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ABSTRACT

A planar point set S is an (i, t) set of ghost chimneys if there exist lines H0, H1, . . . , Ht−1

such that the orthogonal projection of S onto Hj consists of exactly i+ j distinct points.
We give upper and lower bounds on the maximum value of t in an (i, t) set of ghost

chimneys, showing that it is linear in i.

Keywords: Crossing lemma; orthogonal projection; shadow sculpture.

1. Introduction

Once upon a time in Japan, there was a power plant with four chimneys called

“ghost chimneys” (obake entotsu, orお化け煙突); see Fig. 1. Although these chim-

neys were dismantled in 1964, they are still famous in Japan, with toys, books,
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Fig. 1. The ghost chimneys in Japan, part of

the Senju Thermal Power Station (1926–1964)

maintained by the Tokyo Electric Power Com-
pany. [Used with permission from Adachi City.]

Fig. 2. Hello Kitty Obake-Entotsu version ( c©
1976, 2011 SANRIO CO., LTD. APPROVAL

NO. S520196)

manga, and movies referencing them (Fig. 2). They are considered a kind of symbol

of industrialized Japan in the old, good age of the Showa era.1

One of the reasons why they are famous and are called “ghost chimneys” is that

they could be seen as two chimneys, three chimneys, or four chimneys depending

on the point of view. This phenomenon itself was an accident, but it raises several

natural questions. What interval of integers can be realized by such chimneys? How

many chimneys do we need to realize the interval? How can we arrange the chimneys

to realize the interval?

More precisely, we consider the following problem: given an integer i, what is

the maximum value t(i) such that there exists a set of points S ⊂ R2 and a set

H0, H1, . . . ,Ht(i)−1 of lines where, for each j ∈ {0, 1, . . . , t(i) − 1}, the orthogonal

projection of S onto Hj consists of exactly i + j distinct points? We prove the

following result:

Theorem 1. For any integer i ≥ 1, 2i ≤ t(i) < 123.33i+ 1.

In addition to Theorem 1, we show that t(1) = 2, t(2) = 5, t(3) = 9, and

12 ≤ t(4) ≤ 15. These results show that neither the lower bound nor the upper

bound of Theorem 1 is tight for all values of i. Theorem 1 is an immediate con-

sequence of Lemma 1 and Lemma 4, which we prove in the next two sections,

respectively.

These ghost-chimney problems relate more generally to understanding what

orthogonal projections a single 2D or 3D shape can have. In 2D, some closely re-

lated problems have been considered.2,3 Past explorations into structures in 3D,

known variously as 3D ambigrams, trip-lets, and shadow sculptures, have focused

on precise, usually connected projections.4,5 Our work was originally motivated
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Fig. 3. The set S(i) for i = 9 and the projection directions that yield i, i + 1, . . . , i + 4 distinct

points.

by considering what happens with disconnected projections of unspecified relative

position.

2. The Lower Bound

Lemma 1. For each integer i ≥ 1, there exists a set S = S(i) of 3i − 1 points

and a set H0, H1, . . . ,H2i−1 of lines such that, for each j ∈ {0, 1, . . . , 2i − 1}, the
orthogonal projection of S onto Hj has exactly i+ j distinct values.

Proof. The point set S consists of the points of an i×3 grid with the bottom-right

corner removed; see Fig. 3. For even j, Hj is a line of slope j/2. For odd j, Hj is a

line of slope −(j + 1)/2.

3. The Upper Bound

Our upper-bound proof is closely related to Székely’s proof of the Szeméredi-Trotter

Theorem.6 We make use of the following version of the Crossing Lemma, which was

proved by Pach, Radoičić, Tardos, and Tóth:7

Lemma 2 (Crossing Lemma). Let β = 103/6, γ = 1024/31827, and let G be a

graph with no self loops, no parallel edges, v vertices, and e > βv edges. Then the
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p0p1 p2

Fig. 4. The graph G for a set of points with i = 9 and t = 3.

crossing number cr(G), the minimum number of edge crossings in a certain drawing

of G, is given by

cr(G) ≥ γ · e
3

v2
.

Lemma 3. Let S be a set of r points, and let H0, H1, . . . ,Ht−1 be a set of lines

such that the orthogonal projection of S onto Hj gives exactly i+ j distinct values.

Then, t ≤ 34 or r ≤ (2i/t+ 2 + t/2i)i/γ.

Proof. Each projection direction Hj defines a set Lj of i + j parallel lines, each

of which contains at least one point of S. Let G be the geometric graph that con-

tains the points in S plus t additional points p0, p1, . . . , pt−1. Two vertices in S are

connected by an edge in G if and only if they occur consecutively on some line in

L =
⋃t−1

j=0 Lj . Additionally, each vertex pj is connected to each of the i+ j lexically

largest points on each of the lines in Lj . See Fig. 4.

The graph G has t + r vertices and tr edges. Observe that we have a drawing

of G so that the only crossings between edges occur where lines in L intersect each

other. The total number X of intersecting pairs of lines in L is

X ≤
t−1∑
j=1

(i+ j) ·
j−1∑
k=0

(i+ k) ≤
t−1∑
j=1

(i+ j)(ij + j2/2)

≤
t−1∑
j=1

(i2j + 3ij2/2 + j3/2) ≤ i2t2/2 + it3/2 + t4/8.

Applying Lemma 2, we learn that either

tr ≤ β(t+ r), (1)

or

X ≥ cr(G) ≥ γ (tr)3

(t+ r)2
. (2)

In the former case, we rewrite (1) to obtain

t ≤ β(t/r + 1) ≤ 2β ≤ 34 + 1/3,

hence t ≤ 34 (since t is an integer).
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In the latter case, we expand (2) to obtain

i2t2/2 + it3/2 + t4/8 ≥ γ (tr)3

(t+ r)2
.

Thus

i

(
i

2t
+

1

2
+

t

8i

)
≥ γ r3

(t+ r)2
≥ γr/4,

where the second inequality follows from the fact that t ≤ i+ t− 1 ≤ r. Rewriting

to isolate r finally gives

r ≤
(

2i

t
+ 2 +

t

2i

)
i/γ,

which completes the proof.

Lemma 4. For all integers i ≥ 1, t(i) < 123.33i+ 1.

Proof. The existence of H0 and H1 implies that the points of S lie on the intersec-

tion of i parallel lines with another set of i + 1 parallel lines. Thus, |S| ≤ i(i + 1),

so t(i) ≤ |S| − i+ 1 ≤ i2 + 1. Using this inequality t(i) ≤ i2 + 1, the lemma follows

for 1 ≤ i ≤ 123.

We assume that i > 123. By Lemma 3, we have t ≤ 34 or r ≤ (2i/t+2+t/2i)i/γ.

When t ≤ 34, we are done, so suppose t > 34. Observe that, if the conditions of

Lemma 3 hold for t, then they also hold for all values t′ ∈ {35, . . . , t}. Therefore

the statement r ≤ (2i/t′+ 2 + t′/2i)i/γ is true for all 35 ≤ t′ ≤ t. If t ≤ 2i, then we

are done. Otherwise, taking t′ = 2i yields

r ≤ (2i/t′ + 2 + t′/2i)i/γ ≤ 4i/γ .

Combining this with i+ t− 1 ≤ r, we have i+ t− 1 ≤ 4i/γ, or t < 123.33i+ 1.

4. Small Values of i

In this section we give some tighter bounds on t(i) for i ∈ {1, 2, 3, 4}.

Lemma 5. t(1) = 2, and t(2) = 5.

Proof. Point sets achieving these bounds are the 1 × 2 and the 2 × 3 grid, re-

spectively; see Fig. 5. That these point sets are optimal follows from the inequality

t(i) ≤ i2 + 1 shown in the proof of Lemma 4.

Notice that the proof of Lemma 5 implies that, for any i, t(i) ≤ i2 + 1. The

following lemma shows that, for i ≥ 3, t(i) ≤ i2. Of course, this upper bound is

tighter than Lemma 4 for i ≤ 123.

Lemma 6. t(3) = 9.
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Fig. 5. Point sets showing that (a) t(1) ≥ 2 and (b) t(2) ≥ 5.

H0

H1 `

Fig. 6. The proof of Lemma 6.

Proof. The point set S(4) described in the proof of Lemma 1 results in 3 distinct

points when they are projected onto a vertical line, therefore t(3) ≥ 9.

For the upper bound, refer to Fig. 6. By an affine transformation, we may assume

that H0 is vertical and H1 is horizontal. Thus, the points of S are contained in the

intersection of 3 horizontal lines with 4 vertical lines. This establishes that |S| ≤ 12,

so t(3) ≤ 10. To see that |S| < 12, assume otherwise and consider any line ` that

is neither horizontal nor vertical. By a reflection through a horizontal line, we may

assume that ` has positive slope, so that every point on the bottom row and right

column of S has a distinct projection onto `, so S projects onto at least 6 distinct

points on `. In particular, this implies that there is no line H2 such that S projects

onto 5 distinct points on H2.

Lemma 7. 12 ≤ t(4) ≤ 15.

Proof. The point set and lines H0, H1, . . . ,H10 that show t(4) ≥ 12 are shown in

Fig. 7. (H11 is omitted since any sufficiently general line will do.)

To see that t(4) ≤ 15, we argue as in the proof of the second half of Lemma

6. This establishes that |S| ≤ 20. If |S| ∈ {19, 20} then the number of distinct

projections of S onto ` is at least 7, but this contradicts the existence of H2. Thus,

we must have |S| ≤ 18, and hence t(4) ≤ 15.



October 10, 2012 16:23 WSPC/Guidelines S0218195912500057

Ghost Chimneys 213

H1

H0

H2

H3

H4

H5

H6

H9

H7 H10

H8

Fig. 7. A (4, 12) set of ghost chimneys.

5. Conclusions

We have given upper and lower bounds on the largest possible value of t, as a

function of i, in an (i, t) set of ghost chimneys. These bounds differ by only an

(admittedly large) constant factor. Reducing this factor remains an open prob-

lem. For small values of i, we have shown that t(1) = 2, t(2) = 5, t(3) = 9, and

12 ≤ t(4) ≤ 15.

Another open problem is the generalization of these results to three, or more,

dimensions. Given an integer i, what is the maximum value t(i) such that there

exists a set of points S ⊂ Rd and a set H0, H1, . . . ,Ht(i)−1 of hyperplanes where,

for each j ∈ {0, 1, . . . , t(i)− 1}, the orthogonal projection of S onto Hj consists of

exactly i+ j distinct points?
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