
Absolute Approximation of Tukey Depth:

Theory and Experiments

Dan Chen

School of Computer Science, Carleton University

Pat Morin

School of Computer Science, Carleton University

Uli Wagner

Institut für Theoretische Informatik

Abstract

A Monte Carlo approximation algorithm for the Tukey depth problem in
high dimensions is introduced. The algorithm is a generalization of an algo-
rithm presented by Rousseeuw and Struyf (1998). The performance of this
algorithm is studied both analytically and experimentally.

Keywords: Tukey depth, computational geometry

1. Introduction

Tukey depth is also known as location depth or halfspace depth. Given a
finite set S of n points and a point p in Rd, the Tukey depth of p is defined
as the minimum number of points of S contained in any closed halfspace
with p on its boundary [15, 22]. An equivalent definition is the minimum
number of points of S contained in any halfspace which also contains p [4].
This problem is NP-hard if both n and d are parts of the input [16], and
it is even hard to approximate [2]. Many different algorithms have been
developed to compute the Tukey depth of a point [5, 4, 20]. This problem is
equivalent to the maximum feasible subsystem (MAX FS) problem [9] which

Email addresses: dchen4@connect.carleton.ca (Dan Chen),
morin@scs.carleton.ca (Pat Morin), uli@inf.ethz.ch (Uli Wagner)

Preprint submitted to Elsevier February 29, 2012

is a long-standing problem and has been extensively studied [10, Chapter
7]. There are also algorithms for finding a point that maximizes the Tukey
depth [6, 17, 18], and Teng [21] showed that testing whether a point does so
is coNP-complete in general dimension.

Suppose points in S are in general position (no d + 1 points of S ∪ {p}
lie on a common hyperplane), an upper bound on the Tukey depth of p can
be obtained by selecting any non-trivial vector v ∈ Rd and computing the
Tukey depth of p · v in the one-dimensional point set

S · v = {x · v : x ∈ S}. (∗)

If v is the inner-normal of the boundary of the halfspace ~ that defines the
depth value of p, then

depth (p, S) = depth (p · v, S · v). (1)

In R1, we rank the points S ∪ {p} starting with 0 from both ends to the
median, then the depth of p is its rank. More generally, given any k-flat f
orthogonal to the boundary of ~, we have

depth (p, S) = depth (p · f, S · f), (2)

where p ·f is the orthogonal projection of p onto f , and S ·f is the orthogonal
projection of S onto f .

1.1. Related Work

Due to the hardness of the Tukey depth problem, algorithms for ap-
proximating Tukey depth in low dimensions are of interest. Rousseeuw and
Struyf [20] proposed four approximation algorithms. The basic idea is to
randomly choose m of four categories of lines: (1) all lines connecting p and
a point in S, (2) all lines connecting two points in S, (3) all lines perpendic-
ular to the hyperplanes determined by p and d− 1 points in S, (4) all lines
perpendicular to the hyperplanes determined by d points in S, then project
all points onto the lines to solve one-dimensional Tukey depth problems, and
take the best result as the approximation. They claimed that the fourth idea
worked best.

Wilcox [24] proposed two approximation algorithms. The strategies are
similar to those of Rousseux and Struyf. The difference is that, in the first
approximation, the points are orthogonally projected onto the lines connect-
ing an affine equivariant measure of location e and a point in S; in the second

2

approximation the points are projected onto all the lines determined by two
points in S.

Cuesta-Albertos and Nieto-Reyes [13] proposed a notion of random Tukey
depth where they project all points onto m randomly chosen vectors, and
take the best one-dimensional Tukey depth. They claim this depth is a
reasonable approximation of Tukey depth. All the above approximations
have no theoretical guarantee of the performance.

Afshani and Chan [1] gave a data structure for Tukey depth queries in 3D.
For any constant ε > 0, their data structure can preprocess a 3D point set
in O(n log n) expected time into a data structure of size O(n) such that the
Tukey depth of any query point q can be approximated in O(log n log log n)
time. Here, the approximation is relative; their data structure returns a value
y such that

(1− ε) depth(q, S) ≤ y ≤ (1− ε)−1 depth(q, S) .

1.2. New Results

In this paper, we analyze the following 2 heuristics for this problem:

1 Randomly select a set Q of d − 1 points from S. Let π be the unique
hyperplane containing Q ∪ {p}, and let v be a vector orthogonal to π.
Apply (1) to get an upper bound on depth (p, S).

2 Randomly select a set Q of d − k points from S. Let π be the unique
(d − k)-flat containing Q ∪ {p}, and let f be a k-flat orthogonal to π.
Apply (2) to get an upper bound on depth (p, S).

The first algorithm described above is the third method proposed by Rousseeuw
and Struyf. The second algorithm is a generalization of this method. Notice
that when we project the points in S to the vector or k-flat, those points in
Q do not contribute to the depth of p.

The first algorithm reduces the original problem to a one-dimensional
Tukey depth problem, but the second reduces to a k-dimensional Tukey depth
problem. The projection of S to a vector takes O(dn) time. Then the first
heuristic requires O(dn) time. In the second heuristic, the projection of S to
a k-flat takes O(kdn) time, and the k-dimensional Tukey depth problem has
the following time complexity:

For k = 1, the Tukey depth is easily computed in O(n) time by counting
the number of points less than p and the number of points greater than p,
and taking the minimum of those 2 quantities.

3

For k = 2, the Tukey depth of p can be computed in O(n log n) time by
sorting the points of S radially about p and scanning this sorted list using
two pointers [20].

For k ≥ 3, the algorithms already become significantly more complicated.
When k = 3, a brute-force algorithm runs in O(n3) time, and an algorithm
of Chan [7] runs in O((n+ t2) log n) time, where t is the depth of p.

In the remainder of this paper we analyze how good these upper bounds
can be with the following two theorems, which bound the probability that
the approximated depth exceeds the true depth by more than σ.

Theorem 1. Let S be a set of n points in general position in Rd, S ′ be a
subset of d− 1 elements chosen at random and without replacement from S,
v be the vector perpendicular to the plane containing S ′ and another point p,
σ be an integer such that 0 ≤ σ ≤ bn

d
c − 1. Then

Pr{depth (p · v, S · v) ≤ depth (p, S) + σ} ≥
(
σ+d−1
d−1

)(
n
d−1

) .

Theorem 2. Let S be a set of n points in general position in Rd, S ′ be a
subset of d− k elements chosen at random and without replacement from S,
f be the k-flat orthogonal to the (d− k)-flat containing S ′ and another point
p, σ be an integer such that 0 ≤ σ ≤ bn

2
c − 1. Then

Pr{depth (p · f, S · f) ≤ depth (p, S) + σ} ≥
2d−k

(
σ+d−k
d−k

)
(d− k)!

(
n
d−k

) .
Here is a sketch of the proof of Theorem 1: Under point/hyperplane

duality, the selection of v is equivalent to selecting a random vertex in an
arrangement of hyperplanes in d− 1 dimensions. This selection of v approx-
imates depth (p, S) to within σ provided that the vertex is contained in a
particular pseudo-ball of radius σ. Therefore the proof boils down to show-
ing that the number of vertices of an arrangement in a pseudo-ball of radius
σ is sufficiently large. In particular, we show that the number of vertices in
such a pseudo-ball is at least

(
σ+d−1
d−1

)
.

The proof of Theorem 2 is similar, except that we lower-bound the number
of k flats that intersect a pseudo-ball of radius σ.

The remainder of the paper is organized as follows: In Section 2 we prove
lower-bounds on the number of vertices in pseudo-balls and the number of

4

k-flats that intersect pseudo-balls. In Section 3 we show how these results
apply to the analysis of the algorithms for approximating Tukey depth. In
Section 4 we give some experimental results for the two algorithms.

2. Arrangements of Hyperplanes

Let H be a set of ` hyperplanes in Rd. We say that H is in general
position, if every subset of d hyperplanes intersect in one point, and no d+ 1
hyperplanes intersect in one point. We say a hyperplane is vertical if it
contains a line parallel to the x1-axis. Without loss of generality, we assume
that no hyperplane in H is vertical.

Arrangements.. The arrangement A(H) of H is the partitioning of Rd in-
duced by H into vertices (intersections of any d hyperplanes in H), faces
(each flat in A(H) is divided into pieces by the hyperplanes in H that do
not contain the flat, a j-face is a piece in a j-flat), and regions (connected
components in Rd separated by hyperplanes in H). We call A(H) a simple
arrangement if H is in general position.

Pseudo-distance.. Following Welzl [23], we use δH to denote the pseudo-
distance for pairs of points (relative to H), where δH(p, q) is defined as the
number of hyperplanes in H which have p and q on opposite sides. For a
point p and an integer σ, we define the pseudo-ball DH(p, σ) as the set of
vertices q in A(H) with δH(p, q) ≤ σ. Our goal in this section is to show that
arrangements have big pseudo-balls. In particular, we will prove

Lemma 1. If H is a set of ` hyperplanes in general position in Rd, and σ is
an integer, 0 ≤ σ ≤ ` − d, then |DH(p, σ)| ≥

(
σ+d
d

)
for all points p disjoint

from H.

To prove this lemma, we need to use a result, due to Clarkson [11], on
the number of i-bases in an arrangement. With this result we can prove a
lower bound on the size of DH(p, σ). The following is a review of Clarkson’s
theorem (with some modifications) on the number of i-bases, which is the
main tool used to prove Theorem 1. The difference between this proof and
the original is in the definition of i-basis.

Let P(H) be the convex polytope given by P(H) = ∩h∈H(h∪h+), where
h+ is the open halfspace bounded by h and containing point (∞, 0, . . . , 0).
Let G ⊂ H, |G| ≥ d. Then we define x∗(G) as the vertex of P(G) with

5

lexicographically smallest coordinates. Note that x∗(G) is well defined since
|G| ≥ d and the hyperplanes in H are in general position. Also note that
there exists one subset B ⊂ G with |B| = d and such that x∗(B) = x∗(G).
We call B the basis b(G) of G. For any B ∈

(
H
d

)
, let

IB ≡ {h ∈ H | b(B ∪ {h}) 6= B}

be the set of hyperplanes that violate b(B). If |IB| = i, B is called an i-basis.
Since any random sample R ∈

(
H
r

)
, where d ≤ r ≤ `, has exactly one

basis, we have

1 =
∑
B∈(H

d)

Pr{B = b(R)} ∀d ≤ r ≤ `. (3)

Any B ∈
(
H
d

)
is the basis of R if and only if B ⊆ R and R does not contain

any element of IB. If B is an i-basis, the probability that B is the basis of

R is
(`−i−d

r−d)
(`
r)

. Let g′i(H) denote the number of i-bases in the arrangement.

Equation (3) can be rewritten as

1 =
∑

0≤i≤`−d

(
`−i−d
r−d

)(
`
r

) g′i(H) ∀d ≤ r ≤ `. (4)

Equation (4) gives a system of l−d+1 linear equations in l−d+1 variables.
Solving this system gives

g′i(H) =

(
i+ d− 1

d− 1

)
. (5)

For more details see Clarkson [11]. Mulmuley also proved this result with a
different method [19].

Proof (of Lemma 1). By a standard projective transformation, we can as-
sume that all hyperplanes in H are below p. An i-basis defines a vertex
with distance to p no more than i. We know that the number of i-bases is(
i+d−1
d−1

)
in A(H). The number of vertices with distance to p no more than σ

is therefore at least

σ∑
i=0

(
i+ d− 1

d− 1

)
=

(
σ + d

d

)
.

6

The bound in Lemma 1 is a generalization of the second result of Welzl [23]
for the case d = 2. It also strengthens the bounds of Chazelle and Welzl [8]
for d ≥ 3. This bound is a lower bound on the number of ≤k-sets.

Now we develop the tools needed to prove Theorem 2. We define the
distance from p to a k-flat f as

δkH(p, f) = min
q∈f

δH(p, q).

For a point p and an integer σ, we let Dk
H(p, σ) denote the set of k-flats f in

the arrangement of H with δkH(p, f) ≤ σ. Notice that DH(p, σ) = D0
H(p, σ).

Proposition 2.1. For any point p disjoint from H in Rd,

|Dd−1
H (p, σ)| ≥ 2(σ + 1) ∀σ ∈

{
0, 1, . . . ,

⌊
`

2

⌋
− 1

}
.

Proof. Welzl’s proof [23] for R2 is also valid for Rd. We can always find a
line through p that intersects b `

2
c hyperplanes of H on each side of p.

Lemma 2. If H is a set of ` hyperplanes in general position in Rd, and σ is
an integer, 0 ≤ σ ≤ b `

2
c − 1, then |Dk

H(p, σ)| ≥ 2d−k

(d−k)!

(
σ+d−k
d−k

)
for all vertices

p disjoint from H.

Proof. We are going to prove this theorem by induction on d. The proof is
inspired by the proof by Welzl in [23]. In Rk+1, we have, by Proposition 2.1,

|Dk
H(p, σ)| ≥ 2(σ + 1) =

2k+1−k

(k + 1− k)!

(
σ + k + 1− k
k + 1− k

)
.

Assume that |Dk
H(p, σ)| ≥ 2t−k

(t−k)!

(
σ+t−k
t−k

)
in Rt, where t ≥ k + 1. In Rt+1, we

have at least 2(σ + 1) t-flats with distance to p no more than σ according
to Proposition 2.1. Let hj be a t-flat with distance of j to p. We know that
there are at least two such t-flats according to Proposition 2.1. We also know
that there is a point qj in hj with δH(p, qj) ≤ j. Then any vertices in hj with
distance to qj no more than σ − j have distance to p no more than σ. Since

hj is a space of dimension t, there are at least 2t−k

(t−k)!

(
σ−j+t−k

t−k

)
such vertices.

Since a k-flat is the intersection of t + 1 − k hyperplanes, a vertex can be
counted at most t+ 1− k times. Therefore, in Rt+1, we have

|Dk
H(p, σ)| ≥ 2

t+ 1− k

σ∑
j=0

2t−k

(t− k)!

(
σ − j + t− k

t− k

)
=

2t+1−k

(t+ 1− k)!

(
σ + t+ 1− k
t+ 1− k

)
.

7

Hence, in Rd,

|Dk
H(p, σ)| ≥ 2d−k

(d− k)!

(
σ + d− k
d− k

)
.

With these two lemmas, we then suggest two approximation algorithms
using the two heuristics in Section 1 for the Tukey depth. Our analysis of
these algorithms is done by showing that the vector v that minimizes (∗)
corresponds to a point h∗v in an arrangement of n hyperplanes in Rd−1. Any
vertex or k-flat in the arrangement that is “close” to h∗v will provide a good
approximation. Thus, the analysis boils down to showing that there are
many vertices or k-flats that are close to h∗v so that we have a good chance
of picking one of them.

3. Approximations for Tukey Depth

In order to relate the hyperplane arrangements studied in Section 2 to
the approximation algorithms for Tukey depth, we need to introduce duality
[14].

Point/hyperplane duality.. For a point a = (a1, a2, . . . , ad) in S, its dual
image, denoted by a∗, is a hyperplane in T with equation xd = a1x1 +a2x2 +
. . .+ ad−1xd−1− ad, and for a hyperplane b with equation xd = b1x1 + b2x2 +
. . .+ bd−1xd−1− bd, its dual image, denoted by b∗, is the point (b1, b2, . . . , bd).
Duality preserves incidences between points and hyperplanes and reverses
the above/below relationship. The point a lies on the hyperplane b if and
only if b∗ lies on a∗; a lies above b if and only if a∗ is below b∗. All the
hyperplanes through point p in the primal dualize to all the points on the
hyperplane p∗ in the dual.

The dual arrangement.. Given a set S of n points in Rd, we define the dual
arrangement A(T) of S as a set of n hyperplanes, T , that are the duals of
the points in S. In the dual arrangement, we say a hyperplane is vertical if
it contains a line parallel to the xd-axis.

Duality and Tukey depth.. Finding the Tukey depth of p is equivalent to
finding a hyperplane h (with inner-normal v) through p with the fewest points
either above or below. In the dual, this is the same as finding a point h∗v on
they hyperplane p∗ with the fewest hyperplanes of T either below or above.

8

The hyperplanes in T divide p∗ into cells. Within a cell, the number of
hyperplanes above or below any two points is the same. Suppose cell c in T
contains the optimal points (h∗v is a point inside c). For any vertex b∗ in A(T)
with δT (h∗v, b

∗) = σ, the normal vector vb of its primal image b gives a depth
value at most σ more than the optimal depth value (Heuristic 1 in page 3).
Similarly, for any k-flat y∗ in A(T) with δkT (h∗v, y

∗) = σ, the (k + 1)-flat fy
orthogonal to its primal image y gives a depth value at most σ more than
optimal depth value (Heuristic 2 in page 3).

3.1. Analysis of First Heuristic

Now let us analyze how well the first heuristic works. Sampling d − 1
points from S is the same as sampling d − 1 hyperplanes in T which will
define a vertex on p∗. Then we only need to consider the d− 1 dimensional
arrangement A(Tp∗) restricted to p∗. According to Lemma 1, |DTp∗ (h∗v, σ)| ≥(
σ+d−1
d−1

)
. Since there are

(
n
d−1

)
vertices on p∗, by one sampling, the probability

that we get a depth value with an error no more than σ is at least(
σ+d−1
d−1

)(
n
d−1

) =
(σ + d− 1)!(n− d+ 1)!

σ!n!
. (6)

Let Pσ = (σ+d−1)!(n−d+1)!
σ!n!

. We can repeat this heuristic s times and use the
best result as an approximation. The probability that the best depth value
with an error more than σ is at most (1− Pσ)s. Hence, the probability that
we get a depth value with an error no more than σ is at least

1− (1− Pσ)s ≥ 1− 1

e
for s =

σ!n!

(σ + d− 1)!(n− d+ 1)!
≤
(n
σ

)d−1
. (7)

If we set σ to εn, where ε is a fixed constant, this approximation runs in
O(ε1−ddn) time.

3.2. Analysis of Second Heuristic

In the second heuristic, sampling d−k points from S is the same as sam-
pling d−k hyperplanes in T which will define a (k−1)-flat on p∗. According

to Lemma 2, we have |Dk−1
Tp∗

(h∗v, σ)| ≥ 2d−k

(d−k)!

(
σ+d−k
d−k

)
. Since there are

(
n
d−k

)
(k−1)-flats on p∗, by one sampling, the probability that we get a depth value
with an error no more than σ is at least

2d−k

(d−k)!

(
σ+d−k
d−k

)(
n
d−k

) =
2d−k(σ + d− k)!(n− d+ k)!

(d− k)!σ!n!
. (8)

9

Similar to the above analysis, we let P ′σ = 2d−k(σ+d−k)!(n−d+k)!
(d−k)!σ!n! . Running this

heuristic s times, the probability that we get a depth value with an error no
more than σ is at least

1−(1−P ′σ)s ≥ 1−1

e
for s =

(d− k)!σ!n!

2d−k(σ + d− k)!(n− d+ k)!
≤
(
d− k

2

)d−k
·
(n
σ

)d−k
.

(9)
This approximation needs less samples when d is small, but we need to solve s
Tukey depth problems in Rk. For k = 2, if we set σ to εn, this approximation

runs in O
((

d−2
2

)d−2
ε2−dn log n

)
time.

Our approximation algorithms are comparable to the following simple ap-
proximation. For a fixed constant ε and a large enough constant c, we make
a random sample R of S, where each element of S is selected with proba-
bility c logn

εn
< 1. We then compute depth(p,R) with brute-force. With high

probability, depth(p,R) · εn
c logn

is an approximation of depth(p, S) with error

no more than εn. This approximation runs in O
(

(ε−1c log n)
d
)

time. While

this is asymptotically faster than our algorithms, logd n can be significantly
larger than n in many cases. This is the case, for example, with all the data
sets used in the next section.

4. Experimental Results

We tested the two approximation algorithms on a Dell Precision 490 work-
station with a 2.80 GHz Intel Xeon CPU. For the second approximation, we
tested the case of k = 2, and the 2-dimensional problems are solved with
a scan and sort algorithm [20]. The two algorithms are run s times (as in-
dicated in (7) and (9)) and tested with the 9 data sets listed in Table 1:

The Rand4d data set is randomly generated, and the data items are uni-
formly distributed in a unit ball. All other data sets are extracted from some
data sets in the University of California, Irvine (UCI) Machine Learning
Repository (MLR) [3]. The data points in the data sets extracted from
UCI MLR are not in general position. Even worse, there are duplicate
data points in some data sets. There are no duplicates in Wine4d, Wine5d,
Pima4d, Pima5d, and Rand4d. There are a few duplicates in Iris, Auto4d,
and Auto5d. There are many duplicates in Yeast, Forest4d, and Forest5d.

The running time of the algorithms on different data sets is given in Ta-
ble 2. The second approximation runs faster, but it is more sensitive to

10

Name Item # (n) Attrib # (d) Source
Iris 150 4 UCI MLR.

Wine4d 178 4 UCI MLR. 4 attributes of the Wine data set
Wine5d 178 5 UCI MLR. 5 attributes of the Wine data set
Auto4d 392 4 UCI MLR. 4 attributes of the Auto MPG

data set
Auto5d 392 5 UCI MLR. 5 attributes of the Auto MPG

data set
Rand4d 500 4 Randomly generated

Forest4d 517 4 UCI MLR. 4 attributes of the Forest Fires
data set [12]

Forest5d 517 5 UCI MLR. 5 attributes of the Forest Fires
data set [12]

Pima4d 768 4 UCI MLR. 4 attributes of the Pima Indians
Diabetes data set

Pima5d 768 5 UCI MLR. 5 attributes of the Pima Indians
Diabetes data set

Yeast4d 1484 4 UCI MLR. 4 attributes of the Yeast data set

Table 1: The data sets

rounding error. In order to generate a 2d problem in the second approxi-
mation, we first find 2 perpendicular vectors in the 2-flat orthogonal to the
(d−2)-flat containing the d−2 sampling points and p, then project all points
in the data set onto the 2 vectors. The values are used as the coordinates
of points in the 2-dimensional space. This projection and the sorting of the
2-dimensional points bring rounding errors. To overcome this problem, exact
arithmetic is applied on the Iris data set with GMP (GNU Multiple Preci-
sion Library). GMP slows down the algorithm dramatically, hence it is not
practical to use it on larger data sets.

The true depth values are computed with the binary search idea in [9]
which requires solving a series of mixed integer program. It takes a long
time and a large amount of memory to solve the integer programs. Many
instances can not be solved due to time and memory limitations. The time
required to solve integer programs is output-sensitive, so that problems with
larger depth values take longer. For example, we need a few hours to solve
a problem with depth 10 in Pima5d. On the other hand, the approximation
algorithms do not have this sensitivity. They take roughly the same time to

11

Data Set σ value Algorithm Running time Max error1 Average error1

Iris 2
approx 1 50s(GMP) 2 0.309
approx 2 7s(GMP) 2 0.258

Wine4d 2
approx 1 2s 2 0.372
approx 2 1s 2 0.326

Wine5d 2
approx 1 70s 3 0.223
approx 2 8s 3 0.086

Auto4d 2
approx 1 31s 1 0.213
approx 2 2s 2 0.213

Auto5d 2
approx 1 2400s 1 0.164
approx 2 187s 1 0.071

Rand4d 2
approx 1 77s 1 0.186
approx 2 3s 2 0.169

Forest4d 2
approx 1 87s 2 0.309
approx 2 4s 2 0.136

Forest5d 3
approx 1 3880s 2 0.3192

approx 2 287s 1 0.0883

Pima4d 2
approx 1 387s 2 0.299
approx 2 12s 1 -1.0314

Pima5d 4
approx 1 12350s 2 0.708
approx 2 815s 2 -0.3335

Yeast4d 3
approx 1 2400s 1 0.571
approx 2 56s 1 0.429

1 Some points are not tested because we do not know the real depth of them.
2 2 depth values are smaller than the real ones (due to rounding errors).
3 7 depth values are smaller than the real ones (due to rounding errors).
4 23 depth values are smaller than the real ones (due to rounding errors).
5 14 depth values are smaller than the real ones (due to rounding errors).

Table 2: The performance of the algorithms

solve all the problems in the same data set.
For smaller data sets, the tests were run with the absolute error σ set to

2. However, in the vast majority of cases (at least those in which the true
depth can be computed exactly), both approximation algorithms computed
the depth correctly with no error. In a small number of cases the error is 1
or 2. The second approximation gave less average error.

12

5. Concluding Remarks

In this paper, we have

1. given a rigorous theoretical analysis of the algorithm of Rousseeuw and
Struyf [20] that explains their experimental results;

2. generalized the algorithm of Rousseeuw and Struyf to solve k-dimensional
subproblems. Using value k = 2 gives a substantial improvement in
running time while providing the same approximation; and

3. done extensive testing of these algorithms on real and synthetic data
sets. This testing shows that the algorithms are indeed fast and that,
in most cases, they compute the exact Tukey depth, and make an error
of 1 or 2 (when σ is set to 2) rather infrequently.

These algorithms are simple, easy to implement, and our results show
that, as well as having theoretical guarantees, they work well in practice.

[1] P. Afshani and T. M. Chan. On approximate range counting and depth.
In SCG ’07: Proceedings of the Twenty-Third Annual Symposium on
Computational Geometry, pages 337–343, New York, NY, USA, 2007.
ACM.

[2] E. Amaldi and V. Kann. The complexity and approximability of finding
maximum feasible subsystems of linear relations. Theoretical Computer
Science, 147(1–2):181–210, 1995.

[3] A. Asuncion and D. J. Newman. UCI machine learning repository, 2007.

[4] D. Bremner, D. Chen, J. Iacono, S. Langerman, and P. Morin. Output-
sensitive algorithms for Tukey depth and related problems. Statistics
and Computing, 18:259–266, 2008.

[5] D. Bremner, K. Fukuda, and V. Rosta. Primal dual algorithms for data
depth. In Data Depth: Robust Multivariate Analysis, Computational
Geometry, and Applications, AMS DIMACS Book Series, 2006.

[6] T. M. Chan. An optimal randomized algorithm for maximum tukey
depth. In SODA ’04: Proceedings of the Fifteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 430–436, Philadelphia, PA,
USA, 2004. Society for Industrial and Applied Mathematics.

13

[7] T. M. Chan. Low-dimensional linear programming with violations.
SIAM Journal on Computing, 34(4):879–893, 2005.

[8] B. Chazelle and E. Welzl. Quasi-optimal range searching in spaces of
finite VC-dimension. Discrete Comput. Geom., 4(5):467–489, 1989.

[9] D. Chen. A branch and cut algorithm for the halfspace depth prob-
lem. Master’s thesis, Faculty of Computer Science, University of New
Brunswick, Fredericton, Canada, 2007.

[10] J. W. Chinneck. Feasibility and Infeasibility in Optimization: Algo-
rithms and Computational Methods, volume 118 of International Series
in Operations Research and Management Sciences. Springer, New York,
USA, 2008.

[11] K. L. Clarkson. A bound on local minima of arrangements that im-
plies the upper bound theorem. Discrete and Computational Geometry,
10:427–233, 1993.

[12] P. Cortez and A. Morais. A data mining approach to predict forest fires
using meteorological data. In J. Neves, M. F. Santos, and Machado J.,
editors, New Trends in Artificial Intelligence, Proceedings of the 13th
EPIA 2007 - Portuguese Conference on Artificial Intelligence, pages
512–523. Springer, 2007.

[13] J. A. Cuesta-Albertos and A. Nieto-Reyes. The random Tukey depth.
Computational Statistics and Data Analysis, 52(11):4979–4988, 2008.

[14] H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer-
Verlag, Heidelberg, Germany, 1987.

[15] J. L. Hodges. A bivariate sign test. The Annals of Mathematical Statis-
tics, 26(3):523–527, 1955.

[16] D. S. Johnson and F. P. Preparata. The densest hemisphere problem.
Theoretical Computer Science, 6(1):93–107, 1978.

[17] S. Langerman and W. Steiger. Optimization in arrangements. In Pro-
ceedings of the 20th Annual Symposium on Theoretical Aspects of Com-
puter Science, volume 2607, pages 50–61, London, UK, 2003. Springer-
Verlag.

14

[18] J. Matoušek. Computing the center of planar point sets. In J.E. Good-
man, R. Pollack, and W. Steiger, editors, Computational Geometry: Pa-
pers from the Special Year, pages 221–230. AMS, Providence, 1991.

[19] K. Mulmuley. Dehn-Sommerville relations, upper bound theorem, and
levels in arrangements. In SCG ’93: Proceedings of the Ninth Annual
Symposium on Computational Geometry, pages 240–246, New York, NY,
USA, 1993. ACM.

[20] P. J. Rousseeuw and A. Struyf. Computing location depth and regression
depth in higher dimensions. Statistics and Computing, 8(3):193–203,
1998.

[21] S. Teng. Points, Spheres, and Separators: A Unified Geometric Ap-
proach to Graph Partitioning. PhD thesis, School of Computer Science,
Carnegie Mellon University, 1991.

[22] J. W. Tukey. Mathematics and the picturing of data. In Proceedings
of the International Congress of Mathematicians: Vancouver, volume 2,
pages 523–531, Montreal, 1975. Canadian Mathematical Congress.

[23] E. Welzl. On spanning trees with low crossing numbers. In B. Monien
and T. Ottmann, editors, Data Structures and Efficient Algorithms: Fi-
nal Report on the DFG Special Joint Initiative, B. Monien and Th.
Ottmann (Eds.), LNCS 594, Lecture Notes in Computer Science, pages
233–249. Springer, London, 1992.

[24] R. Wilcox. Approximating Tukey’s depth. Communications in Statistics
- Simulation and Computation, 32(4):977–985, 2003.

15

