph

b; to ;11 for all 1 < ¢ < [. From the above discussion, the overall result is that
PARALLEL-VORONOI travels an overall distance of at most 9 - cags - dist(s,t). All the
steps of the PARALLEL-VORONOI can be implemented without much difficulty using
O(1) memory. This yields the following result.

Theorem 8. Algorithm PARALLEL-VORONOI is an O(1) memory routing algorithm

that is (9 - cass) -competitive for all Delaunay triangulations.

4.1.3 Layered Digraphs and Hamiltonian Polygons

In this section we review results of Papadimitriou and Yannakakis [69] for routing on
layered digraphs. We then show that these results can be used to build competitive
routing algorithms for special types of triangulated polygons.

A layered graph G with n layers is a (non-geometric) graph on vertex set
{8,t,01, ..., Up, Uy ey UL Y

We call {u;, v;} the ith layer of G. For all 1 < i < n, the ith layer is connected to the
i+ 1st layer with four edges, (u;, uir1), (Ui, viz1), (Vi, uir1), and (v, v41). In addition
to this, s is adjacent to u; and v; and t is adjacent to u, and v,. The edge weights
of G are positive and obey the triangle inequality. See Figure 4.5 for an example.
Layered graphs are studied by Papadimitriou and Yannakakis [69] who prove the

following.

Theorem 9 (Papadimitriou and Yannakakis). There exists an O(1) memory

online routing algorithm for routing from s to t in G that is 9-competitive.

CHAPTER 4. COMPETITIVE ALGORITHMS FOR TRIANGULATIONS 46

=] VR W\
(b)

Figure 4.6: Examples of (a) a triangulated simple polygon and (b) the corresponding
layered graph.

Consider a simple polygon P whose interior is partitioned into triangles whose
vertices are the vertices of P. The vertices and edges of this partition induce a
geometric graph G(P). We call a vertex v of G(P) an ear if it has degree 2. An
example is shown in Figure 4.6.a.

If G(P) has exactly two ears s and ¢, then we call G(P) a Hamiltonian polygon.
If G(P) is Hamiltonian, then it naturally defines a layered graph G in the following
way (refer to Figure 4.6). The vertices s and ¢ of G(P) correspond to the vertices s
and t in G. Let e; be the ith edge of G(P) intersected by the directed segment (s, ?).
For each such edge e; we add four vertices, ug;_1, ug;, v9;—1, and vo;. The vertices are
then connected with edges in the manner described above for layered graphs. The
edges of G are weighted with the length of the corresponding edge in G(P).

From the above discussion, it becomes clear that any routing algorithm for layered
graphs can be made into a routing algorithm for routing between the vertices s and ¢
of G(P). Given the result of Papadimitriou and Yannakakis (Theorem 9), we obtain
the following.

CHAPTER 4. COMPETITIVE ALGORITHMS FOR TRIANGULATIONS 47

Corollary 1. There exists an O(1) memory online routing algorithm for routing from
s to t in G(P) that is 9-competitive.

4.1.4 A Competitive Algorithm for Triangulations with the
Diamond Property

Das and Joseph [16] generalize the proof of Dobkin et al. to show that triangulations
with a certain special property also approximate the complete Euclidean graph in
terms of shortest path length. In this section we give a competitive routing algorithm
for triangulations that satisfy this property.

Let o be any angle 0 < a < 7w/2. For an edge e of a triangulation 7" = (V, E),
consider the two isosceles triangles ¢; and ¢, whose base is e and with base angle a.
Then we say that e satisfies the diamond property with parameter « if one of ¢; or t,
does not contain any point of V' in its interior. We say that a triangulation 7" satisfies
the diamond property if every edge of T satisfies the diamond property.

Let T be a triangulation satifying the diamond property for some 0 < o < 90 and

define G, as in the previous section. Then, Das and Joseph prove the following.

Lemma 9. Let cgi(c) be a constant that depends only on o. Then, Gy, contains a

path from s to t whose length is at most cqj() - dist(s,t).

Since G, is the graph of a triangulated polygon, Corollary 1 implies a 9-competitive
routing algorithm for routing from s to ¢ in G,. Let us call this algorithm PARALLEL-

DIAMOND.

Theorem 10. Algorithm PARALLEL-DIAMOND is an O(1) memory routing algorithm

that is (9 - cqj())-competitive for any triangulation satisfying the diamond property

More concretely, since any Delaunay triangulation satisfies the diamond property
with o = 7/2, any greedy triangulation satisfies the diamond property with o = /4,
and any minimum-weight triangulation satisfies the diamond property with oo = 7/8

[16], we obtain the following result.

CHAPTER 4. COMPETITIVE ALGORITHMS FOR TRIANGULATIONS 48

Corollary 2. There exists an O(1) memory routing algorithm that is competitive
for the class of Delaunay triangulations, greedy triangulations and minimum-weight

triangulations.

4.1.5 A Lower Bound for Arbitrary Triangulations

We have given competitive algorithms for Delaunay, greedy, and minimum-weight
triangulations. A natural question, therefore, is whether there is a competitive al-
gorithm for arbitrary triangulations. In this section we prove that there is no such
algorithm.

Our proof is a modification of that used by Papadimitriou and Yannakakis [69] to
show that no online algorithm for finding a destination point among n axis-oriented

rectangular obstacles in the plane is o(y/n)-competitive.

Theorem 11. Under the Fuclidean distance metric, no deterministic routing algo-

rithm is o(y/n) competitive for all triangulations.

Proof. Consider a portion of the hexagonal having height and width ©(n) so that it
contains ©(n xn) vertices. Now modify this portion of the lattice in the following way.
Scale the z-coordinates of all vertices so that each edge is of length O(n). Also add
two additional vertices, s and ¢, centered horizontally, at one unit below the bottom
row and one unit above the top row, respectively. Finally, add edges to the lattice,
in order to complete it to a triangulation 7". See Figure 4.7.a for an illustration.

Let A be any deterministic routing algorithm and observe the actions of A as it
routes from s to ¢. In particular, consider the first n+ 1 steps taken by A as it routes
from s to t. Then A visits at most n + 1 vertices of 7', and these vertices induce a
subgraph T,;s consisting of all vertices visited by A and all edges adjacent to these
vertices.

For any vertex v of T not equal to s or ¢, define the z-span of v as the interval
between the rightmost and leftmost z-coordinate of N(v). The length of any z-span
is ©(n), and the width of the original triangulation 7 is ©(n?). By the pigeonhole

principle, this implies that there is some vertex v, on the bottom row of 7" whose

CHAPTER 4. COMPETITIVE ALGORITHMS FOR TRIANGULATIONS 49

Figure 4.7: (a) The triangulation 7" with the path found by A indicated. (b) The
resulting triangulation 7" with the “almost-vertical” path shown in bold.

z-coordinate is at most ny/n from the z-coordinate of s and is contained in O(/n)
x-spans of the vertices visited in the first n + 1 steps of A.

We now create the triangulation 7" that contains all vertices and edges of Ts.
Additionally, 7" contains the set of edges forming an “almost vertical” path from v,
to the top row of T". This almost vertical path is a path that is vertical wherever
possible, but uses minimal detours to avoid edges of T.;. Since only O(y/n) detours
are required, the length of this path is O(ny/n). Finally, we complete 7" to a trian-
gulation in some arbitrary way that does not increase the degrees of vertices on the
first n + 1 steps of A. See Figure 4.7.b for an example.

Now, since A is deterministic, the first n + 1 steps taken by A on 7" will be the
same as the first n + 1 steps taken by A on T, and will therefore travel a distance
of ©(n?). However, there is a path in 7" from s to ¢ that first visits v, (at a cost
of O(ny/n)), then uses the “almost-vertical” path to the top row of 7" (at a cost of
O(ny/n)) and then travels directly to t (at a cost of O(n4/n)). Thus, the total cost
of this path, and hence the shortest path, from s to ¢t is O(ny/n).

CHAPTER 4. COMPETITIVE ALGORITHMS FOR TRIANGULATIONS 50

(a) (b)

Figure 4.8: The point sets (a) Sio and (b) Sig 5 along with their Delaunay triangu-
lations.

We conclude that A is not o(y/n)-competitive for 7”. Since the choice of A is
arbitary, and 7" contains O(n) vertices, this implies that no deterministic routing

algorithm is o(y/n) competitive for all triangulations with n vertices. O

4.2 Link Length

In this section we switch gears and consider the problem of finding competitive al-
gorithms for the link length metric. Unless otherwise specified, all references to the
length of a path P refer to the link length, |P| of P. Our previous success with
Delaunay triangulations might make us hopeful that we can also find a competitive
algorithm for the link length metric. Unfortunately, our investigations yield only
negative results, and the main contributions of this section are impossibility results.

We obtain our results by constructing a “bad” family of point sets as follows.
Let C; be the set of \/n points {(i\/n, 1), (iv/n,2),..., (ix/n,/n)}. We call C; the
ith column. Let D; = {(i\/n, 1), (i\/n,/n)}, and define a family of point sets S =
Ui {S;2} where S, = {Sn1,. .., Sp,ym} and

i—1 Vn
Swi=JC;uD;u | C;u{(Vn/2,0),(vVn/2,v/n+1)} (4.12)

Two Delaunay triangulations of members of the set S;9 are shown in Figure 4.8.

Theorem 12. Under the link length metric, no algorithm is o(\/n)-competitive for

all Delaunay triangulations.

CHAPTER 4. COMPETITIVE ALGORITHMS FOR TRIANGULATIONS 51

Proof. We use the notation DT(S,;) to denote the Delaunay triangulation of S, ;.
Although the Delaunay triangulation of S, ; is not unique, we will assume DT(S,, ;)
is triangulated as in Figure 4.8. Note that, in DT(S,;), the shortest path between
the topmost vertex s and bottom-most vertex ¢ is of length 3, independent of n and
i. Furthermore, any path from s to ¢ whose length is less than y/n must visit vertices
from one of the columns C;_, Cj, or Cjy1.

The remainder of the proof is based on the following observation: If we choose an
element ¢ uniformly at random from {1,...,+/n}, then the probability that a routing
algorithm A has visited a vertex of C; i, C;, or C;, after k steps is at most 3k//n.
Letting k = 1/n/6, we see that the probability that A visits a vertex of C;_;, C;, or
Ciy1 after \/n/6 steps is at most 1/2.

Letting d; denote the (expected, in the case of randomized algorithms) delivery

time when routing from s to ¢ in S, ; using A, we have

R
%-Zdi > /n/12 . (4.13)

Since, for any S, ;, the shortest path from s to ¢ is 3 there must be some 7 for which
the competitive ratio of A for S, ; is at least \/n/36 € Q(y/n). O

Theorem 13. Under the link length metric, no algorithm is o(/n)-competitive for

all greedy triangulations.

Proof. This follows immediately from the observation that for any S, ;, a Delaunay

triangulation of S, ; is also a greedy triangulation of S, ;. U

Theorem 14. Under the link length metric, no algorithm is o(/n)-competitive for

all mintmum-weight triangulations.

Proof. We claim that for members of S, any greedy triangulation is also a minimum-
weight triangulation. To prove this, we use a result on minimum-weight triangulations
due to Aichholzer et al. [1]. Let K, ; be the complete graph on S, ;. Then an edge
e of K,,; is said to be a light edge if every edge of K, ; that crosses e is not shorter
than e. Aichholzer et al. prove that if the set of light edges contains the edges of a

triangulation then that triangulation is a minimum-weight triangulation.

CHAPTER 4. COMPETITIVE ALGORITHMS FOR TRIANGULATIONS 52

‘ Algorithm ‘ Class of Graphs ‘ Memory ‘ Comp. ratio
PARALLEL-VORONOI | Delaunay triangulations 0(1) 9 - cas
PARALLEL-DIAMOND | Greedy/M-W triangulations | O(1) 9 - cqj

Table 4.1: Competitiveness Results for the Euclidean length metric.

There are only 5 different types of edges in the greedy triangulation of S,, ;. (1) ver-
tical edges within a column, (2) horizonal edges between adjacent columns, (3) di-
agonal edges between adjacent columns, (4) edges used to triangulate column i, and
(5) edges used to join s and ¢ to the rest of the graph. It is straightforward to verify
that all of these types of edges are indeed light edges. O

4.3 Summary and Open Problems

In this chapter we have studied the competitive (or not) behaviour of online rout-
ing algorithms in triangulations. Our results for the Euclidean length metric are
summarized in Table 4.1.

Since we have only considered three special types of triangulations, the following

problem is an obvious direction for ongoing research.

Open Problem 3. For what other classes of geometric graphs do competitive routing

algorithms exist?

We have given an (y/n) lower bound on the competitive ratio of deterministic

algorithms for routing on arbitrary triangulations. This raises two questions.

Open Problem 4. Is there an algorithm for routing in arbitrary triangulations whose

competitive ratio can be bounded as a function of n?

Open Problem 5. Is there an o(\/n)-competitive randomized algorithm for routing

on arbitrary triangulations?

We have also shown that algorithms for Delaunay, greedy and minimum-weight

triangulations that are competitive with respect to link length do not exist. However,

CHAPTER 4. COMPETITIVE ALGORITHMS FOR TRIANGULATIONS 33

our lower bound construction does not match the best known upper bound. This

suggests the following open problem.

Open Problem 6. Close the gap between the Q(/n) lower bound provided by The-
orem 12 and the O(n) upper bound provided by the RIGHT-HAND algorithm on the

competitive ratio of algorithms for routing in triangulations.

The difficulty in obtaining competitive algorithms for the link length metric seems
to come from the fact that Euclidean distances have very little effect on link length,
at least for the types of proximity relations used to define Delaunay, greedy and

minimum-weight triangulations. This suggests the following open problem.

Open Problem 7. Is there a naturally arising class of geometric graphs that admits

a competitive algorithm in the link length metric (meshes don’t count)?

4.4 Bibliographic Notes

Prior to the work described in this chapter, a significant amount of time had been
spent by other researchers on finding competitive routing algorithms for routing in
general and restricted classes of polygons [13, 17, 18, 28, 36, 37, 38, 34, 41, 42, 43, 48,
61, 59, 60, 57, 58, 55, 56, 75, 76]. Although these algorithms are interesting in their
own right, most of the techniques they use are not immediately applicable to routing
on geometric networks. In particular, these algorithms make implicit use of the fact
that the dual graph of a triangulated polygon is a tree or, in some restricted cases, a
path.

Previous work on competitive algorithms for routing on geometric graphs has
focused on three cases: the line, sets of concurrent rays, trees. In these settings, the
location of ¢ is unknown, but a lower bound d; on its distance from s is given, and it
can be recognized once it is reached.

Randomized algorithms for the line and (more generally) sets of m concurrent rays
have been studied by Hipke [33] and Kao et al. [45, 44]. The optimal randomized
strategy for searching a set of m concurrent rays has a competitive ratio of 1 +
2a™/((a — 1)Ina), for a > 1, and this matches the lower bound.

CHAPTER 4. COMPETITIVE ALGORITHMS FOR TRIANGULATIONS 54

For the line problem, Baeza-Yates et al. [3] obtain a strategy with an optimal de-
terministic competitive ratio of 9 that works by repeatedly doubling the length of the
line that the algorithm explores, while alternating between left and right exploration
steps. For a set of m concurrent rays, they obtain a strategy with a competitive
ratio of 1 4+ 2m™/(m — 1)™ ! < 1 4 2em. The line searching algorithm is also the
basis of the work by Papadimitriou and Yannakakis [69] on layered graphs. Klein
[49] and Schuirer [75] study the problem of searching in geometric trees (trees em-
bedded in Euclidean d-space). Schuirer [75] obtains the better competitive ratio of
14 2m™/(m — 1)™! for a tree with m leaves.

Icking et al. [34, 43] further study the line and ray problems under the additional
restriction that an upper bound d,, on the distance to the source is known. Lopez-Ortiz
and Schuirer [62] refine these results and obtain deterministic competitive ratios of
9m — O(1/log®d) and 1+ 2m™/(m —1)™"! —O(1/log? d) for searching on a line and
a set of m concurrent rays, respectively. Here d is the distance from s to ¢, and need
not be known in advance. They also give matching lower bounds, thus closing the
problem with possibly the exception of tightening the constants in the big-O notation.

The PARALLEL-VORONOI algorithm described in this chapter is the first compet-
itive online algorithm for routing in Delaunay triangulations. It is described by Bose
and Morin [10].

The PARALLEL-DIAMOND algorithm is the first online algorithm for approximating
shortest paths in greedy and minimum-weight triangulations and appears here for the
first time.

The Q(y/n) lower bounds on competitive ratios appear in the paper by Bose et al.

8].

Chapter 5

Routing in Planar Geometric
Graphs

Thus far we have considered the special case where the graph on which routing takes
place is a triangulation or a convex subdivision. In this chapter we relax this restric-
tion and consider arbitrary planar geometric graphs.

We have seen in Chapter 4 that we cannot expect to get competitive algorithms
for arbitary geometric graphs, either in the link length or in the Euclidean distance
metrics. Rather, we would like to know whether there exists algorithms that will
always be able to route a packet to its destination in any planar geometric graph. At
the end of Chapter 3 we saw that any such algorithm will require either memory or
randomization in order to succeed.

In this chapter we give an O(1) memory algorithm for solving the point-to-point
routing problem in an arbitary connected planar geometric graph. Additionally, we
consider other types of routing problems. In particular, we also study algorithms for
broadcasting (point-to-plane routing) and geocasting (point-to-region routing).

The discussion begins by defining the broadcasting and geocasting problems. We
then define a structure on the faces of a planar geometric graph that is helpful in
solving these problems. Using this structure, we then show how to solve the problems

of routing, broadcasting, and geocasting in arbitrary planar geometric graphs.

95

CHAPTER 5. ROUTING IN PLANAR GEOMETRIC GRAPHS 56

5.1 Routing, Broadcasting and Geocasting

The point-to-point routing problem, as defined in Chapter 1 is that of finding a path
between two vertices in a geometric graph. In this section we present two other types
of routing problems.

The broadcasting or point-to-plane routing problem is that of routing a message
from one vertex s to all other vertices. Recall the notation of Section 3.2, in which
A is a routing algorithm and §%(s,t) is the vertex visited by A at the ith step of the
algorithm. For a broadcasting algorithm, we can define §’(s) in a similar manner,
except without an explicit destination vertex t. Then we say that A solves the
broadcasting problem for a geometric graph G = (V, E) if for all ¢t € V, there exists
an i such that §%(s) = t.

The geocasting or point-to-region routing problem is that of routing a packet from
a vertex s to all vertices contained in some convex geometric region r,. Here we
assume that s € r;. We say that a routing algorithm A solves the geocasting problem
for a graph G = (V, E), if for every vertex ¢t € V Ny, there exists an 4 such that
§%(s,m;) = t. Note that broadcasting is a special case of geocasting in which r; is the
entire Euclidean plane.

The delivery time of a geocasting (and hence also broadcasting) algorithm is de-

fined as
max {min{&*(s,r;) = v}} , (5.1)

veVAry i
i.e., it is the number of steps taken by the packet before all vertices in the destination
region have seen the packet.

Note that by using the same model as Section 3.2, we are restricting ourselves to
algorithms in which there is always exactly one copy of each packet at any given time
during the execution of the algorithm. The reason we do this is that it is the least
restrictive assumption in terms of applications. In contexts such as robotics, vehicle
routing, or pedestrian path finding it is simply not possible to have duplicate copies
of a robot/vehicle/pedestrian. Although we analyze algorithms under this model, we
note that our algorithms do allow for the duplication of packets, in which case the

number of messages sent by the algorithms remains unchanged, but in some cases the

CHAPTER 5. ROUTING IN PLANAR GEOMETRIC GRAPHS o7

execution time is decreased.

Note that there is a trivial randomized memoryless algorithm for the broadcasting
problem. At each stage, the packet simply chooses a random neighbour of the current
vertex to visit. The result is a random walk in the graph GG, and if this walk is allowed
to continue indefinitely, all vertices of G will eventually be visited.

If we allow our algorithms to use O(n) memory for solving the broadcasting and
geocasting problems, then we can easily achieve an algorithm with optimal delivery
time by simulating depth-first search [39]. The depth-first search algorithm makes
use of a stack and some mark bits at each vertex of G, which can be simulated with
a memory of size O(n). This results in a broadcasting algorithm with delivery time
O(n). Thus, the challenge is in finding an algorithm with small memory requirements

and low delivery time.

5.2 The Face Tree

In this section we describe the face tree, a tree defined on the faces of a planar
geometric graph G. The face tree is defined with respect to a point p. We begin by
using p to define a total order <, on the edges of G.

5.2.1 The =, Order and Entry Edges

To help define <, we introduce some notation. Let e = (u,v) be an edge such that
dist(u, p) < dist(v,p). Define dist(e, p) be the radius of the smallest circle C' centered
at p that intersects e, and let ¢(e) be the point at which C' intersect e. For two points
a and b, let ab be the direction from a to b measured in radians, counterclockwise
from the positive z-direction.

We define the key of an edge e = (u, v) as the 4-tuple

key,(e) = (dist(e, p), ﬁ Ip,u,v,) . (5.2)

Lemma 10. For any two edges e; # e of a planar geometric graph key(e1) # key(es).

CHAPTER 5. ROUTING IN PLANAR GEOMETRIC GRAPHS 58

Figure 5.2: Examples of entry(f, p), with entry(f, p) shown in bold.

Proof. Let e; = (u,v) and es = (w,), and assume, wlog, that dist(u,p) < dist(v,p)
and dist(w,p) < dist(xz,p). Assume for the sake of contradiction that key(e;) =
key(ez). Then dist(e1,p) = dist(e2,p) and c(e1) = c(e2). Since e; and ey can only
intersect at their endpoints, it must be the case that v = w. But then the interiors

of e, and e, must intersect, since #0=wz, a contradiction. O

The relation <, on the edges of e is defined by lexicographic comparison of key
values using the < operator. By Lemma 10, it follows that <, defines a total order
on the edges of any geometric graph G. Figure 5.1 shows how the four key values can
be used to evaluate the relation <.

For a face f with a set S of edges on its boundary, we define entry(f, p) as
entry(f,p) =z € S:z<,yforaly#z €S (5.3)

(see Figure 5.2). We call entry(f,p) the entry edge of f. Since <, is a total order,
entry(f,p) is well-defined.

Lemma 11. For any face f of G that does not contain p in its closure, entry(f,p)
s on the boundary of two faces of G.

CHAPTER 5. ROUTING IN PLANAR GEOMETRIC GRAPHS 59

Case 1 Case 2

Figure 5.3: The proof of Lemma 11.

Proof. Let entry(f,p) = e = (u,v) and suppose, for the sake of contradiction that e
is only on the boundary of f. We distinguish between two cases. See Figure 5.3.
Case 1: c(e) is a vertex. Without loss of generality assume that c(e) = u, and
that the clockwise angle 7 (p,u,v) < 7 (otherwise reverse the roles of clockwise and
counterclockwise). Let r be the ray originating at u and containing p. Consider the
edge ¢/ = (u,w) that is the next edge in the counterclockwise adjacency list of u.
Since entry(f,p) # €', it must be that Zp,u,v < Zp,u,w. and therefore r intersects
the interior of f. Since p is not contained in f, r must intersect some edge €” on
the boundary of f and between u and p on r. But then dist(e”,p) < dist(e,p),
contradicting the fact that entry(f,p) =e.

Case 2: c(e) is in the interior of e. Then we can define r as the ray originating at

c(e) and containing p and obtain the same contradiction as above. O

5.2.2 Defining the Face Tree

The entry edges of G define a relationship on the faces of G. For a face f of G that
does not contain p, we define parent(f, p) as the face f' # f of G that has entry(f, p)
on its boundary. By Lemma 11, this value is well-defined. The values of parent(f, p)
define a structure on the faces of G.

The face tree FT(G, p) of G with respect to p is the graph whose vertex set consists
of the faces of G. For each face f of G that does not contain p, FT(G, p) includes the
edge (f, parent(f,p)). An example of a face tree is shown in Figure 5.4.

CHAPTER 5. ROUTING IN PLANAR GEOMETRIC GRAPHS 60

=
=L

Figure 5.4: A planar geometric graph and its corresponding face tree. Vertices of
FT(G,p) are shown as boxes. Edges of FT(G,p) pass through their defining entry
edge and are directed from child to parent.

Lemma 12. FT(G,p) is a tree.

Proof. The number of vertices in FT(G, p) is equal to the number of faces in G, and
the number of edges in FT(G, p) is one less than this number. Thus, all we need to
show is that FT(G, p) is connected.

We will show that for every vertex f such that parent(f,p) = f’ and entry(f’, p)
is defined, entry(f’,p) # entry(f,p) and entry(f’,p) <, entry(f,p). Since there are
only a finite number of vertices in FT(G, p), this implies that following the parent
pointers leads to a vertex f, such that entry(f,,p) is undefined. Since there is only 1
such vertex (the one containing p), there can be at most 1 connected component in
FT(G,p).

Let f’ be the parent of f, and assume that entry(f’, p) is defined, otherwise there
is nothing to prove. Let e = (u,v) = entry(f,p). Then we distinguish between two
cases:

Case 1: c(e,p) is a vertex u. Consider the open ray r originating at u that contains
p. From the proof of Lemma 11, the first face of G whose closure intersects r is
then f’. Furthermore, since p is not contained in f’, r intersects some edge €’ on the
boundary of f’ at some point between u and v on r. Since dist(e’,p) < dist(e,p), it

follows that entry(f’, p) # entry(f,p) and entry(f’,p) <, entry(f,p).
Case 2: c(e, p) is in the interior of e. In this case define 7 and the open ray originating

CHAPTER 5. ROUTING IN PLANAR GEOMETRIC GRAPHS 61

at c(e,p) and containing p and proceed as in Case 1. O

5.3 Algorithms Using the Face Tree

In this section we show how to use the face tree to solve the routing, broadcasting and
geocasting problems. The following lemma, which is trivial given that <, defines a

total order on the edges of G, shows that FT(G, p) is available to a routing algorithm.

Lemma 13. Given p, the value of entry(f,p) can be computed using O(1) memory

by traversing the face f once.

Proof. The traversal of f can be done using the right-hand rule, and since <, is a
total order entry(f,p) is computed by keeping track of the minimum edge visited with
respect to <,,. Both can easily be done with O(1) memory. O

5.3.1 Point-to-point Routing

The FACE-ROUTE algorithm (Algorithm 1) solves the problem of routing from s to ¢
by finding a path from s to the root of the face tree FT(G,t). In the pseudocode,
opposite(e, f) denotes the face f' # f with e on its boundary and face_ of(v) is any

face with v on its boundary.

Algorithm 1 The FACE-ROUTE algorithm.
1: v<4s
2: f <« face_of(v)
3: while v # ¢t do

4: traverse f, until returning to v or reaching ¢, while computing entry(f, t).
5: if v was reached then

6 return to an enpoint w of entry(f,1).

7 V4 W.

8 f < opposite(entry(f,t), f)-

9: else

10: v 1.

11: end if

12: end while

CHAPTER 5. ROUTING IN PLANAR GEOMETRIC GRAPHS 62

Figure 5.5: The path taken by a packet in the FACE-ROUTE algorithm.

Some steps of the algorithm need to be expanded on. As explained above, com-
puting entry(f,¢) in line 4 involves traversing f using the right hand rule. While
doing this, the algorithm also keeps track of two additional values, one is a count of
the number of steps taken (edges traversed) during the entire traversal, the other is
the number of steps taken at the point where entry(f,t) was found.

When returning to entry(f,¢) in the lines 8 and 11, the algorithm then uses these
values to return via the shorter of the two possible paths. In particular, if |f| is
the number of steps taken while traversing f using the right hand rule, then the
algorithm can use these values to compute entry(f,¢) and return to entry(f,¢) in at
most |3|f|/2] steps.

The path of a packet travelling from s to ¢ using FACE-ROUTE is shown in Fig-

ure 95.9.

Theorem 15. Algorithm FACE-ROUTE is an O(1) memory routing algorithm with

delivery time at most 3|E|.

Proof. That FACE-ROUTE is an O(1) memory algorithm follows from the fact that for
a face f, entry(f,t) can be computed using O(1) memory with a traversal of f.

To prove that the delivery time of the algorithm is at most 3|E| we note that the
algorithm considers each face of G at most once. The cost of visiting a face f is at
most 3| f|/2]. Therefore, the delivery time of the algorithm is at most) ;. - | 3| f[/2].

Since each edge of E contributes exactly 2 to this sum, the delivery time is at most

CHAPTER 5. ROUTING IN PLANAR GEOMETRIC GRAPHS 63

3|E. O

5.3.2 Broadcasting

Next we describe the FACE-BROADCAST algorithm (Algorithm 2) for solving the
broadcasting problem. The algorithm works by performing a depth-first traversal
of the face tree FT(G, s'), where s’ is a point arbitrarily close to s that is not on the

boundary of any face.

Algorithm 2 The FACE-BROADCAST algorithm.

1: f <« face of(s)

2: €gpary < € < edge_of(f)

3: repeat

4: if e = entry(f,s’) then
{* return to parent of f *}
f < opposite(e, f)

else if e = entry(opposite(e, f), s') then
{* visit child of f *}
f < opposite(e, f)

10: end if

11: e < next(e, f)

12: until e = ey,

The notation face of(s’) denotes the face containing s’. The notation next(e, f)
denotes the edge that follows e while traversing f using the right hand rule. If f is an
inner face, then next(e, f) is the next edge on the boundary of f in counterclockwise
order, otherwise (f is the external face) it is the next edge on the boundary of f in
clockwise order.

Although our model of online routing algorithms does not allow packets to move
to edges, and has no concept of faces, it is convenient to describe algorithms using
these notions. It is straightforward to see that the operation in FACE-BROADCAST
can be simulated in our model. In particular, visiting any edge e requires only that
we visit one of the endpoints of e.

If we assume for the time being that the algorithm has access to an oracle that

allows it to make the tests in lines 4 and 7, then the algorithm implements a classic

CHAPTER 5. ROUTING IN PLANAR GEOMETRIC GRAPHS 64

Figure 5.6: The path taken by a packet in the FACE-BROADCAST algorithm.

algorithm for traversing a rooted ordered tree without a stack (c.f., Cormen et al. [15,
Exercise 11.4-5]). Each face of G can be viewed as a node in the tree, and each entry
edge can be viewed as a pair of pointers between a parent and child in the tree (edges
that are not entry edges for any face can be ignored).

An example of the execution of the algorithm is given in Figure 5.6. The correct-
ness of the algorithm then follows from the correctness of the tree traversal algorithm.
Furthermore, with our oracle assumption, the delivery time is easily seen to be O(m)
(recall that m is the number of edges in G).

Next we show that the tests in lines 4 and 7 can be performed in such a way that
the amortized cost is O(logm) per test. Consider a face f with m edges eq, ..., €n_1-
We say that an edge e; is a k-minimum in fife; <ge;foralli—k <j < i+ Kk We
define minval(e;) as the maximum value for which e; is a k-minimum. The following

lemma provides an efficient means of testing if e; = entry(f, s').

Lemma 14. Y. " minval(e;) < m - (H,, — 1), where H, is the " harmonic number
defined as H, =37 | 1/i.

Proof. 1f e; is a k-minimum, then none of e;_,...€;_1, €11, ..., €1 is a k-minimum.

Therefore, at most [m/(k + 1)] edges of f are k-minima. Thus,

m—1 m

Z minval(e;) = Z |{e; : €; is a k-minimum }| (5.4)
=0 k=1

!Tn the remainder of this section, subscripts are taken modm.

CHAPTER 5. ROUTING IN PLANAR GEOMETRIC GRAPHS 65

< 3 m/k+ 1)) (5:5)
< m-(Ho—1) . (5.6)
]

Harmonic numbers have been studied extensively, and are known to satisfy the
inequalities Inz < H, < Inz + 1 [32, Section 6.3]. This suggests the TEST-ENTRY
algorithm (Algorithm 3) for testing whether entry(f, s') = e;.

Algorithm 3 The TEST-ENTRY algorithm

1: k<« 1

2: j 1

3: repeat

4: while j#i+k do
5: j—j+1

6: if e; Ay e; then
T output false
8: end if

9: end while

10: k<« 2k

11: while j#i—k do
12: j—j—1

13: if e; Ay €; then
14: output false
15: end if

16: end while

17: k + 2k

18: until £ > [2n/3]
19: output true

Lemma 15. The TEST-ENTRY algorithm correctly determines if entry(f,s') = e;

after at most 9 - minval(e;) steps.

Proof. The algorithm is clearly correct, since it only return false if an element e; is

found such that e; Ay €;, and only returns true after comparing e; to all other edges

of f.

CHAPTER 5. ROUTING IN PLANAR GEOMETRIC GRAPHS 66

To bound the running time, we note that if the algorithm terminates with k = 2,

then minval(e;) > 2¢ 2. The total number of steps taken during the algorithm is

i1
S(e;) = Z 2 -2/ 4 minval(e;) (5.7)
=0
< 2" 4 minval(e;) (5.8)
< 8minval(e;) + minval(e;) (5.9)
= Ominval(e;) , (5.10)
as required. O

When the tests in the FACE-BROADCAST algorithm are implemented using the

TEST-ENTRY algorithm, we obtain the following result.

Theorem 16. Algorithm FACE-BROADCAST is an O(1) memory broadcasting algo-

rithm with delivery time at most 40 -m - (H,, — 1).

Proof. That FACE-BROADCAST is an (O(1) memory algorithm follows from the pseu-
docode in Algorithm 2 and Algorithm 3.

That FACE-BROADCAST delivers the message to each vertex in G follows from the
fact that each vertex is incident to at least one edge, each edge is on the boundary of
at least one face, and each face is visited by FACE-BROADCAST.

To prove the bound on the delivery time we note that each edge e = (u,v) is
tested at most 4 times (twice when it is traversed in direction 4% and twice when it is
traversed in direction v%). By Lemma 15 the amortized cost of each test plus the cost

of returning to e is at most 10 - H,,, for a total delivery time of 40-m - (H,, —1). O

5.3.3 Geocasting

To solve the geocasting problem we use a modification of FACE-BROADCAST. In
particular, we redefine entry(f,p) as the minimum edge (with respect to =<,) that

intersects r;. le., for a face f, with a set S of edges on its boundary, we define

entry(f,p) as

entry(f,p) =z € S : x intersects r, and z <X, y forally £z € S . (5.11)

CHAPTER 5. ROUTING IN PLANAR GEOMETRIC GRAPHS 67

Figure 5.7: The path taken by a packet in the FACE-GEOCAST algorithm. The geo-
casting region 7; is shown as a shaded disk.

We refer to this algorithm as FACE-GEOCAST (Algorithm 4). An example of a path
taken by a packet in the FACE-GEOCAST algorithm is shown in Figure 5.7.

Algorithm 4 The FACE-GEOCAST algorithm.

1: f <« face_of(s)

2: €sary < € < edge_of(f)
3: repeat

4: 1if e intersects r; then

5: if e = entry(f,s') then

6: {* return to parent of f *}

7: f < opposite(e, f)

8: else if e = entry(opposite(e, f), s') then
9: {* visit child of f *}

10: f < opposite(e, f)

11: end if

12: end if

13: e < next(e, f)
14: until e = Estart

Theorem 17. Algorithm FACE-GEOCAST is an O(1) memory geocasting algorithm
with delivery time at most 40 - m’ - (H,y — 1), where m' is the total complexity of all

faces of G' that intersect r;.

CHAPTER 5. ROUTING IN PLANAR GEOMETRIC GRAPHS 68

Proof. That FACE-GEOCAST is an O(1) memory algorithm follows from the pseu-
docode.

To show the correctness of the algorithm we observe that the set of vertices and
edges that are on the boundaries of faces that intersect r; form a connected subgraph
H of G. Every face f of H, except the face containing s’ and possibly the outer face
have entry(f, s') defined. Furthermore, since r; is convex, the arguments used in the
proof of Lemma 12 still hold with respect to the new definition of entry edges. l.e.,
the entry edges define a tree T rooted at face of(s") whose vertex set is the set of all
edges that intersect r;. Since the algorithm visits all the faces of T it must visit all
the vertices in r;.

The bound on the delivery time follows from the observation that the delivery time
cannot be more than the delivery time of the FACE-BROADCAST algorithm restricted
to the subgraph of G that contains only the vertices and edges on boundaries of the

faces that intersect r;. O

5.4 Summary and Open Problems

In this chapter we have given O(1) memory algorithms for point-to-point routing,
broadcasting and geocasting. Table 5.1 compares the results obtained in this chapter
to previous work.

The algorithm for point-to-point routing is asymptotically optimal, while it is not

clear whether the algorithms for broadcasting and geocasting are.

Open Problem 8. Close the gap between the O(nlogn) upper bound and the (n)

lower bound on the delivery time of an O(1) memory broadcasting algorithm.

We believe that a variation of the FACE-ROUTE algorithm could be used to solve

the following open problem.

Open Problem 9. Define and give routing algorithms for a model that takes into
account dynamic networks in which vertices move and edges and vertices are inserted

and deleted during the execution of the algorithm.

CHAPTER 5. ROUTING IN PLANAR GEOMETRIC GRAPHS 69

Point-to-point routing
Algorithm ‘ References ‘ Memory ‘ Randomized ‘ Delivery Time
GEOMETRIC-ROUTING | [52, 12] O(1) N 3m
FACE-ROUTE here 0(1) N 3m
Broadcasting
Algorithm ‘ References ‘ Memory ‘ Randomized ‘ Delivery Time
RANDOM-WALK trivial none Y O(n?)
DEPTH-FIRST-SEARCH | trivial O(n) N O(n)
BKOO/BROADCAST (19, 12] o) N O(n?)
FACE-BROADCAST here 0(1) N 20-m- Hy,
Geocasting
Algorithm ‘ References ‘ Memory ‘ Randomized ‘ Delivery Time
BKOO/GEOCAST [19, 12] 0O(1) N O((m')?)
FACE-BROADCAST here 0(1) N 20-m' - Hpyy

Table 5.1: Summary of Results in Chapter 5.

The difficulty here lies in defining a model that is both reasonably dynamic, yet

does not allow for nasty executions that can defeat any algorithm.

5.5 Bibliographic Notes

The problem of visiting all the vertices of a planar geometric graph using O(1) mem-
ory has received considerable attention. Gold et al. [30, 31, 29] gave an O(n) time
algorithm for traversing a triangulation given a point in the lower-left corner of the
triangulation. The algorithm works by clasifying the edges of each triangle as ei-

7

ther, “in”, “out” or “in-out” to obtain a walk that traverses each triangle in the
triangulation.

Avis and Fukuda [2] give an algorithm for traversing arrangements of lines and
convex polyhedra. The algorithm uses convexity in order to define, for each vertex v,
a vertex parent(v) such that the parent pointers define a tree. This general technique,
which we have made use of, is referred to as “reverse-search,” since it can be viewed

as running the simplex algorithm for linear programming in reverse.

CHAPTER 5. ROUTING IN PLANAR GEOMETRIC GRAPHS 70

Edelsbrunner et al. [23] give an algorithm for traversing monotone subdivisions.
The algorithm works by directing each edge in the direction of monotonicity (say
the +x direction). With the addition of two dummy vertices, the resulting directed
graph is a directed acyclic graph D. Furthermore, for each vertex v of D, the set of
incoming (outgoing) edges of v occur consecutively in clockwise order about v. This
structure of D allows for a traversal algorithm very similar in nature to the standard
tree traversal algorithm.

The most recent result in this area is that of de Berg et al. [19] who give an
O(n?) time algorithm for traversing an arbitrary planar geometric graph. The face
tree structure is based on the work of de Berg et al. [19]. In their work, they define
entry(f,p) using a rule very similar to our <, order and show that, for an edge e
on the boundary of f, testing if e = entry(f,p) can be done in one traversal of f.
Using this technique they derive an algorithm that enumerates a subdivision using
O(3_;cr If1?) operations, which is O(n?) in the worst case. Thus, applying their work
directly leads to a broadcast algorithm with O(n?) delivery time.

Kranakis et al. [52] describe a method for point-to-point routing in planar ge-
ometric graphs that they call geometric routing. Their algorithm is similar to the
face tree method described in this chapter, but has the additional restriction that
entry(f,t) must intersect the line segment (s,t). Empirical results for their algorithm
are reported by Bose et al. [12].

The face tree is described by Bose and Morin [11]. They describe algorithm FACE-
BROADCAST as a means of traversing a subdivision without using mark bits, thus
reducing the running time of the de Berg et al. algorithm from O(n?) to O(nlogn).

The FACE-BROADCAST algorithm described in this chapter has some deep links
with the distributed algorithm of Hirschberg and Sinclair [35] for leader election on
a ring (see also Lynch [63, Chapter 3]). In fact, if one dualizes a face f, so that each
edge becomes a vertex and each vertex becomes an edge, then the set of messages
sent in testing whether an edge of f is an entry edge is almost exactly the same set of
messages sent by the corresponding vertex in the Hirschberg—Sinclair leader election

algorithm.

Chapter 6
Geometric Network Design

In Chapter 3 and Chapter 4 we studied the behaviour of routing algorithms on various
classes of graphs. Our results suggest that if we are given a set of sites in the plane,
then some ways of interconnecting the sites are better than others. For example,
Delaunay triangulations tend to be especially amenable to online routing.

Another version of the problem, which we study in this chapter, is that we are
given the interconnections between sites (an abstract graph GG) and our job is to place
the sites (assign positions to the vertices of GG) in such a way as to facilitate online
routing. This act of placing the sites is referred to as embedding the graph G. As
usual, we are interested in embeddings of G' that have the property that the resulting
geometric graph is planar.

The remainder of this chapter is organized as follows: Our first result is to show
how to embed any planar graph G so that a (rather complicated) geometric routing
algorithm allows one to find the shortest path between any two vertices of G. We then
study methods of embedding special kinds of planar graphs so that simple routing
algorithms like COMPASS can be applied to the embeddings. We also show that not
all planar graphs can be embedded so that GREEDY and comPAss work on them.
However, before we embark on the last leg of our journey, we review some definitions
and results in graph theory.

For all the embedding algorithms described in this chapter we assume the real

RAM model of computation in which algorithms can, in constant time, perform exact

71

CHAPTER 6. GEOMETRIC NETWORK DESIGN 72

arithmetic operations on arbitrarily precise real numbers.

6.1 Graph Theory Review

An (abstract) graph G = (V, E) is a graph whose vertex set is V = {1,...,n} and
whose edges are pairs of integers in the range [1,n]. Recall that a path P in G is a
sequence of vertices (vy,...,vx) such that v; # v; for all ¢ # j and (v;,v;41) € E for
all 1 <i < k. A cyclein G is a path (v1,...,v) such that (vg,v1) € E. Two paths
(cycles) (vi,...,vg) and (ug,...,u;) are edge-disjoint if (v;,vit1) # (uj, uj4q) for all
1<i<kand 1< <L

We say that G is connected if for every pair of vertices u,v € V, there exists a
path in G from u to v. G is k-connected if G\ X is connected for all X € V*=1.

A planar drawing of G is a drawing of GG in the plane so that the vertices of G
are represented by points, the edges of G' by curves joining the vertices, and curves
intersect only at common endpoints. A graph G is planar if it has a planar drawing.
A theorem of Fary [24] states that any planar graph has a planar drawing in which
all edges are represented by straight line segments. Such drawings can be encoded by
assigning positions to the vertices of G.

An embedding of G is a mapping [' : V' — R?. We define ['(G) = (V', E') as
the geometric graph where V' = {I'(1),...,I'(n)} and for each edge (u,v) in G, E'
contains the edge (I'(u),['(v)). We say that T is a planar embedding of G if T'(G) is

a planar geometric graph.

6.2 The Ultimate Combination?

We begin by studying an embedding/routing combination that supports routing al-
gorithms that always find shortest paths. In recent years, significant research has
been spent on finding planar embeddings of planar graphs such that the vertices of
the embedded graph lie on the vertices of a grid. This seems like a natural starting
point for our algorithms. The tightest result in this area is due to Schnyder [74] (see
also de Fraysseix et al.[20]).

CHAPTER 6. GEOMETRIC NETWORK DESIGN 73

Figure 6.1: The definitions of (a) €; and (b) e.

Theorem 18 (Schnyder 1990). For any planar graph G, there exists a planar
embedding T' of G such that T : V. — {1,...,n}?. Furthermore, the embedding T can

be computed in O(n) time where n is the number of vertices in G.

The approach used by our embedding algorithm is to take an embedding obtained
from Theorem 18 and then tweak the locations of the vertices in order to encode
shortest path routing information. The following lemma shows that this tweaking

can always be done.

Lemma 16. Let I be a planar embedding of G and let T' be any embedding of G such
that dist(T'(i),T"(z)) <€, for all 1 <1i < n. Then there always exists some € > 0 such
that I is planar.

Proof. Let T'(G) = (V', E'). We define ¢ as follows (see Figure 6.1):
e1 = min{dist(v,e) :v € V',e € E'\ N(v)} . (6.1)

For a vertex w with neighbours u and v, let {(u,w,v) the line that bisects the angle

Zu,w,v. Then we define
€ = min{dist (I(u, w,v),u) : u,v,w € V', u#v, (u,w) € E', (v,w) € E'} (6.2)

and set € = min{e;, €2, 2}/2.
If I"(G) is not planar then there are two edges e; and ey in I'V(G) that intersect at

a point that is not an endpoint of one of the edges. There are two cases to consider:

CHAPTER 6. GEOMETRIC NETWORK DESIGN 74

Case 1: e; and ey are defined by 4 different vertices. Define tube(s, j) as the
convex hull of the two circles of radius € centered at I'(¢) and I'(j). Then it must be
that tube(e;) and tube(es) intersect. But (6.1) ensures that this can never occur.

Case 2: e; and e are defined by 3 different vertices ¢, j and k. Then it must
be that (i), ['(j) and I"(k) are collinear. But (6.2) ensures that this can never

occur. m

Our next observation is that it is possible to encode an arbitrary amount of in-
formation in a real number in the interval [0,€¢/2). In particular, it is possible to
encode a shortest path routing table for any vertex. Thus, given an embedding I
of G on the n x n grid, a shortest path routing table from a vertex v to all other
vertices can be encoded by adding to the y-coordinate of each I'(i) a number in the
interval [0, €/2). We omit details of the encoding, since they are neither difficult nor
particularly interesting.

Some care needs to be taken, since decoding these routing tables requires knowl-
edge of €, which depends on the initial embedding I' and is therefore not available to
a routing algorithm. However, this can easily be handled by adding the value of €¢/2
to the z-coordinate of each I'(7).

In summary, we obtain the HIGH-PRECISION-EMBED algorithm (Algorithm 5) for

computing the embedding I of a graph G = (V, E).

Algorithm 5 The HIGH-PRECISION-EMBED algorithm.

1: compute the embedding I' using Theorem 18

2: compute €

3: forallv eV do

4: compute a shortest path routing table for v

5. let u be the encoding of v’s routing table in [0, €/2)
6: T'(v) < T'(v)+ (¢/2, p)

7: end for

Lemma 17. Algorithm HIGH-PRECISION-EMBED produces a planar embedding T in
O(n?) time.

Proof. That the resulting embedding I of G is planar follows from Lemma 16 and
the fact that dist(I"'(i),T(i)) < €/v/2 for all 1 < i < n. Step 1 of the algorithm

CHAPTER 6. GEOMETRIC NETWORK DESIGN 75

can be accomplished in linear time using Theorem 18. Step 2 can be done trivially
in O(n?) time. Each of the shortest path computations in Step 4 can be done in
linear time using breadth-first search. Step 5 is easily implemented in linear time
(remember, we're assuming a real RAM), and Step 6 takes constant time. Thus, the

overall running time is O(n?). O

The HIGH-PRECISION-ROUTE routing algorithm (Algorithm 6) for routing on the
geometric graph I''(G) simply uses the encoded values to route along the shortest path
from s to t. To do all this, the algorithm only needs to know v, ¢ and N(v). Therefore,
HIGH-PRECISION-ROUTE is a memoryless routing algorithm. Summarizing, we obtain

the following result.

Algorithm 6 The HIGH-PRECISION-ROUTE routing algorithm.

1: v s
2: while v #1¢ do

3 e+ 2-(x(t) = [x(®)])

4 peyt) - y@)]

5. decode pu to find the next vertex v’ on the shortest path from v to ¢
6: v+

7: end while

Theorem 19. For any planar graph G, a planar embedding I of G can be computed
in O(n?) time such that the HIGH-PRECISION-ROUTE path between any two vertices

s and t of T'(G) contains the minimum number of edges.

Although it seems that Theorem 19 is the best result one could hope for, it is
unsatisfactory because of the precision required in the location of vertices. In a bit
model of computation, it would take {2(nlogn) bits to represent each vertex identifier.
Although our real RAM model allows us to do this using only the vertex identifiers, it
is clear that in practice it would be simpler to just compute and store routing tables

at each vertex.

CHAPTER 6. GEOMETRIC NETWORK DESIGN 76

6.3 Embeddings for Simple Routing Algorithms

Because of the drawbacks of the HIGH-PRECISION-EMBED/HIGH-PRECISION-ROUTE
combination it is natural to want to study embeddings that support simple routing
algorithms. Since we have already seen three very simple algorithms in Chapter 3 we
study those. We begin with the (simpler) negative results and end with the (more

complicated) constructive results.

6.3.1 Negative Results

Throughout this section G = (V, F) will be a (abstract) graph. Let C be a cycle in
G. We partition the edges of G into pieces as follows: Two edges e; and e, are in
the same piece if there exists a path in G using e; and e, that does not contain any
vertices of C. A bridge of C is the subgraph of G induced by the edges of a piece.

Let By, By, ..., By be the bridges of C. Each B; contains one or more vertices
on C, and we call these the attachments of B;. The following lemma, used in some
proofs of Kuratowski’s theorem, is intuitive but requires some topology for a rigorous
proof (c.f., Bondy and Murty [6]).

Lemma 18. If B; and B; have 3 attachments in common, then any planar embedding
of G has all the vertices of B; in the interior of the cycle defined by C and all the

vertices of B in the exterior (or vice-versa).

Theorem 20. There ezists a planar graph G such that no planar embedding of G
supports GREEDY, COMPASS, or GREEDY-COMPASS.

Proof. Consider the graph G shown in Figure 6.2 and let [' be any embedding of
G. Let C be the cycle (v1,ve,v3,v4). Then, by Lemma 18, one of the I'(s;) or
['(s9) must be contained in the interior of I'(C'). Suppose without loss of generality
that it is I'(s1). All that needs to be shown is that GREEDY (respectively COMPASS,
GREEDY-COMPASS) visits ['(vg) when routing to some vertex t # I"(vg).

For the GREEDY and GREEDY-COMPASS algorithms, the next vertex visited after s;
depends on which side of the perpendicular bisector L (I'(vs), '(vg)) the destination

vertex ¢ lies. For the cOMPASS algorithm the next vertex visited after s; depends

CHAPTER 6. GEOMETRIC NETWORK DESIGN 7

Figure 6.2: A graph that defeats COMPASS, GREEDY, and GREEDY-COMPASS.

on which side of the angular bisector of ZT'(vs), '(s1),I'(ve) t lies. Since I'(s;) and
['(s1,v6) are contained in I'(C), there must be some vertex ¢ € I'(C) on the wrong
(I'(vg)) side of the appropriate bisector. Thus, any embedding of G defeats both
GREEDY and COMPASS. O

6.3.2 Embeddings for compass

Next we show that there is a large class of graphs that do support comPASsS. However,
before beginning, we review some results from polytope theory.

A 3-polytope P is the convex hull of a set of 4 or more points in R? not all
contained in a common plane. The boundary of P, denoted 0P is partitioned into
vertices (points), edges (open line segments), and faces (open polygons). The skeleton
of P, denoted skel(P) is an (abstract) graph defined by the edges and vertices of P.
We call P a realization of skel(P).

A theorem of Steinitz is that a graph G has a realization as a 3-polytope if and only
if G is 3-connected and planar [81, Chapter 4]. Steinitz’ theorem has been generalized
in several ways. A generalization of particular utility in the current context is due to
Barnette [4].

Theorem 21 (Barnette 1970). Let G be any 3-connected planar graph and let C
be a cycle in G. There exists a realization of G as a polytope P such that the cycle
C" in skel(P) corresponding to C satisfies Oproj(P) = proj(C'). Such a realization

can be computed in O(n?) time.

This theorem says that we can choose any cycle in G and realize a polytope P so

that the corresponding cycle in P is on the boundary of the shadow of P.

CHAPTER 6. GEOMETRIC NETWORK DESIGN 78

2 <>

Figure 6.3: The operation of the COMPASS-EMBED algorithm.

A near-triangulation G is an abstract graph that has a planar embedding I' such
that ['(G) is a triangulation. The COMPASS-EMBED algorithm (Algorithm 7) can be
used to embed any near-triangulation so that it supports compass. The operation of

the algorithm is shown in Figure 6.3.

Algorithm 7 The COMPASS-EMBED algorithm.

compute an embedding I' of G' as a triangulation

let C be the cycle in T'(G) defining the outer face of G

add edges to G until it is maximal and planar to obtain a graph G’

use Theorem 21 to compute a 3-polytope P that is a realization of G' such that
dproj(P) = proj(C"), where C’ is the cycle in skel(G) corresponding to C

5: project the vertices and edges of P corresponding to vertices and edges of G' onto
the z,y plane to obtain I’

Lemma 19. Algorithm COMPASS-EMBED produces a planar embedding I' of G in
O(n?) time.

Proof. To prove the correctness of the algorithm, we need to show that G’ is 3-
connected, so that Theorem 21 can be applied in Step 4, and that the embedding
[' is planar. The former follows from the fact that every maximal planar graph is
3-connected [6]. The latter follows from the fact that the edges of P corresponding
to edges of G are all on the lower (or upper) hull of P (since they are all on one side
of C'), thus the embedding I is a regular triangulation (see Section 3.1).

To prove the running time on the algorithm we note simply that all steps are

easily implemented in O(n?) time using known or cited algorithms. O

CHAPTER 6. GEOMETRIC NETWORK DESIGN 79

Theorem 22. Let I'(G) be the embedding of a near-triangulation G computed by
COMPASS-EMBED. Then I'(G) does not defeat the COMPASS algorithm.

Proof. This follows immediately from Theorem 2 and the fact that ['(G) is, by defi-

nition, a regular triangulation. O

6.3.3 The left-compass Algorithm

Next we present a routing/embedding combination that allows us to perform routing
on a more general class of graphs. The routing algorithm is a variant of COMPASS that
is more capable of handling non-triangular faces. We begin with some definitions.

Let C; and Csy be two edge-disjoint cycles in a graph G = (V, E). The connectivity
between C; and Cs in G, denoted A\(C;,C5) is defined as the least integer k such
that there are complementary subsets E; and E, of E satisfying: (1) C; C E; and
Cy C E,, and (2) the number of vertices incident with members of both E; and Ej is
k. Intuitively (though not exactly), & is the minimum number of vertices that need
to be removed in order to separate C from C5 in G.

Let G be a planar graph and C' be a cycle in G such that there exists some
embedding I" of G in which I'(C) is the boundary of a face of I'(G). Then (G, C) is

a subdivided circuit graph [6] if the following conditions are met:
1. G is 2-connected.
2. For each cycle C" in G that is edge-disjoint from C, A(C',C) > 3.

3. There is no path P = (vq,...,v) in G such that vy, ..., vx_1 are all degree 2

vertices and (v, v) is an edge in C.

Subdivided circuit graphs were defined by Tutte [79] who showed that a planar
graph G has an embedding as a convex subdivision with C' on the outer face if and
only if (G, C) is a subdivided circuit graph. This result is commonly referred to as
Tutte’s theorem.

We will give a routing and embedding algorithm for subdivided circuit graphs.

As with the COMPASS-EMBED algorithm, the embedding algorithm will make use of

CHAPTER 6. GEOMETRIC NETWORK DESIGN 80

(a) (b)
Figure 6.4: The graphs (a) G and (b) G°. The cycle C' is shown in bold.

Theorem 21 (Barnette’s theorem). However, the algorithm does not add extra edges
to make G a triangulation, since this would result in badly-shaped faces when these
edges were removed. Rather, the algorithm applies some transformations to G to
obtain a nicer 3-connected graph G’ that still “looks a lot like” G.

Let P = (vy,...,v;) be any path in G that joins two vertices of degree 3 or more
and which has no vertices of degree greater than 2 in its interior. A path compression
operation involves removing vs, ..., v;_1 from G and inserting the edge (v, vg). The
first step in our embedding algorithm is to perform path compression on all paths of
G that are not contained in C. We call the resulting graph G¢. The path compression
step is illustrated in Figure 6.4.

Lemma 20. G° is planar, 2-connected, and does not contain parallel edges.

Proof. That G° is planar and 2-connected is clear, since each individual path com-
pression operation preserves planarity (recall that G¢ is an abstract graph) and 2-
connectivity.

Next, suppose that the edge (u,v) appears twice in G°. These two occurrences
of (u,v) correspond to a cycle C,, in G. By Property 3 above, C,, and C must be
edge-disjoint. But then A\(C,,,C) < 2, contradicting Property 2. O

The second, and final, step in computing the graph G’ is to add a dummy vertex

v that is adjacent to all vertices of C' and call the resulting graph G'.

Lemma 21. G’ is planar and 3-connected.

CHAPTER 6. GEOMETRIC NETWORK DESIGN 81

Figure 6.5: The proof of Lemma 21.

Proof. By the definition of subdivided circuit graphs, there exists an embedding of
G' with all the vertices of C' on a single face. Therefore it is clear that v and all its
incident edges can be added while preserving planarity.

Next we prove that G’ is 3-connected. Suppose, by way of contradiction, that G’
has two vertices v; and vy, whose removal disconnects G’. Neither v; nor v, can be
the dummy vertex v since G° is itself 2-connected (Lemma 20).

G \ {v1,v2} contains two (or more) connected components G; and Go. Further-
more, all vertices of C'\ {v;, v2} are contained in one component, say G; (because the
dummy vertex v is adjacent to all vertices of C'\ {vy,v2}) (Refer to Figure 6.5). Now,
consider Gy. We claim that G cannot contain any cycle C’, since then A\(C',C) < 2,
contradicting Property 2 in the definition of a subdivided circuit graph.

In G4, all vertices except possibly those incident to v; or v, in G have degree
greater than 2. Thus, Gy must be a tree whose leaves are a subset of the vertices
adjacent to v; or vy in G. We claim that G5 must have exactly two leaves. Suppose
that this were not the case, then the subgraph G of G induced by the vertices of G
and {vy,v9} contains a cycle C’ such that A(C’,C) < 2.

Therefore, G4 is a tree with exactly two leaves, i.e., a path. But this is a contra-
diction, since then G5 would have been reduced to the edge (v, ve) during the path

compression phase of the embedding algorithm. O

At this point we can apply Theorem 21 to the graph G’ and choose C° as the
special cycle. Projecting the lower (upper) hull of the resulting polytope P onto the

x,y-plane gives a regular subdivision S’ in which the vertices of S’ correspond to

CHAPTER 6. GEOMETRIC NETWORK DESIGN 82

input l.a

Realize as a
polytope P

Figure 6.6: The operation of the LEFT-COMPASS-EMBED algorithm. The cycle C' is
shown in bold.

vertices of G'. The edges of S’ correspond to paths in G whose interior vertices all
have degree 2. Thus, we can subdivide the edges of S’ to obtain an embedding of
G. We refer to this embedding algorithm as the LEFT-COMPASS-EMBED algorithm
(Algorithm 8). The operation of LEFT-COMPASS-EMBED is shown in Figure 6.6.

Algorithm 8 The LEFT-COMPASS-EMBED algorithm.

1: compute the graph G’

2: compute the polytope P using Theorem 21

3: project the lower (upper) hull of P to obtain the regular subdivision S’
4: subdivide the edges of S’ to obtain an embedding I' of G

Theorem 23. Algorithm LEFT-COMPASS-EMBED computes a planar embedding of G

in O(n?) time.

Proof. All steps of the algorithm can easily be implemented in O(n?) time using
known techniques. That the resulting embedding is planar follows from the fact that
it is the orthogonal projection of the lower (upper) convex hull of a 3-polytope. That

it is an embedding of G follows from the algorithm for its construction. O

CHAPTER 6. GEOMETRIC NETWORK DESIGN 83

We note that Theorem 23 provides an alternate (less direct) proof of Tutte’s
theorem, since S is a convex subdivision with C on its outer face.

Next we describe the routing algorithm LEFT-COMPASS that we use for routing on
['(G). The algorithm is memoryless and deterministic and always moves the neighbour
u of the current vertex v which minimizes the counterclockwise angle CCAW t,u,v. More

formally, LEFT-COMPASS is defined by the transition function

CCW CCW
lemp(v) =u € N(v) : £ t,u,v < /£ t,w,v, for all w € N(v) . (6.3)
Intuitively, LEFT-COMPASS is a “left-biased” version of the cOMPASS algorithm. This
biasing saves LEFT-COMPASS from repeatedly traversing the same edge in a convex

subdivision.

Lemma 22. Let S be a convexr subdivision that defeats LEFT-COMPASS, and let t be
a verter such that LEFT-COMPASS fails to route a packet to t when given some other
vertez as the source. Then there exists a cycle C = (vo,...,vx—1) (k > 3) in S such
that lemp(v;) = viq1 for all 0 <@ < k.!

Proof. Since S defeats LEFT-COMPASS, and LEFT-COMPASS is a memoryless algo-
rithm, then either there is an edge (u,v) such that lemp(u) = v and lemp(v) = u, or
there is the situation described in the lemma. We prove that there can be no such
edge (u,v).

Refer to Figure 6.7. Assume that such an edge (u,v) exists, then CZV t,bu,v >
or CZV t,v,u,> m. Suppose then that CZV t,v,u > m. Then for all w € N(v),
cow cow

/ w,v,u >/ t,v,u. But this implies that v is a reflex vertex on the boundary

of some face f, contradicting the fact that S is a convex subdivision. O

Theorem 24. Let I'(GQ) be any planar geometric graph output by the LEFT-COMPASS-

EMBED algorithm. Then I'(G) does not defeat LEFT-COMPASS.

Proof. Assume by way of contradiction that I'(G) defeats LEFT-COMPASS. Let vy, ..., Ug—1
be the set of vertices such that lemp(v;) = v;41 for 0 <7 < k. By Lemma 22, such a

set, of vertices exists. Let o(v;, v;11) be the face on the left of the edge (v;, v;41). Then,

L Here, and in the remainder of this section, subscripts are taken modk.

CHAPTER 6. GEOMETRIC NETWORK DESIGN 84

Figure 6.7: The proof of Lemma 22.

by the same argument used in the proof of Lemma 4, either o(v; 1, v;) = o(v;, v41) or
o(v;, v41) overlaps o(v; 1,v;) with respect to the viewpoint ¢. Thus, there is a set of
faces that overlap cyclically from the viewpoint ¢.

The set of faces of I'(G) define the same polygons as the faces of S’, and S’
is a regular subdivision. However, Edelsbrunner’s result [22] states that no regular
subdivision has a set of faces that overlap cyclically from any viewpoint. Thus, we

obtain the required contradiction. O

6.4 Summary and Open Problems

In this chapter we have studied embedding and routing combinations. We saw that
using existing results on grid embeddings of planar graphs, a routing/embedding
combination that supports shortest-path routing was not very difficult to achieve,
even with a memoryless routing algorithm. Unfortunately, the algorithm is more of
theoretical interest, since the vertex coordinates require 2(nlogn) bits to represent.

On the more practical side, we studied how the simple algorithm coMPASS and
its variant LEFT-COMPASS can be used in combination with embedding algorithms.
Although these algorithms don’t guarantee shortest paths, they are simple and prac-
tical to implement and have some interesting theoretical properties. Along the way,
we were able to unify a classic result in planar graph theory (Tutte’s theorem) with
a classic result in polytope theory (Barnette’s version of Steinitz’ theorem).

As for open problems, there are still many of them. We have argued that the

HIGH-PRECISION-EMBED/HIGH- PRECISION-ROUTE combination is unsatisfactory for

CHAPTER 6. GEOMETRIC NETWORK DESIGN 85

several reasons. This raises the following problem.

Open Problem 10. Is there an embedding/routing combination that embeds vertices

on a polynomial sized grid and always does (approzimate) shortest path routing?

An affirmative answer to this question could improve on some existing results
in the area of compact routing. Specifically, it would give a compact routing algo-
rithm where vertices receive O(logn) bit identifiers and which achieves (approximate)
shortest-path routing.

We have given embedding algorithms for COMPASS and its variant LEFT-COMPASS,

but have not obtained corresponding results for the GREEDY algorithm.
Open Problem 11. Study embeddings that support GREEDY.

A number of problems related to embeddings for the coMPASS algorithm also

remain open.

Open Problem 12. Does every tree have an embedding on a polynomial sized grid

that supports COMPASS ?

An orthogonal embedding is one in which all edges are parallel to the x or y axis.
Singh [77] has shown that not all trees of maximum degree 4 have an orthogonal

embedding that supports COMPASS. This raises the following open problem.

Open Problem 13. Does every binary tree have an orthogonal embedding that sup-

ports the COMPASS algorithm?

Our embeddings for the COMPASS and LEFT-COMPASS algorithms make use of a
high precision arithmetic model of computation. An interesting (and fundamental)

problem in polytope theory is that of realizing polytopes on small point sets.

Open Problem 14. Let f(n) be the minimum number such that any 3-connected
planar graph can be realized as a 3-polytope on a grid of size f(n) x f(n) x f(n).
Prove that f(n) is polynomial.

CHAPTER 6. GEOMETRIC NETWORK DESIGN 86

The closely related problem of drawing planar graphs on small grids has received
considerable attention [20, 74] and met with success. The problem of realizing 3-
polytopes on small grids has been considered by Onn and Sturmfels [68] who show that
f(n) < 43", by Richter-Gebert [73] who shows that f(n) < 2" and by Chrobak et
al. [14] who show that f(n) < 20("198™) and give a linear time algorithm for achieving
this bound.

6.5 Bibliographic Notes

Shortest path routing in abstract graphs has usually been accomplished by means of
routing tables, which in some cases can be stored compactly. For a general overview
of compact routing techniques, see the survey article by van Leeuwen and Tan [80].

For planar graphs Gavoille and Hanusse [27] have shown that shortest path routing
can be implemented by storing 8n+o(n) bits at each vertex, in contrast to the obvious
O(nlog n) bits required to store routing tables. The algorithm also has the advantage
that the node identifiers are 1, . .., n and that each routing step requires only O(log®n)
bit operations.

Frederickson and Janardan [25] have shown that by storing O(n*/3logn) bits over
all vertices, it is possible to perform routing so that paths are at most 3 times the
length of the shortest path. The same work also shows how to compute a path of
length at most 7 times the shortest path by storing only O((1/¢)n'*€logn) bits over
all vertices.

A careful analysis of the HIGH-PRECISION-EMBED /HIGH-PRECISION-ROUTE com-
bination given in this chapter reveals that it requires Q(nlogn) bits of storage at
each vertex and is therefore not competitive with the results of Gavoille and Hanusse
or Frederickson and Janardan. It may be possible to reduce the memory require-
ments by applying their techniques, but doing so does not appear to be a particularly
enlightening or useful exercise.

Much of Singh’s Master’s thesis [77] (see also Kranakis et al. [52]) is devoted to
embeddings that support the COMPASS algorithm. Singh shows how to embed any

tree to support the COMPASS algorithm, but the ratio of minimum to maximum edge

CHAPTER 6. GEOMETRIC NETWORK DESIGN 87

length can be exponential in n. Another variant includes orthogonal embeddings of
trees of maximum degree 4 that support COMPASS when the source s is always the
root of the tree (referred to as single-source routing). Singh also gives impossibility
results showing that not all trees of maximum degree 4 have orthogonal embeddings
that support cOMPASS, and that not all outerplanar graphs have embeddings for
which coMPAss always finds a shortest path.

All results on embedding and routing presented in this chapter appear here for

the first time.

Chapter 7
Experimental Results

In this chapter we take a step back from theory and study the actual behaviour of
online routing algorithms on different types of input graphs. More precisely, we study
the empirical performance of online routing algorithms on randomly generated planar
geometric graphs.

The purpose of this chapter is not to develop highly detailed implementations of
routing algorithms specified down to the protocol level. Nor is it to develop sophis-
ticated simulation models of real-life networks. Rather, we study idealized routing
algorithms on randomly generated graphs. Our hope is that the information we
gather can act as a guide to help determine which algorithms should work well in
practice. However, the reader should be warned that, for any particular applica-
tion, implementation and protocol details can be very important and should not be
neglected.

The experimental results in this chapter are grouped by the type of input graph,
with Delaunay triangulations, Graham triangulations (defined below), meshes, and
unit disk graphs being the types of graphs considered. We choose to study these types
of graphs because they represent several different applications of online routing.

Our experiments measure three quantities. Let G be a graph and denote by P(G)
all pairs of vertices v and v such that v and v are in the same connected component

of G. For a routing algorithm A we denote by S(A, G) all pairs of vertices (s,t) in G

38

CHAPTER 7. EXPERIMENTAL RESULTS 89

such that A succeeds in routing from s to ¢. More formally,
S(A,G) ={(s,t) € P(G) : A succeeds in routing from s to t} .

We call S(A, Q) the successes for A on G. The success rate of A on G is then defined
N S(4,6)
SR(A,G) = N
The value SR(A, G) measures how often A succeeds in routing tasks on G.
To measure the efficiency of A on G we measure the average Euclidean dilation
AED(A, G) and the average link dilation ALD(A, Q). Let W (A, G, s,t) denote the

walk taken by A when routing from s to t. The we define

1 Z length(W (A, G, s,t))

AED(A, G) = [S(A4,G)] length(SEP(G, s,1))

(s,t)€S(A,G)

where SEP(G, s,t) denotes a shortest path from s to ¢t in G under the Euclidean
distance measure.

Similarly, we define

ALD(A,G) =

1 . Z |W(AaGaSat)|
S(A.G) BP0

(s,t)eS(A,G

where SLP(G, s,t) denotes a shortest path from s to ¢ in G under the link distance

measure.

7.1 Delaunay Triangulations

Figures 7.1 and 7.2 show results for routing in randomly generated Delaunay trian-
gulations with up to 500 vertices. These triangulations were generated by selecting n
points uniformly distributed in the unit square and computing their Delaunay trian-
gulation.

Figure 7.1 shows the average Euclidean dilation for GREEDY, COMPASS, GREEDY-
COMPASS, RANDOM-COMPASS, VORONOI, and PARALLEL-VORONOI, while Figure 7.2

CHAPTER 7. EXPERIMENTAL RESULTS

B I I i T T T T T T
U O E e
IR R
1.8 | "v"70/>_/ _
- D"/ -
1.7 /,‘3 N
COMPASS ---x---
4 GREEDY-COMPASS ---*---
ter / RANDOM-COMPASS -8~ |
| I/ VORONOI --®--
/v PARALLEL-VORONOI ---&---
~ 15+ © |
o
[a]
L
< 1af |
13)] |
=S & a o |
1.2 |
1.1
1
0

90

Figure 7.1: Average Fuclidean dilation of routing algorithms on Delaunay triangula-

tions.
3 T T T T T T T T T
R
/’/—G//>>
28 | T i
26 e GREEDY —+— A
e COMPASS ---x-—-
o GREEDY-COMPASS -----
24 b o RANDOM-COMPASS 8-
VORONOI —-m--
PARALLEL-VORONOI ---&---
22F o i
[a 2F o —
-
<
,,,,, I
1.8 - o meeemmmmT TR .
,»/’/.—/—/—/_
T T 4
L . B E
. .
14
12 b
1
0 50 100 150 200 250 300 350 400 450
n

500

Figure 7.2: Average Link dilation of routing algorithms on Delaunay triangulations.

CHAPTER 7. EXPERIMENTAL RESULTS 91

Rank | Euclidean distance Link distance

1 COMPASS GREEDY

2 GREEDY-COMPASS GREEDY-COMPASS
3. GREEDY COMPASS

4. VORONOI RANDOM-COMPASS
5 RANDOM-COMPASS VORONOI

6 PARALLEL-VORONOI PARALLEL-VORONOI

Table 7.1: Ranking routing algorithms based on average dilation.

shows the average link dilation for the same algorithms. Because all of these algo-
rithms always succeed on Delaunay triangulations, there are no statistics on success
rate.

These graphs show that these algorithms can be ranked fairly clearly in terms
of average dilation. This ranking is shown in Table 7.1 for both Euclidean and link
distance. One interesting point about this ranking is that under Euclidean distance,
COMPASS performs better than GREEDY, while the opposite is true for link distance.
This can be explained by the following intuition: By traversing the edge whose di-
rection is closest to the direction 3, the coMPAss algorithm attempts to maximize
the ratio of progress (reduction in distance to ¢) to Euclidean distance travelled, and
therefore results in efficient paths under the Euclidean distance measure. On the
other hand, GREEDY attempts to make the maximum progress at each step, regard-
less of the Euclidean distance travelled. The result is that GREEDY generally requires
fewer steps and therefore results in efficient paths under the link distance measure

Another interesting, and somewhat unfortunate, aspect of these results is that
PARALLEL-VORONOI, the only algorithm that is competitive under the Euclidean
distance measure, performs the worst under both the Euclidean and link distance
measures. This is due to the fact that PARALLEL-VORONOI is quite conservative,
and uses backtracking to ensure that it achieves the bound on its competitive ratio.
However, the configurations that cause the other algorithms to perform poorly don’t

seem to occur frequently in random point sets, and this backtracking effort is wasted.

CHAPTER 7. EXPERIMENTAL RESULTS 92

1 B—= B -8 B ® B

GREEDY —+—

COMPASS ---x---
GREEDY-COMPASS ---%---
0.8 | RANDOM-COMPASS &

SR(G)

04

02 -

0 1 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450 500
n

Figure 7.3: Success rates of routing algorithms on Graham triangulations.

7.2 Graham Triangulations

A Graham triangulation is a triangulation obtained by sorting a set of input points by
x-coordinate and then using Graham’s scan to triangulate the resulting z-monotone
chain (c.f., [70]). In this section we discuss results for routing on randomly generated
Graham triangulations. As before, these triangulations were generated by selecting
uniformly distributed points in the unit square and then triangulating them. These
results are shown in Figures 7.3-7.5.

Figure 7.3 shows success rates of various algorithms on Graham triangulations with
up to 500 vertices. Interestingly, the only algorithm that does not have a success rate
of 1 is GREEDY. In fact, the success rate of GREEDY is very bad and seems to decrease
as the number of vertices increases, becoming as low as .2 for triangulations with 500
vertices. Because of this, the results on average dilation are not very meaningful for
GREEDY, and we omit them from our discussion.

Figures 7.4 and 7.5 show results for average Euclidean dilation and average link

CHAPTER 7. EXPERIMENTAL RESULTS

9 T T T T T T T T T B
8 | //’/ i
//X///
7k /// .
6 7 -
E
©) L g
as5f , N
L 7 =0
< x K
///// o
4+ -~) i
e o X
- GREEDY —+—
L COMPASS ---%---
3 F ><' * GREEDY-COMPASS ---%--- -
P RANDOM-COMPASS &
v.,ﬂ&
2 r o * 7
g
e
1 e — + i + + + i +
0 50 100 150 200 250 300 350 400 450 500

93

Figure 7.4: Average Fuclidean dilation of routing algorithms on Graham triangula-

tions.
7 T T T T T T T T T
6 o]
///X/(///
5F /,/’/ % i
- s
—~~ - a7
9 4T ’// g T
2
GREEDY —+—
COMPASS -
GREEDY-COMPASS -
3r RANDOM-COMPASS & |
2 - -
1 1 : 1 ; 1
0 50 100 150 200 250 300 350 400 450 500

Figure 7.5: Average Link dilation of routing algorithms on Graham triangulations.

CHAPTER 7. EXPERIMENTAL RESULTS 94

dilation, respectively. Unlike our results for Delaunay triangulations, the GREEDY-
COMPASS and RANDOM-COMPASS algorithms outperform the COMPASSs algorithm un-
der both Euclidean and link distance. This is because, with Graham triangulations,
the coMPASs algorithm has a tendency to “overshoot” its destination by traversing
edges that take it beyond the destination vertex ¢. The GREEDY-COMPASS algorithm
avoids this problem by taking the compass neighbour of the current vertex that is
closest to t.

What is perhaps more surprising about these results is that as the number of
vertices increases, RANDOM-COMPASS begins to perform better than both cOMPASS
and GREEDY-COMPASS under both distance measures. The reason for this is unclear,

and requires further study.

7.3 Meshes with Faults

Next, we study the performance of routing algorithms on regular square meshes with
randomly placed faults. An n vertex faulty mesh with fault rate « is obtained by
taking a mesh with n(1 + «) vertices and removing an vertices chosen uniformly at
random without replacement.’

Figure 7.6 shows the success rates for COMPASS, GREEDY, and GREEDY-COMPASS
on meshes with number of vertices ranging from 25 to 215 and fault rates ranging from
5% to 50%. Basically, the success rates for the 3 algorithms are indistinguishable,
and become as low as 40% for large meshes with high fault rates.

Figure 7.7 shows average dilation for COMPASS, GREEDY, and GREEDY-COMPASS
compass on faulty meshes. Note that, because all edges have length 1, the average
Euclidean and average link dilation are identical. Again, the three algorithms are
indistinguishable, but all achieve average dilation close to 1.

The average dilation for all three algorithms tends to peak when the fault rate is
in the range 20-30%. This is because in this range, the success rate is still relatively
high, but there are enough faults that many routing tasks must route around the

faults, and do so sub-optimally. When the fault rate is lower than this, most routing

!Here we assume that n(l + «) is a perfect square.

CHAPTER 7. EXPERIMENTAL RESULTS 95

GREEDY —+—
COMPASS ---x---
GREEDY-COMPASS ------

250

fault rate (%) 200

50

Figure 7.6: Success rates of routing algorithms on faulty meshes.

tasks do not encounter faults and hence perform shortest path routing. When the
fault rate is higher, longer routing tasks nearly always fail and hence do not contribute
to the average dilation. It is because of this effect that a low average dilation is only
meaningful when the success rate is high.

In contrast, Figure 7.8 shows the average dilation for the FACE-ROUTE algorithm
which has a success rate of 1. The cost of this guaranteed success is a much higher

average dilation, and FACE-ROUTE has average dilations ranging between 4 and 10.

7.4 Unit Disk Graphs

Finally, we study the performance of routing algorithms on randomly generated unit
disk graphs with varying numbers of vertices, n, and average degree A. These graphs
were generated by selecting n uniformly distributed points in the unit square, sorting
the (g) interpoint distances and setting the value of a “unit” to achieve the desired
average degree, A. These plots show results for 20 < n < 200 and 3 < A < 10.

CHAPTER 7. EXPERIMENTAL RESULTS

AED(G)/ALD(G)

1.0045

0
35
40

fault rate (%)

45 50
50

100

96

GREEDY —+—
COMPASS ---x---
GREEDY-COMPASS ------

250

Figure 7.7: Average dilation of routing algorithms on faulty meshes.

10 4

o P S

L Em “ ‘
e “

10
15
20
25

0
fault rate (%) 35
40

45 50
50

100

FACE-ROUTE ——

250
200

Figure 7.8: Average dilation of FACE-ROUTE on faulty meshes.

CHAPTER 7. EXPERIMENTAL RESULTS 97

GREEDY —+—
COMPASS ---x---
GREEDY-COMPASS ------

SR(G) - A ' "’)
0.95 i He -‘
| —
08 [’
075 F
iy
06
- 10
8

average degree

Figure 7.9: Success rates of routing algorithms on unit graphs.

Figure 7.9 shows success rates for GREEDY, COMPASS and GREEDY-COMPASS.
Although the success rates for the three algorithms are very similar, there seems
to be a consistent ranking with COMPASS achieving the highest success rate, closely
followed by GREEDY-COMPASS and GREEDY. Success rates vary between 1 for graphs
with high average degree and few nodes and .6 for graphs with low average degree
and large numbers of nodes.

At this point we caution the reader that, in order to provide a more understandable
visualization of the data, the viewpoint in the upcoming figures is different than that
of Figure 7.9

Figures 7.10 and 7.11 show average Euclidean and link dilation, respectively, for
the same three routing algorithms. The average dilation for all three algorithms is
very close to 1. As was the case for Delaunay triangulations, COMPASS performs
better under the Euclidean distance measure while GREEDY performs better under
the link distance measure, with GREEDY-COMPASS falling somewhere in between the

two.

CHAPTER 7. EXPERIMENTAL RESULTS 98

GREEDY —+—

‘ Fe COMPASS ---x---
¢ s S GREEDY-COMPASS ---%:--
R e

AED(G)

1.06
1.05 f
1.04 |
1.03 %
1.02 F o

1.01 F AKX

3

average degree 7 S| KT 140

Figure 7.10: Average Euclidean dilation of routing algorithms on unit graphs.

GREEDY —+—
ke COMPASS ——-—-
N N GREEDY-COMPASS -~ %---

Figure 7.11: Average link dilation of routing algorithms on unit graphs.

CHAPTER 7. EXPERIMENTAL RESULTS 99

Finally, we discuss results for FACE-ROUTE. Note that, unlike GREEDY, COMPASS
and GREEDY-COMPASS, FACE-ROUTE requires that the input graph be planar, i.e.,
that its edges meet only at their endpoints. In general, unit disk graphs do not have
this property. However, as discussed in Section 1.2.3, there is a simple local rule that
can be applied by a routing algorithm to obtain a planar subgraph of a unit disk
graph. The results we describe are therefore for this planar subgraph of the unit disk
graph. One final caveat: Although we measure the performance of FACE-ROUTE on
the planar subgraph, the values for the average dilation are computed using shortest
paths in the original, possibly non-planar, graph. Thus, even if FACE-ROUTE could
achieve perfect shortest path routing, the average dilation would be greater than 1.

Figures 7.12 and 7.13 show average dilation results for the FACE-ROUTE algo-
rithm under the Euclidean and link distance measures, respectively. As expected,
the algorithm exhibits large average dilation under both measures, with values in the
range 4-10 under the Euclidean measure and 4-14 under the link measure. In defence
FACE-ROUTE, it does always achieve a success rate of 1.

One final point to note is that the average link dilation of FACE-ROUTE increases
as the average degree increases, but the average Euclidean dilation does not increase,
or even decreases. This is because the reduction of the unit disk graph tends to
preserve short edges over long edges. This property seems to have little effect on the
Euclidean lengths of paths, but requires that more edges are crossed, which increases
the link lengths of paths.

7.5 Summary and Open Problems

In this chapter we have experimentally studied most of the routing algorithms de-
scribed in this thesis. Although the best routing algorithm to use in a particular
application depends on specifics of the application and implementation environment,

there are at least three guiding principles that arise from our study.

1. Heuristics based on direction, like cOMPASS, tend to work better when the

object is to minimize Euclidean distance travelled, while heuristics based on

CHAPTER 7. EXPERIMENTAL RESULTS 100

FACE-ROUTE ——

a1
o

=
[es]
o

N

o

o

Figure 7.12: Average Euclidean dilation of FACE-ROUTE on unit graphs.

ALD(G) 7
TR “"‘ o
’ ;
S

3

Figure 7.13: Average link dilation of FACE-ROUTE on unit graphs.

CHAPTER 7. EXPERIMENTAL RESULTS 101

distance, like GREEDY tend to work better when the goal is to minimize the

number of edges traversed.

2. Elaborate algorithms that offer a guarantee on their worst-case performance,
such as PARALLEL-VORONOI, often don’t perform as well as simple algorithms

in the so-called average case and probably do not work as well in practice.

3. Elaborate algorithms that have a success rate of 1 usually do so at the cost of

higher average dilation.

Although points 2 and 3 would appear to imply that much of the work in this thesis
is impractical, we believe that this is not the case. The place for elaborate algorithms
with guarantees on their competitive ratio or success rates is as a backup for simpler
heuristic algorithms. As an example, one could try to use a simple heuristic algorithm
like GREEDY until it fails, and then switch to a more sophisticated algorithm like
FACE-ROUTE. Another option is to alternate between the two. Several such hybrid
algorithms are discussed in the paper by Bose et al. [12]. Figure 7.14 (taken from
[12]) shows results obtained by combining the FACE algorithm of Kranakis et al. [52]
with GREEDY (labelled GEDIR).

As for open problems, the very good asymptotic behaviour of RANDOM-COMPASS

on Graham triangulations remains a mystery.

Open Problem 15. Provide an explanation for the behaviour of RANDOM-COMPASS

on Graham triangulations. Why does it perform better than GREEDY-COMPASS ?

7.6 Bibliographic Notes

Experimental work on the competitiveness of routing algorithms in Delaunay triangu-
lations and under the Euclidean distance measure appears in the paper by Bose and
Morin [10]. Experimental results for routing on unit disk graphs appear in the paper
by Bose et al. [12]. The latter paper also discusses combinations of GREEDY with

algorithms that have a success rate of 1. Another paper by Bose et al. [8] contains

CHAPTER 7. EXPERIMENTAL RESULTS 102

Delivery rate

w
o
1

90 554

Figure 7.14: Average link dilation of GFG algorithm, proposed by Bose et al. [12].

a short discussion of experimental results for GREEDY-COMPASS under the Euclidean
distance measure in its conclusions.

A very large source of experimental results for different types of online routing
algorithms is the literature on mobile computing. Most of the references given in
the bibliographic notes of Chapter 3 contain experimental results for various rout-
ing algorithms under various assumptions about the routing algorithm, input graph,
networking environment, and level of knowledge the algorithm has about the input
graph. A good starting point for this kind of information is the MobiCom proceedings

from 1995 onwards.

Chapter 8
Summary and Conclusions

In this thesis we have studied online routing problems in planar geometric graphs.
Aside from proving some theorems about online routing algorithms, this work has
illustrated relationships between online routing problems and other areas of math-
ematics and computer science, including polytope theory, planar graph theory, and
distributed computing.

We conclude with a summary of our contributions and some more open problems

that did not fit into any of the previous chapters.

8.1 Summary of Contributions

Here we summarize the main points covered in the individual chapters of this thesis.
For a more detailed description of the contributions the reader is referred to Chapter 2

The contributions of the individual chapters of this thesis are as follows.

Chapter 1 In this chapter we introduced the problem of routing on planar geometric
graphs and motivated it with three potential applications. In showing how to
reduce routing in mobile ad hoc networks to routing in planar geometric graphs
we gave an extremely simple distributed algorithm for extracting a connected
planar subgraph of a unit disk graph. From a distributed computing point

of view this result is surprising since it shows that the message complexity of

103

CHAPTER 8. SUMMARY AND CONCLUSIONS 104

extracting a planar subgraph from a unit disk graph is O(|V| + |E|) while the
message complexity of leader election is Q(|V]log |V| + |E|) [63, 72].

Chapter 3 In this chapter, we considered the special case of routing in triangula-
tions and convex subdivisions using very simple routing algorithms. We de-
scribed new routing algorithms and found new properties of two previously
known routing algorithms. Our characterization of trapping cycles for the com-
PASS algorithm also allowed us to make use of some powerful techniques from
polytope theory in Chapter 6. In this chapter we also showed a clear separation
between deterministic memoryless algorithms and algorithms that make use of

memory or randomization.

Chapter 4 In this chapter, we continued our study of routing in triangulations with
an emphasis on the length of the paths found by our routing algorithms. In the
Euclidean distance metric, our results included competitive routing algorithms
for three fundamental geometric structures, namely Delaunay triangulations,
greedy triangulations, and minimum-weight triangulations. This latter result
is especially surprising, since very little is known about minimum-weight tri-
angulations. We also showed that no competitive algorithm exists for all tri-
angulations. In the link length metric, we showed that no competitive routing

algorithms are possible for Delaunay, greedy, or minimum-weight triangulations.

Chapter 5 In this chapter we studied the problems of routing, broadcasting and geo-
casting in planar geometric graphs. Our algorithms combined geometry with
techniques from distributed algorithms to obtain efficient solutions for these
problems. In deriving our routing algorithms we made use of and improved
the previous best known results on traversing planar subdivisions with constant
additional storage. These subdivision traversal techniques have applications in
computational geometry, geographic information systems and computer graph-

ics.

Chapter 6 In this chapter we studied the problem of embedding planar graphs so
that they admit geometric routing algorithms. In doing so, we found that by

CHAPTER 8. SUMMARY AND CONCLUSIONS 105

using a real model of computation it was not particularly difficult, or interesting,
to embed any planar graph so that it could support geometric shortest path

routing.

We also considered the simple routing algorithms GREEDY and COMPASS and
studied embeddings of graphs that support them. We showed that there exist
planar graphs having no embedding that supports GREEDY or COMPASS. We
also showed that any near-triangulation has an embedding which supports com-
PASS and that any subdivided circuit graph has an embedding that supports
LEFT-COMPASS.

The results on embeddings for COMPASS and LEFT-COMPASS make use of some
elegant results from planar graph theory and the theory of 3-polytopes. As
a byproduct of our results, we obtained a proof that the set of graphs with
convex embeddings (subdivided circuit graphs) is exactly the set of subdivisions
of skeletons of lower convex hulls of 3-polytopes, thus unifying Tutte’s theorem

and Barnette’s version of Steinitz’ theorem.

Overall, the results obtained in our study of online routing have proven to be
interesting and non-trivial. In working on these problems we have also generated a

list of 18 open problems that continue to deserve attention.

8.2 Open Problems

In this section we describe some open problems that did not fit into any of the previous
chapters. Any of these problems is rich enough to provide an entire chapter’s worth
of material on its own.

In Chapter 6, we considered methods of embedding graphs so that simple routing
algorithms were able to work on them. However, the algorithms we described were
centralized algorithms that made use of knowledge about the entire graph to be

embedded. This observation suggests the following open problem.

Open Problem 16. Give distributed algorithms for planarity testing, extraction of

mazimal planar subgraphs, and planar embedding.

CHAPTER 8. SUMMARY AND CONCLUSIONS 106

Rajsbaum and Urrutia [72] study the problem of finding the convex hull of a pla-
nar geometric graph G by a distributed algorithm whose underlying communication
network is GG. Since convex hull construction is only a small part of the field known

as computational geometry, the following open problem suggests itself.

Open Problem 17. Study distributed algorithms for computational geometry prob-

lems.

Finally, in this thesis we have restricted our attention to planar geometric graphs
with non-crossing edges. While there are many applications that are included in this
model, there are some applications in which it makes sense to relax the planarity

restriction.

Open Problem 18. Study any of the problems in this thesis for the case of d-
dimensional geometric graphs (d > 3) and/or 2-dimensional geometric graphs with

possibly crossing edges.

8.3 Final Note

We hope that the reader has enjoyed reading these results as much as the author has
enjoyed relating them. If not, at least the knowledge might be useful the next time

the reader is lost in a strange city.

Bibliography

1]

2]

3]

[4]

[5]

[6]

[7]

O. Aichholzer, F. Aurenhammer, S.-W. Cheng, N. Katoh, G. Rote, M. Taschwer,
and Y.-F. Xu. Triangulations intersect nicely. Discrete and Computational Ge-
ometry, 16(4):339-359, 1996.

D. Avis and K. Fukuda. A pivoting algorithm for convex hulls and vertex enu-
meration of arrangements and polyhedra. Discrete and Computational Geometry,
8(295-313), 1992.

R. Baeza-Yates, J. Culberson, and G. Rawlins. Searching in the plane. Informa-
tion and Computation, 106(2):234-252, 1993.

D. W. Barnette. Projections of 3-polytopes. Israel Journal of Mathematics,
8:304-308, 1970.

S. Basagni, I. Chlamtac, V. R. Syrotiuk, and B. A. Woodward. A distance
routing effect algorithm for mobility (DREAM). In ACM/IEEE International
Conference on Mobile Computing and Networking (Mobicom’98), pages 76-84,
1998.

J. A. Bondy and U. S. R. Murty. Graph Theory with Applications.
Elsevier/North-Holland, 1976.

Allan Borodin and Ran El-Yaniv. Online Computation and Competitive Analysis.

Cambridge University Press, 1998.

107

BIBLIOGRAPHY 108

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

P. Bose, A. Brodnik, S. Carlsson, E. D. Demaine, R. Fleischer, L. Jacobsen,
A. Lépez-Ortiz, P. Morin, and J. I. Munro. Online routing in convex subdivi-
sions. In Proceedings of the 11th International Symposium on Algorithms and
Computation (ISAAC 2000), 2000.

P. Bose and L. Devroye. Intersections with random geometric objects. Compu-
tational Geometry Theory and Applications, 10(3):139-154, 1998.

P. Bose and P. Morin. Online routing in triangulations. In Proceedings of the 10th
International Symposium on Algorithms and Computation (ISAAC’99), pages
113-122, 1999.

P. Bose and P. Morin. An improved algorithm for subdivision traversal without

extra storage. In Proceedings of the 11th International Symposium on Algorithms
and Computation (ISAAC 2000), 2000.

P. Bose, P. Morin, I. Stojmenovi¢, and J. Urrutia. Routing with guaranteed deliv-
ery in ad hoc wireless networks. In Proceedings of the 3rd International Workshop
on Discrete Algorithms and Methods for Mobile Computing and Communications
(DIALM’99), pages 48-55, 1999.

C. Brocker and S. Schuirer. Searching rectilinear streets completely. In Proceed-
ings of the Tth Workshop on Algorithms and Data Structures (WADS’99), 1999.
To appear.

M. Chrobak, M. T. Goodrich, and R. Tamassia. Convex drawings of graphs in
two and three dimensions. In Proceedings of the Twelfth Annual ACM Symposium
On Computational Geometry (SoCG 96), pages 319-328, 1996.

Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction
to Algorithms. MIT Press, Cambridge, 1990.

G. Das and D. Joseph. Which triangulations approximate the complete graph?
In Proceedings of the International Symposium on Optimal Algorithms, pages
168-192, 1989.

BIBLIOGRAPHY 109

[17]

18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

A. Datta, C. Hipke, and S. Schuirer. Competitive searching in polygons—beyond
generalized streets. In Proceedings of the 6th International Symposium on Algo-
rithms and Computation (ISAAC’95), pages 32-41, 1995.

A. Datta and C. Icking. Competitive searching in a generalized street. Compu-
tational Geometry Theory and Applications, 13(109-120), 1999.

M. de Berg, M. van Kreveld, R. van Oostrum, and M. Overmars. Simple traver-
sal of a subdivision without extra storage. International Journal of Geographic
Information Systems, 11:359-373, 1997.

H. de Fraysseix, J. Pach, and R. Pollack. Small sets supporting Fary embeddings
of planar graphs. In Proceedings of the 20th ACM Symposium on the Theory of
Computing (STOC’88), pages 426-433, 1988.

D. Dobkin, S. J. Friedman, and K. J. Supowit. Delaunay graphs are almost
as good as complete graphs. Discrete and Computational Geometry, 5:399-407,
1990.

H. Edelsbrunner. An acyclicity theorem for cell complexes in d dimension. Com-
binatorica, 10(3):251-260, 1988.

H. Edelsbrunner, L. J. Guibas, and J. Stolfi. Optimal point location in a mono-
tone subdivision. STIAM Journal on Computing, 15:317-340, 1986.

. Fary. On straight line representing of planar graphs. Acta Universitatis Szege-
diensis. Acta Scientiarum Mathematicarum, 11:229-233, 1948.

G. N. Frederickson and R. Janardan. Efficient message routing in planar net-
works. SIAM Journal on Computing, 18(4):843-857, 1989.

K. R. Gabriel and R. R. Sokal. A new statistical approach to geographic variation
analysis. Systematic Zoology, 18:259-278, 1969.

C. Gavoille and N. Hanusse. Compact routing tables for graphs of bounded genus.
In 26th International Colloquium on Automata, Languages and Programming

(ICALP’99), pages 351-360, 1999.

BIBLIOGRAPHY 110

[28] S. K. Ghosh and S. Saluja. Optimal on-line algorithms for walking with mini-
mum number of turns in unknown streets. Computational Geometry Theory and
Applications, 8(5):241-266, 1997.

[29] C. Gold and S. Cormack. Spatially ordered networks and topographic recon-
structions. In Proceedings of the 2nd International Symposium on Spatial Data
Handling, pages 74-85, 1986.

[30] C. M. Gold, T. D. Charters, and J. Ramsden. Automated contour mapping
using triangular element data structures and an interpolant over each irregular
triangular domain. Computer Graphics, 11(2):170-175, 1977.

[31] C. M. Gold and U. Maydell. Triangulation and spatial ordering in computer
cartography. In Proceedings of the Canadian Cartographic Association Annual
Meeting, pages 69-81, 1978.

[32] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Mathe-
matics. Addison-Wesley, 2nd edition, 1994.

[33] C. Hipke. Online-algorithmen zur kompetitiven Suche in einfachen Polygonen.
Master’s thesis, Universitat Freiburg, 1994.

[34] C. Hipke, C. Icking, R. Klein, and E. Langetepe. How to find a point on a line
within a fixed distance. Discrete Applied Mathematics, 93:67-73, 1999.

[35] D. S. Hirschberg and J. B. Sinclair. Decentralized extrema-finding in circular
configurations of processes. Communications of the ACM, 23(11):627-628, 1980.

[36] F. Hoffmann, C. Icking, R. Klein, and K. Kriegel. An efficient competitive
strategy for learning a polygon. In Abstracts of 12th European Workshop on
Computational Geometry (EuroCG’96), pages 107-108, 1996.

[37] F. Hoffmann, C. Icking, R. Klein, and K. Kriegel. A competitive strategy for
learning a polygon. In Proceedings of the 8th ACM-SIAM Symposium on Discrete
Algorithms (SODA’97), pages 166-174, 1997.

BIBLIOGRAPHY 111

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

F. Hoffmann, C. Icking, R. Klein, and K. Kriegel. The polygon exploration
problem: A new strategy and a new analysis technique. In Proceedings of the
3rd Workshop on Algorithmic Foundations of Robotics, pages 211-222, 1998.

J. Hopcroft and R. Tarjan. ACM algorithm 447: Efficient algorithms for graph
manipulation. Communications of the ACM, 16(6):372-378, 1973.

T. C. Hou and V. O. K. Li. Transmission range control in multihop packet radio
networks. IEEE Transactions on Communications, 34(1):38—-44, 1986.

C. Icking and R. Klein. Competitive strategies for autonomous systems. Techni-

cal Report 175, Department of Computer Science, FernUniversitat Hagen, 1995.

C. Icking and R. Klein. Searching for the kernel of a polygon: A competitive
strategy. In Proceedings of the 11th ACM Symposium on Computational Geom-
etry (SoCG’95), pages 258266, 1995.

C. Icking, R. Klein, and E. Langetepe. An optimal competitive strategy for
walking in streets. In Proceedings of the 16th Symposium on Theoretical Aspects
of Computer Science (STACS’99), pages 110-120, 1999.

M.-Y. Kao, Y. Ma, M. Sipser, and Y. Yin. Optimal constructions of hybrid algo-
rithms. In Proceedings of the 5th ACM-SIAM Symposium on Discrete Algorithms
(SODA’94), pages 373-381, 1994.

M.-Y. Kao, J. H. Reif, and S. R. Tate. Searching in an unknown evironment: An
optimal randomized algorithm for the cow-path problem. In Proceedings of the
4th ACM-SIAM Symposium on Discrete Algorithms (SODA’93), pages 441-447,
1993.

E. D. Kaplan, editor. Understanding GPS: Principles and Applications. Artech
House, 1996.

B. Karp and H. T. Kung. GPSRP: Greedy perimeter stateless routing for wireless
networks. In ACM/IEEE International Conference on Mobile Computing and
Networking (Mobicom 2000), 2000.

BIBLIOGRAPHY 112

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

R. Klein. Walking an unknown street with bounded detour. Computational
Geometry Theory and Applications, 1:325-351, 1992.

Rolf Klein. Algorithmische Geometrie. Addison-Wesley, 1997.

Y.-B. Ko and N. H. Vaidya. Geocasting in mobile ad hoc networks: Location-
based multicast algorithms. Technical Report TR-98-018, Texas A&M Univer-
sity, September 1998.

Y.-B. Ko and N. H. Vaidya. Location-aided routing (LAR) in mobile ad hoc
networks. In ACM/IEEE International Conference on Mobile Computing and
Networking (Mobicom’98), pages 66—75, 1998.

E. Kranakis, H. Singh, and J. Urrutia. Compass routing on geometric networks.
In Proceedings of the 11th Canadian Conference on Computational Geometry
(CCCG’99), 1999. available online at http://www.cs.ubc.ca/conferences/
CCCG/elec_proc/c46.ps.gz.

F. T. Leighton. Introduction to Parallel Algorithm and Architectures: Arrays,
Trees and Hypercubes. Morgan Kaufman, 1992.

X. Lin and I. Stojmenovi¢. GEDIR: Loop-free location based routing in wireless
networks. In Proceedings of the 11th International Conference on Parallel and
Distributed Computing and Systems (PDCS’99), 1999. to appear.

A. Lépez-Ortiz and S. Schuirer. Going home through an unknown street. In
Proceedings of the 3th Workshop on Algorithms and Data Structures (WADS’95),
pages 135-146, 1995.

A. Lépez-Ortiz and S. Schuirer. Simple, efficient and robust strategies to tra-
verse streets. In Proceedings of the 7th Canadian Conference on Computa-
tional Geometry (CCCG’95), pages 135-146, 1995. available online at http:
//cgm.cs.mcgill.ca/cccg98/proceedings/cccg98-lopez-exact.ps.gz.

A. Lépez-Ortiz and S. Schuirer. Generalized streets revisited. In Proceedings of
the 4th European Symposium on Algorithms (ESA’96), pages 546558, 1996.

BIBLIOGRAPHY 113

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

A. Lépez-Ortiz and S. Schuirer. Walking streets faster. In Proceedings of the 5th
Scandinavian Workshop on Algorithm Theory (ESA’96), pages 345-356, 1996.

A. Lépez-Ortiz and S. Schuirer. Position-independent near optimal searching
and on-line recognition in star polygons. In Proceedings of the 5th Workshop on
Algorithms and Data Structures (WADS’97), pages 284-296, 1997.

A. Lépez-Ortiz and S. Schuirer. Position-independent near optimal searching and
on-line recognition in star polygons. In Proceedings of the 13th ACM Symposium
on Computational Geometry (SoCG’97), pages 445-447, 1997.

A. Lépez-Ortiz and S. Schuirer. The exact cost of exploring streets with a CAB.
In Proceedings of the 10th Canadian Conference on Computational Geometry
(CCCG’98), 1998.

A. Lépez-Ortiz and S. Schuirer. The ultimate strategy to search on m rays?
In Proceedings of the 4th International Conference on Computing and Combina-
torics (COCOON’98), pages 75-84, 1998.

Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1997.

A. Maheshwari, J.-R. Sack, and H. Djidjev. Link distance problems. In J.-R. Sack
and J. Urrutia, editors, Handbook of Computational Geometry, pages 519-558.

Elsevier Science, 2000.

D. W. Matula and R. R. Sokal. Properties of Gabriel graphs relevant to geo-
graphic variation research and the clustering of points in the plane. Geographical
Analysis, 12:205-222, July 1980.

R. Nelson and L. Kleinrock. The spatial capacity of a slotted ALOHA multihop
packet radio network with capture. IEEE Transactions on Communications,
32(6):684—694, 1984.

A. Okabe, B. Boots, and K. Sugihara. Spatial Tesselations: Concepts and Ap-
plications of Voronoi Diagrams. John Wiley and Sons, 1992.

BIBLIOGRAPHY 114

[68]

[69]

[70]

[71]

[72]

73]

[74]

[75]

[76]

[77]

78]

S. Onn and B. Sturmfels. A quantitative Steinitz’ theorem. Beitrdige zur Algebra
und Geometrie/Contributions to Algebra and Geometry, 35:125-129, 1994.

C. H. Papadimitriou and M. Yannakakis. Shortest paths without a map. Theo-
retical Computer Science, 84:127-150, 1991.

Franco P. Preparata and Michael Tan Shamos. Computational Geometry.
Springer-Verlag, New York, 1985.

P. Raghavan and R. Motwani. Randomized Algorithms. Cambridge University
Press, 1995.

S. Rajsbaum and J. Urrutia. Some problems in distributed computational geome-

try. In Proceedings of the 6th International Colloguium on Structural Information
& Communication Complezity (SIROCCO-99), pages 233-248, 1999.

J. Richter-Gebert. Realization Spaces of Polytopes, volume 1643 of Lecture Notes
in Mathematics. Springer—Verlag, 1996.

W. Schnyder. Embedding planar graphs on the grid. In Proceedings of the 1st
ACM-SIAM Symposium on Discrete Algorithms (SODA ’90), pages 138-148,
1990.

S. Schuirer. Online searching in geometric trees. In Proceedings of the 9th Cana-
dian Conference on Computational Geometry (CCCG’97), pages 135-140, 1997.

S. Schuirer and I. Semrau. An optimal strategy for searching in unknown streets.
In Proceedings of the 16th Symposium on Theoretical Aspects of Computer Sci-
ence (STACS’99), pages 121-131, 1999.

H. Singh. Compass routing in geometric graphs. Master’s thesis, University of
Ottawa, 1999.

H. Takagi and L. Kleinrock. Optimal transmission ranges for randomly dis-
tributed packet radio terminals. IEEFE Transactions on Communications,
32(3):246-257, 1984.

BIBLIOGRAPHY 115

[79] W. T. Tutte. Convex representations of graphs. Proceedings of the London
Mathematical Society, 3(10):304-320, 1960.

[80] J. van Leeuwen and R. Tan. Computer networks with compact routing tables. In
G. Rozenberg and A. Salomaa, editors, The Book of L, pages 259-273. Springer—
Verlag, New York, 1986.

[81] Giinter M. Ziegler. Lectures on Polytopes. Number 154 in Graduate Texts in
Mathematics. Springer-Verlag, New York, 1994.

