
CCCG 2010, Winnipeg MB, August 9–11, 2010

Fast Local Searches and Updates in Bounded Universes

Prosenjit Bose∗ Karim Doüıeb∗ John Howat∗ Pat Morin∗

Abstract

Given a bounded universe {0, 1, . . . , U−1}, we show how
to perform (successor) searches in O(log log ∆) expected
time and updates in O(log log ∆) expected amortized
time, where ∆ is the rank difference between the ele-
ment being searched for and its successor in the struc-
ture. This unifies the results of traditional bounded
universe structures (which support successor searches
in O(log logU) time) and hashing (which supports ex-
act searches in O(1) time). We also show how these
results can be extended to answer approximate nearest
neighbour queries in low dimensions.

1 Introduction

Let U = {0, 1, . . . , U − 1}. We address the problem of
maintaining a dictionary subject to searches, insertions
and deletions on a subset of U of size n. Hash tables
[6] can support these operations in O(1) expected time
per operation. Unfortunately, hash tables only work for
exact searches; they do not provide a useful result ele-
ments for that are not stored in the dictionary. Data
structures for successor searching, however, return the
element being searched for if it is present, or the suc-
cessor of that element otherwise. Such searches can be
supported in O(log logU)1 time using van Emde Boas
trees [11], x-fast tries or y-fast tries [12].

We introduce the idea of local searching in a bounded
universe in order to unify these two types of struc-
tures. Our goal is to execute successor searches in time
O(log log ∆), where ∆ is the difference between the ele-
ment being searched for and its successor in the struc-
ture. If it happens that the element being searched for
is in the structure, we have ∆ = 0 and so the bound is
equivalent to that offered by hashing for exact searches.
Furthermore, since ∆ < U , and so the bound is never
worse than the O(log logU) bound offered by the usual
bounded universe structures.

Our results. We show how to perform such searches
in O(log log ∆) expected time, as well as insertions and
deletions in O(log log ∆) expected amortized time using
O(n log log logU) expected space. For the static version

∗School of Computer Science, Carleton University.
{jit,karim,jhowat,morin}@cg.scs.carleton.ca. This re-
search was partially supported by NSERC and MRI.

1In this paper, we define log x = log2(x + 2).

of the problem, these bounds hold even in the worst
case. For a constant d ≥ 2 dimensions on the uni-
verse Ud, we show how to answer (1 + ε)-approximate
nearest neighbour queries in O

(
(1/εd) log log ∆

)
ex-

pected time in O(n log log logU) expected space, where
∆ is the distance to a nearest neighbour of the query.
This structure still supports insertions and deletions in
O(log log ∆) expected amortized time.

1.1 Related Work

In one dimension, such searches can be performed in
time O(log logU) using, for example, van Emde Boas
trees [11] or y-fast tries [12]. Several results consider
the distance between a query and an element in the
structure. Johnson [7] describes a priority queue where
insertion and deletion take time O(log logD), where D
is the difference between the successor and predecessor
(in terms of priority) of the query. The idea of finger
searching involves starting a search from somewhere in-
side a structure by supplying the search operation with
a pointer. Skip lists [10] and finger search trees [3],
for example, support finger searches in O(log δ) time,
where δ is the rank distance between the given pointer
and the query. On the RAM, Kaporis et al. [8] describe
a data structure with O(1) worst-case update time and
O(log log δ) expected search time for a large class of in-
put distributions, where δ is the distance between the
query and some finger. Locality preserving hashing [9]
is a form of hashing that ensures that input values that
are close together have hash values that are close to-
gether. For the temporal precedence problem, a list is
maintained under insertions. Given two pointers into
the list, the data structure must decide which element
was inserted first. An optimal solution is given by Bro-
dal et al. [2] that allows the latter operation to be com-
pleted in O(log log δ) time, where δ is temporal distance
between the two given elements.

In two or more dimensions, one concentrates on find-
ing the (approximate) nearest neighbour of a query
point. In bounded universes, Amir et al. [1] show how
to answer queries and perform updates in expected time
O(log logU). In unbounded universes, Derryberry et al.
[5] describe a data structure that finds an approximate
nearest neighbour p of the point q in some constant di-
mension in time O(log δ(p, q)), where δ(p, q) is the num-
ber of points in a certain box containing p and q.



22nd Canadian Conference on Computational Geometry, 2010

2 One Dimension

In this section, we describe the one-dimensional version
of the data structure. We begin with a review of x- and
y-fast tries.

2.1 A Review of x- and y-fast Tries

x- and y-fast tries were presented by Willard [12] as a
space-efficient alternative to van Emde Boas trees [11].
An x-fast trie on U is a binary tree whose leaves are ele-
ments of U and whose internal nodes represent prefixes
of these leaves. The height of the tree is Θ(logU). At
any internal node, moving to the left child appends a 0
to the prefix and moving to the right child appends a
1. The prefix at the root node is empty. Therefore, a
node at depth i represents a block of 2log U−i elements
of U having the same i highest order bits, and any root-
to-leaf path in the trie yields the binary representation
of the element at the leaf of that path. At every level
of the tree (where the level of a node is its height), a
hash table is maintained on all elements at that level.
Each internal node with only no left (respectively right)
child is augmented with an additional pointer to the
smallest (respectively largest) leaf in its subtree, and all
leaves maintain pointers to the next leaf and the previ-
ous leaf. The structure uses O(n logU) space. Searches
are executed by performing a binary search on the hash
tables to find the deepest node whose prefix is a pre-
fix of the query. If the query has binary representation
qlog U · · · q0, at depth i we search for qlog U · · · qlog U−i.
If this is node happens to be a leaf, then the search is
complete. Otherwise, this node must have exactly one
child and thus has a pointer to the largest leaf in its sub-
tree. Following this pointer will lead to the leaf storing
either the successor or predecessor the query, and since
the leaves form a doubly-linked list, the successor is then
returned. The binary search takes O(log logU) time and
the subsequent operations take O(1) time for a total of
O(log logU) time.

The y-fast trie overcomes the fact that the space used
by an x-fast trie is a function of both n and U . Indirec-
tion is used to reduce this space to O(n). The leaves are
divided into groups of size O(logU) and each group is
placed into a balanced binary search tree. Each binary
search tree has a representative and these representa-
tives are stored in the trie. A search in the trie for an el-
ement will eventually lead to a binary search tree which
can then be searched in time O(log logU). In order to
facilitate insertions and deletions, the binary trees are
rebuilt when their sizes are doubled or quartered. This
allows insertions and deletions inO(log logU) amortized
time. The space required is now O(n), since the x-fast
trie stores all O(n/ logU) representatives, each appear-
ing in O(logU) hash tables.

2.2 The Static Case

In order to make local searches fast, the key observation
is that instead of performing a binary search on the lev-
els, we can instead perform a doubly exponential search
beginning from the leaves. In this manner, if a query is
stored inside the structure, it can be found in O(1) time.
If a query is far away from its successor, however, the
exponential search can move higher up the structure.
For now, we consider the static case.

Suppose we have an x-fast trie. During a search, we
perform hash table queries for the appropriate prefix of
the query at levels 22i

for i = 0, 1, . . . , O(log log logU),
starting at the leaves. If the prefix is found, the query
can be answered by peforming a search in the trie start-
ing at that node. If the prefix is not found, search for
the successor of that prefix (in the usual binary order-
ing) at the same level. If there is one, the query can
be answered by following a pointer from that successor
to the smallest leaf in its subtree. If the successor of
the prefix was not found, then the exponential search is
continued.

Lemma 1 The exponential search algorithm for an x-
fast trie described is correct and can be performed in
worst-case O(log log ∆) time.

Note that although x-fast tries use O(n logU) space,
we need only store the hash tables for the levels visited
by the exponential search. The hash tables thus use
O(n log log logU) space. We still need to traverse the
rest of the trie in the second stage of the search, how-
ever. To reduce the space required, we simply store an
additional y-fast trie with the same elements where each
internal node of the x-fast trie maintains a pointer to the
corresponding node in the y-fast trie. Instead of travers-
ing the x-fast trie, we follow the pointer and traverse the
y-fast trie of size O(n) in the same time bound. This
modified trie thus uses only O(n log log logU) space.

Theorem 2 Let U = {0, 1, . . . , U − 1}. There exists a
data structure that supports searches over a subset of U
in O(log log ∆) time in O(n log log logU) space.

By replacing “successor” with “predecessor,” the
same time bound can be achieved where ∆ is defined as
the difference between the element being searched for
and its predecessor in the structure. If both structures
are searched simultaneously until one returns an an-
swer, it is possible to answer such queries in O(log log ∆)
where ∆ is the minimum of the differences between the
query and its successor and predecessor in the structure.

2.3 The Dynamic Case

We now turn our attention to the dynamic version of
the problem, where we would like to support insertion



CCCG 2010, Winnipeg MB, August 9–11, 2010

and deletion of elements of U into the trie. Our goal
is to support these operations in O(log log ∆) time as
well. One straightforward solution is to modify the
data structure described in Theorem 2. To insert an
element, search for it and add the appropriate prefixes
to the hash tables. To delete an element, remove it from
all hash tables. These operations can be performed in
O(log log ∆ + log log logU) time. Our goal is to remove
the O(log log logU) term from the update time. The
primary reason this is difficult is that each hash table
must maintain the appropriate prefixes of the elements
in the subtrees rooted at that level. In order to over-
come this, we will not explicitly maintain the buckets of
each y-fast trie, and instead store all of them in a single
skip list [10].

This skip list will store all of the elements that are
currently in the trie. Pointers are maintained between
the elements of the trie and their corresponding ele-
ments in the skip list. Each element of the hash tables
will further maintain a y-fast trie whose universe is the
maximal subset of U that could be stored as leaves of
that node. Therefore, a y-fast trie pointed to by an el-
ement of a hash table at height 22i

is over a universe of
size 222i

. Recall that a y-fast trie on a universe of size
U ′ stores the bottom portion of the trie as a collection
of balanced binary search trees each of size O(logU ′),
which we will refer to as buckets. In our setting, this
means that at height 22i

, the y-fast tries have buckets
of size 22i

. We will not maintain these buckets explic-
itly, however. Instead, any pointer in the top portion
of a y-fast trie that points into a bucket will instead
point to a representative of that bucket that is stored in
the skip list. The expected space required for the data
structure described is O(n log log logU).

To execute a search, we proceed as before and per-
form hash table queries for the appropriate prefix at
levels 22i

for i = 0, 1, . . . , O(log log logU). If the pre-
fix is not found in a level, search for the successor of
that prefix (in the usual binary ordering) at the same
level. If such a successor is found, the query can be
answered by following a pointer to the minimum rep-
resentative in the associated y-fast trie of the successor
and then performing a finger search in the skip list us-
ing this representative. If the successor of the prefix was
not found, then the exponential search is continued. If
the prefix is found at a particular level, the search is
continued in the associated y-fast trie to find the repre-
sentative of the successor. At this point, a pointer can
be followed into the skip list tree where a finger search
can be performed to find the actual successor.

Lemma 3 The search algorithm described takes
O(log log ∆) expected time.

Proof. If the query is contained in the trie, it must be
stored in the hash table containing all leaves and thus

can be found in O(1) = O(log log ∆) time. Otherwise,
assume the query is not contained in the trie and a
hash table query is first successful at level 22i

; then
∆ ≥ 222i−1

, so i is O(log log log ∆).
If the successful hash table query was for the prefix,

then the query is answered by querying the associated
y-fast trie, which can be done in O

(
2i

)
time. This yields

the correct representative, and so a finger search is then
performed in the skip list. Since the representative and
the successor are in the same bucket, the distance be-
tween them is at most 22i

. The search in the skip list
thus takes O

(
2i

)
= O(log log ∆) expected time. If the

successful hash table query was for the successor of the
prefix, then the query is answered by following a pointer
from the successor to the minimum representative in the
associated y-fast trie. The same argument as the previ-
ous case yields the same time bound. �

Insertion can be accomplished by first searching for
the element to be inserted in order to produce a pointer
to that element’s successor. This pointer is then used
to insert the element into the skip list. We then insert
the appropriate prefixes of the element into the hash
tables and the corresponding y-fast tries. The y-fast
tries may need to be restructured as the buckets double
in size. The key observation is that we need only alter
a hash table of y-fast trie if the representative changes,
i.e., the bucket size has doubled. This is not trivial to
detect, however, since the buckets are nested; details
will appear in the full version of this paper.

Deletion works similarly. The element is searched for
in order to produce a pointer to it. The pointer is then
used to delete the element from the skip list. Finally,
the appropriate prefixes of the element must be deleted
from the hash tables (if they are not a prefix of another
element in the structure) and the element must be re-
moved from the corresponding y-fast tries. As before,
the y-fast tries may need to be restructured if the buck-
ets have quartered in size.

Theorem 4 Let U = {0, 1, . . . , U − 1}. There exists a
data structure that supports searches over a subset of U
in O(log log ∆) expected time and insertions and dele-
tions of elements of U in O(log log ∆) expected amor-
tized time, where ∆ is the distance between the query
and its successor. The expected space required for this
structure is O(n log log logU).

The expected bounds stated in Theorem 4 can be
made to hold in the worst case by replacing skip lists
with the optimal finger search trees of Brodal et al. [3].

3 Two or More Dimensions

For some constant d ≥ 2 dimensions, we consider the
universe Ud and wish to return a (1 + ε)-approximation



22nd Canadian Conference on Computational Geometry, 2010

of the nearest neighbour of the query point (or the query
point, if it happens to be in the structure).

Chan [4] points out that by placing d+ 1 shifted ver-
sions of the stored points onto a space-filling curve2,
queries can be answered by answering the query on each
of these curves (lists) and taking the closest point to be
the desired approximation. Chan [4] notes that this
yields a query time of O

(
(1/εd) log n

)
and O(log n) up-

date time.
Observe that searching within the shifted lists is a

one-dimensional problem and thus solvable by Theo-
rem 2. This almost completely solves the problem, ex-
cept that we cannot bound the search time in every
one-dimensional structure as a function of ∆, rather
only the structure which finds the element that is ul-
timately returned. To fix this, we randomly shift the
entire point set before building any of the data struc-
tures; this results in the expected time spent searching
in any one-dimensional structure to be O(log log ∆) for
a total of O

(
(1/εd) log log ∆

)
expected time. Insertions

and deletions are performed by performing the insertion
or deletion in each one-dimensional structure.

Theorem 5 Let U = {0, 1, . . . , U − 1}. There ex-
ists a data structure that supports (1 + ε)-approximate
nearest neighbour searches over a subset of Ud in
O

(
(1/εd) log log ∆

)
expected time and insertions and

deletions of elements of Ud in O(log log ∆) expected
amortized time. The expected space required for this
structure is O(n log log logU).

4 Conclusion and Future Work

We have introduced the idea of fast local searches in
bounded universes. In one dimension, we showed how
to perform successor searches in O(log log ∆) expected
time and updates in O(log log ∆) expected amortized
time time and O(n log log logU) expected space. For
some constant d ≥ 2 dimensions, searches for (1 + ε)-
approximate nearest neighbours can be performed in
O

(
(1/εd) log log ∆

)
expected time and insertions and

deletions in O(log log ∆) expected amortized time. The
space required for this structure is O(n log log logU).

Future Work. The following are possible directions for
future research. It would be interesting to see if it is pos-
sible to keep the stated query times using space that is
linear in n. We also rely on both randomization and
amortization; could these be avoided? Finally, is it
possible to achieve constant updates given the position
where the update is to be made while maintaining the
stated query times?

2Chan [4] uses the z-order, which is obtained by computing the
shuffle of a point. If the i-th coordinate of a point p is pi with bi-
nary representation pi,log U · · · pi,0, then the shuffle of p is defined
to be the binary number p1,log U · · · pd,log U · · · p1,0 · · · pd,0.

References

[1] Arnon Amir, Alon Efrat, Piotr Indyk, and Hanan
Samet. Efficient regular data structures and algo-
rithms for dilation, location, and proximity prob-
lems. Algorithmica, 30(2):164–187, 2001.

[2] Gerth Stølting Brodal, Christos Makris, Spyros
Sioutas, Athanasios Tsakalidis, and Kostas Tsich-
las. Optimal solutions for the temporal precedence
problem. Algorithmica, 33(4):494–510, 2002.

[3] Gerth Stølting Brodal, George Lagogiannis, Chris-
tos Makris, Athanasios Tsakalidis, and Kostas
Tsichlas. Optimal finger search trees in the pointer
machine. Journal of Computer and System Sci-
ences, 67(2):381–418, 2003.

[4] Timothy M. Chan. Closest-point problems simpli-
fied on the RAM. In SODA ’02: Proceedings of the
13th Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 472–473, 2002.

[5] John Derryberry, Daniel D. Sleator, Donald
Sheehy, and Maverick Woo. Achieving spa-
tial adaptivity while finding approximate nearest
neighbors. In CCCG ’08: Proceedings of the 20th
Canadian Conference on Computational Geometry,
pages 163–166, 2008.

[6] Michael L. Fredman, János Komlós, and Endre
Szemerédi. Storing a sparse table with O(1) worst
case access time. J. ACM, 31(3):538–544, 1984.

[7] Donald B. Johnson. A priority queue in which ini-
tialization and queue operations take O(log logD)
time. Theory of Computing Systems, 15(1):295–
309, 1981.

[8] Alexis Kaporis, Christos Makris, Spyros Sioutas,
Athanasios Tsakalidis, Kostas Tsichlas, and Chris-
tos Zaroliagis. Improved bounds for finger search
on a RAM. In ESA ’03: Proceedings of the 11th An-
nual Eureopean Symposium on Algorithms, LNCS
2832, pages 325–336, 2003.

[9] Nathan Linial and Ori Sasson. Non-expansive
hashing. Combinatorica, 18(1):121–132, 1998.

[10] William Pugh. Skip lists: a probabilistic alterna-
tive to balanced trees. Commun. ACM, 33(6):668–
676, 1990.

[11] Peter van Emde Boas. Preserving order in a for-
est in less than logarithmic time and linear space.
Information Processing Letters, 6(3):80–82, 1977.

[12] Dan E. Willard. Log-logarithmic worst-case range
queries are possible in space Θ(log logN). Infor-
mation Processing Letters, 17(2):81–84, 1983.



CCCG 2010, Winnipeg MB, August 9–11, 2010

A Proof of Lemma 1

Proof. If the query is contained in the trie, it must be
stored in the hash table containing all leaves and thus
can be found in O(1) = O(log log ∆) time. Otherwise,
assume the query is not contained in the trie. We must
show that its successor is found in O(log log ∆) time.
Assume that a hash table query is first successful at
level 22i

. Then both the prefix of the query and the
successor of that prefix were not found at level 22i−1

. If
the prefix of the query and the successor were in the trie,
then the subtree rooted there would have O

(
222i−1 )

el-
ements. However, since they are not present, these el-
ements are not present and thus at least ∆ ≥ 222i−1

elements of U are between the query and its succes-
sor. The exponential search up to level 22i

requires
O(i) time and searching the trie from that level will

take O
(

log log 222i−1 )
= O

(
2i

)
time. Since ∆ ≥ 222i−1

implies that i is O(log log log ∆), the search is performed
in O

(
2i

)
= O(log log ∆) time. �


