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Abstract. For a fixed integer k ≥ 0, a k-transmitter is an omnidirec-
tional wireless transmitter with an infinite broadcast range that is able
to penetrate up to k “walls”, represented as line segments in the plane.
We develop lower and upper bounds for the number of k-transmitters
that are necessary, and sometimes sufficient, to cover a given collection
of line segments, polygonal chains and polygons.

1 Introduction

Illumination and guarding problems generalize the well-known art gallery prob-
lem in computational geometry [15, 16]. The task is to determine a minimum
number of guards that are sufficient to guard, or “illuminate” a given region
under specific constraints. The region under surveillance may be a polygon, or
may be the entire plane with polygonal or line segment obstacles. The placement
of guards may be restricted to vertices (vertex guards) or edges (edge guards)
of the input polygon(s), or may be unrestricted (point guards). The guards may
be omnidirectional, illuminating all directions equally, or may be represented as
floodlights, illuminating a certain angle in a certain direction.

∗ Supported by NSF grant CCF-0728909.



Inspired by advancements in wireless technologies and the need to offer wire-
less services to clients, Aichholzer et al. [10, 2] introduce a new variant of the
illumination problem, called modem illumination. In this problem, a guard is
modeled as an omnidirectional wireless modem with an infinite broadcast range
and the power to penetrate up to k “walls” to reach a client, for some fixed
integer k > 0. Geometrically, walls are most often represented as line segments
in the plane. In this paper, we refer to such a guard as a k-transmitter, and we
speak of covering (rather than illuminating or guarding). We address the general
problem introduced in [10, 2], reformulated as follows:

k-Transmitter Problem: Given a set of obstacles in the plane, a target
region, and a fixed integer k > 0, how many k-transmitters are necessary
and sufficient to cover that region?

We consider instances of the k-transmitter problem in which the obstacles are line
segments or simple polygons, and the target region is simply a collection of line
segments, or a polygonal region, or the entire plane. In the case of plane coverage,
we assume that transmitters may be embedded in the wall, and therefore can
reach both sides of the wall at no cost. In the case of polygonal region coverage,
we favor the placements of transmitters inside the region itself; therefore, when
we talk about a vertex or edge transmitter, the implicit assumption is that the
transmitter is placed just inside the polygonal region, and so must penetrate one
wall to reach the exterior.

1.1 Previous Results

For a comprehensive survey on the art gallery problem and its variants, we refer
the reader to [15, 16]. Also see [9, 7, 4] for results on the wireless localization
problem, which asks for a set of 0-transmitters that need not only cover a given
region, but also enable mobile communication devices to prove that they are
inside or outside the given region. In this section, we focus on summarizing
existing results on the k-transmitter problem and a few related issues.

For k = 0, the k-transmitter problem for simple polygons is settled by the Art
Gallery Theorem [5], which states that bn

3 c guards are sufficient and sometimes
necessary to guard a polygonal region with n vertices. Finding the minimum
number of 0-transmitters that can guard a given polygon is NP-hard [14, 15].
For k > 0, Aichholzer et al. [10, 2] study the k-transmitter problem in which the
target region is represented as a monotone polygon or a monotone orthogonal
polygon with n vertices. They show that n

2k k-transmitters are sufficient, and
d n

2k+2e k-transmitters are sometimes necessary to cover a monotone polygon.
They also show that d n

2k+4e k-transmitters are sufficient and necessary to cover
any monotone orthogonal polygon. The authors also study simple polygons, or-
thogonal polygons and arrangements of lines in the context of very powerful
transmitters, i.e, k-transmitters where k may grow as a function of n. For exam-
ple, they show that any simple polygon with n vertices can always be covered
with one transmitter of power d 2n+1

3 e, and this bound is tight up to an additive



constant. In the case of orthogonal polygons, one dn
3 e-transmitter is sufficient

to cover the entire polygon. The problem of covering the plane with a single
k-transmitter has been also considered in [12], where it is proved that there
exist collections of n pairwise disjoint equal-length segments in the Euclidean
plane such that, from any point, there is a ray that meets at least 2n/3 of them
(roughly). While the focus in [10, 2, 12] is on finding a small number of high power
transmitters, our focus in this paper is primarily on lower power transmitters.

The concept of visibility through k segments has also appeared in other works.
Dean et al. [8, 13, 11] study bar k-visibility, where k-visibility goes through k
segments. Aichholzer et al. [1] introduce and study the notion of k-convexity: a
polygon is k-convex if every two vertices are k-visible.

1.2 Our Results

We consider several instances of the k-transmitter problem. If obstacles are dis-
joint orthogonal segments and the target region is the entire plane, we show that
d 5n+6

12 e 1-transmitters are always sufficient and dn+1
4 e are sometimes necessary

to cover the target region. If the target region is the plane and the obstacles are
lines and line segments that form a guillotine subdivision (defined in §2.2), then
n+1

2 1-transmitters suffice to cover the target region. We next consider the case
where the obstacles consist of a set of nested convex polygons. If the target re-
gion is the boundaries of these polygons, then bn

7 c+ 3 2-transmitters are always
sufficient to cover it. On the other hand, if the target region is the entire plane,
then bn

6 c + 3 2-transmitters suffice to cover it, and bn
8 c + 1 2-transmitters are

sometimes necessary. All these results (detailed in §2) use point, vertex and edge
transmitters, and in the case of the latter two, the implicit assumption is that
they are embedded in the segment and can reach either side of the segment at
no cost.

In Section 3 we move on to the case where the target region is the interior
of a simple polygon. In this case, we restrict the placement of vertex and edge
transmitters to the interior of the polygon. We show that bn/6c 2-transmitters
are sometimes necessary to cover the interior of a simple polygon. In Section 3.2
we introduce a class of spiral polygons, which we refer to spirangles, and show
that bn

8 c 2-transmitters are sufficient, and sometimes necessary, to cover the
interior of a spirangle polygon. In the case of arbitrary spiral polygons, we derive
an upper bound of bn

4 c 2-transmitters, matching the upper bound for monotone
polygons from [2].

2 Coverage of Plane with Obstacles

We begin with the problem of covering the entire plane with transmitters, in the
presence of obstacles that are orthogonal segments (§2.1), a guillotine subdivision
(§2.2), or a set of nested convex polygons (§2.3). There is no restriction on the
placement of transmitters (on or off a segment). In the case of a transmitter
located on a segment itself, the assumption is that the segment does not act as



on obstacle for that transmitter, in other words, that the transmitter has the
power of a k-transmitter on both sides of the segment.

2.1 Orthogonal Line Segments

Given a set S of disjoint line segments in the plane, we seek a set of k-transmitters
that sees (covers) the whole plane. Recall that we allow visibility through end-
points of segments, and that a point on a segment sees to both sides of the
segment.

In classical guarding problems, the guards are 0-transmitters because they
cannot see through any segments. Czyzowicz et al. [6] proved that d(n+ 1)/2e
0-transmitters always suffice and are sometimes necessary to cover the plane
in the presence of n disjoint orthogonal line segments. We generalize this to k-
transmitters. Our main ideas are captured by the case of 1-transmitters, so we
begin there:

Theorem 1. In order to cover the plane in the presence of n disjoint orthogonal
line segments, d(5n+ 6)/12e 1-transmitters are always sufficient and d(n+ 1)/4e
are sometimes necessary.

Proof. The lower bound is established by n parallel lines—a single 1-transmitter
can cover only 4 of the n+ 1 regions.

For the upper bound, the main idea is to remove from S a set of segments
that are independent in the sense that no covering ray goes through two of them
consecutively. We then take a set of conventional transmitters for the remaining
segments. By upgrading these transmitters to 1-transmitters we cover the whole
plane with respect to the original segments S.

We now fill in this idea. We will assume without loss of generality that the
segments have been extended (remaining interior-disjoint) so that each end of
each segment either extends to infinity, or lies on another segment: if a set of
k-transmitters covers the plane with respect to the extended segments then it
covers the plane with respect to the original segments. With this assumption the
segments partition the plane into n+ 1 rectangular faces.

The visibility graph G(S) has a vertex for each segment of S and an edge st
if segments s and t are weakly visible, i.e. there is a point p interior to s and a
point q interior to t such that the line segment pq does not cross any segment in
S. Equivalently, for the case of extended segments, s and t are weakly visible if
some face is incident to both of them.

Lemma 1. If I is an independent set in G(S) and T is a set of 0-transmitters
that covers the whole plane with respect to S−I, then T is a set of 1-transmitters
that covers the whole plane with respect to S.

Proof. Suppose that a 0-transmitter at point p covers point q with respect to
S− I. Then the line segment from p to q does not cross any segment of S− I. It
cannot cross two or more segments of I otherwise two such consecutive segments
would be visible (and not independent). Thus a 1-transmitter at p covers q with
respect to S. ut



To obtain a large independent set in G(S) we will color G(S) and take the
largest color class. If the faces formed by S were all triangles then G(S) would
be planar and thus 4-colorable. Instead, we have rectangular faces, so G(S) is
1-planar and can be colored with 6 colors. A graph is 1-planar if it can be drawn
in the plane, with points for vertices and curves for edges, in such a way that
each edge crosses at most one other edge. Ringel conjectured in 1965 that 1-
planar graphs are 6-colorable. This was proved in 1984 by Borodin, who gave a
shorter proof in 1995 [3].

Fig. 1. (left) A set S of disjoint orthogonal segments and their extensions (dashed) with
an independent set shown in bold; (middle) G(S) with vertices drawn as segments and
edges as dashed curves so 1-planarity is clear; (right) contracting a segment to a point
to get a conventional drawing of the graph.

Lemma 2. If S is a set of extended orthogonal segments then G(S) is 1-planar.

Proof. The idea is the same as that used to show that the visibility graph of
horizontal line segments is planar. If G(S) is drawn in the natural way, with
every vertex represented by its original segment, and every edge drawn as a
straight line segment crossing a face, then it is clear that each edge crosses at
most one other edge. See Figure 1. We can contract each segment to a point
while maintaining this. Note that we end up with a multi-graph in case two
segments are incident to more than one face. ut

We now wrap up the proof of Theorem 1. Since G(S) is 1-planar it has a
6-coloring by Borodin’s result. The largest color class has at least n/6 vertices
and forms an independent set I. The set S− I has at most 5n/6 segments, so by
the result of Czyzowicz et al. [6], it has a set of 0-transmitters of cardinality at
most d( 5n

6 + 1)/2e = d(5n + 6)/12e that covers the entire plane. By Lemma 1,
placing 1-transmitters at those points covers the entire plane with respect to S.

ut

We note that the above proof relies on a 6-coloring of G(S). An example that
requires 5 colors is shown in Figure 2.

Theorem 2. In order to cover the plane in the presence of n disjoint orthogonal
line segments, d 12 ((5/6)log(k+1)n + 1)e k-transmitters are always sufficient and
d(n+ 1)/2(k + 1)e are sometimes necessary.



Fig. 2. An arrangement of five segments whose visibility graph is complete and thus
requires 5 colors.

Proof. As for k = 1, the lower bound is realized by parallel segments. One k-
transmitter can only cover 2(k + 1) of the n+ 1 regions.

For the upper bound, we build on the proof technique for k = 1. We re-
peatedly remove independent sets, extending the remaining segments after each
removal.

For a set of segments S, let X(S) be a set of segments formed by extending
those of S until they touch. It will not matter that X(S) is not unique. Let R0

be S and for i = 1, 2, . . . let Si be a maximal independent set in the visibility
graph of X(Ri−1) and let Ri = S − (∪i

j=1Sj). Then Ri has cardinality at most
(5/6)in.

Lemma 3. If T is a set of 0-transmitters that covers the whole plane with respect
to Ri, then T is a set of (2i − 1)-transmitters that covers the whole plane with
respect to S = R0.

Proof. We prove by induction on j = 0, . . . , i that T is a set of (2j − 1)-
transmitters that covers the whole plane with respect to Ri−j . Suppose this
holds for j − 1. Suppose a (2j−1 − 1)-transmitter at point p sees point q in
Ri−j+1. Then the line segment pq crosses at most 2j−1 − 1 segments of Ri−j+1,
and thus 2j−1 faces. Consider putting back the segments of Si−j+1 to obtain
Ri−j . The segments of Si−j+1 are independent in Ri−j . Therefore the line seg-
ment pq can cross at most one segment of Si−j+1 in each face. The total number
of segments of Ri−j crossed by pq is thus 2j−1 − 1 + 2j−1 = 2j − 1. In other
words, a (2j − 1)-transmitter at p in Ri−j covers the same area as the original
(2j−1 − 1)-transmitter at p in Ri−j+1. ut

We use this lemma to complete the proof of the theorem. Since we have
the power of k-transmitters, we can continue removing independent sets until
Ri, where k = 2i − 1, i.e. i = log(k + 1). Then Ri has size (5/6)log(k+1)n, and
the number of 0-transmitters needed to cover the plane with respect to Ri is
d 12 ((5/6)log(k+1)n+1)e. Applying the lemma, this is the number of k-transmitters
we need to cover the plane with respect to S.

ut

2.2 Guillotine Subdivisions

A guillotine subdivision S is obtained by inserting a sequence s1, . . . , sn of line
segments, such that each inserted segment si splits a face of the current subdi-



vision Si−1 into two new faces yielding a new subdivision Si. We start with one
unbounded face S0, which is the entire plane.

As the example in Figure 3 shows, a guillotine subdivision with n segments
can require 2(n−2)/3 0-transmitters. In this section, we show that no guillotine
subdivision requires more than (n+1)/2 1-transmitters. We begin with a lemma:

. . .

Fig. 3. A guillotine subdivision with n = 6k+2 segments that requires 4k 0- transmit-
ters. Each of the 4k triangular faces must have a 0-transmitter on its boundary and no
two triangular faces share a boundary.

Lemma 4. Let F be a face in a guillotine subdivision S. If there are 1-transmitters
on every face that shares an edge with F then these 1-transmitters see all of F .

Proof. Consider the segment si whose insertion created the face F . Before the
insertion of si, the subdivision Si−1 contained a convex face that was split by
si into two faces F and F ′ (Figure 4.a). No further segments were inserted into
F , but F ′ may have been further subdivided, so that there are now several faces
F ′1, . . . , F

′
k, with F ′j ⊆ F ′ and F ′j incident on s for all j ∈ {1, . . . , k} (Figure 4.b).

F ′

F

si

F

F ′
1

F ′
2

F ′
3

F ′
4

F̃ ′
1

F̃ ′
2

F̃ ′
3

F̃ ′
4

(a) (b) (c) (d)

Fig. 4. The proof of Lemma 4.

We claim that the 1-transmitters in F ′1, . . . , F
′
k guard the interior of F . To

see this, imagine removing si from the subdivision and instead, constructing a
guillotine subdivision S̃ from the sequence s1, . . . , si−1, si+1, . . . , sn (Figure 4.c).
In this case, each face F ′j in S becomes a larger face F̃ ′j in S̃ and together⋃k

j=1 F̃
′
j ⊇ F . Finally, we observe that each 1-transmitter in S in face F ′j guards

at least F̃ ′j , so together, the 1-transmitters in F ′1, . . . , F
′
k guard all of F (Fig-

ure 4.d). ut



Theorem 3. Any guillotine subdivision can be guarded with at most (n + 1)/2
1-transmitters.

Proof. Consider the dual graph T of the subdivision. T is a triangulation with
n+ 1 vertices. Let M be any maximal matching in T . Consider the unmatched
vertices of T . Each such vertex is adjacent only to matched vertices (otherwise M
would not be maximal). Let G be the set of 1-transmitters obtained by placing a
single 1-transmitter on the primal edge associated with each edge e ∈M . Then
|G| = |M | ≤ (n+ 1)/2. For every face F of S, F either contains a 1-transmitter
in G, or all faces that share an edge with F contain a 1-transmitter in G. In the
former case, F is obviously guarded. In the latter case, Lemma 4 ensures that
F is guarded. Therefore, G is a set of 1-transmitters that guards all faces of F
and has size at most (n+ 1)/2. ut

2.3 Nested Convex Polygons

The problems analyzed in this section are essentially two:

1. How many 2-transmitters are always sufficient (and sometimes necessary) to
cover the edges of a set of nested convex polygons?

2. How many 2-transmitters are always sufficient (and sometimes necessary) to
cover the plane in the presence of a set of nested convex polygons?

Henceforth, we use the bounding box of a polygon to refer to the smallest axis-
parallel rectangle containing the polygon.

Some notation We call a set of k convex polygons {P1, P2, . . . , Pk} nested
if P1 ⊇ P2 ⊇ · · · ⊇ Pk. The total number of vertices of the set of polygons
{P1, P2, . . . , Pk} is n.

Given such a set, we call layers the boundaries of the polygons, and rings
the portions of the plane between layers, i.e., the the i-th ring is Ri = Pi−Pi+1,
for i = 1, . . . , k − 1. In addition, R0 = R− P1 and Rk = Pk.

We assume that vertices on each layer have labels with indices increasing
counterclockwise. Given a vertex vj ∈ Pi, we call the positive angle ∠vj−1vjvj+1

its external visibility angle. (Positive angles are measured counterclockwise, and
negative angles are measured clockwise.) Its internal visibility angle is the neg-
ative angle ∠vj−1vjvj+1.

A particular case We first study the special case when all layers (convex
polygons) have an even number of vertices.

Lemma 5. Placing a 2-transmitter at every other vertex in a given layer i guar-
antees to completely cover layers i− 3, i− 2, i− 1 and i, as well as rings i− 3,
i− 2 and i− 1.



j+2vjv

Fig. 5. External visibility angles of two vertices vj , vj+2 of layer i. Only layers i − 3,
i− 2, i− 1 and i are shown.

Proof. The fact that layer i is covered is obvious. As for the previous layers,
notice that the convexity of Pi guarantees that the external visibility angles of
any vertex pair vj and vj+2 overlap, as illustrated in Figure 5. Since vj ∈ Pi ⊆
Pi−1 ⊆ Pi−2 ⊆ Pi−3 and the polygons are convex, all rays from vj within its
external visibility angle traverse exactly two segments before reaching layer i−3.

ut

Lemma 6. bn/8c+ 1 2-transmitters are always sufficient to cover the edges of
any nested set of convex polygons with a total of n vertices, if each of the polygons
has an even number of vertices.

Proof. If the number of layers is k ∈ {1, 2, 3}, one transmitter trivially suffices.
If k ≥ 4, from the pigeonhole principle one of i ∈ {1, 2, 3, 4} is such that the
set Gi = {Pj | j ∈ {1, . . . , k}, j ≡ i(mod 4)} has no more than bn/4c vertices
(in fact, the number of vertices in Gi must be even since each layer has an
even number of vertices). Place one 2-transmitter at every other vertex of each
Pj ∈ Gi, i.e., in Pi, Pi+4, . . . , Pi+4m, wherem = |Gi|−1. From Lemma 5, all edges
in the following layers are covered: i− 3, i− 2, i− 1 (if they exist), i, . . . , i+ 4m.
Since i ∈ {1, 2, 3, 4}, all layers from 1 up to i + 4m are covered. On the other
hand, i + 4m ∈ {k, k − 1, k − 2, k − 3}. If i + 4m = k, all layers are covered;
otherwise, placing one more 2-transmitter in the interior of Pk completes the
job, giving a total of at most bn/8c + 1 2-transmitters. Figure 6(a) shows an
example. ut

As illustrated in Figure 6(a), the location of the transmitters established in
Lemma 6 does not guarantee that all rings are covered. Figure 6(b) shows a
specific example that leaves some portions of the white rings uncovered.

Lemma 7. bn
6 c+1 2-transmitters are always sufficient to cover the plane in the

presence of any nested set of convex polygons with a total of n vertices, if each
of the polygons has an even number of vertices.

Proof. An argument analogous to that of Lemma 6 proves that the plane is
entirely covered if a 2-transmitter is located every other vertex on each polygon



(a) (b)

Fig. 6. (a) Location of the at most bn/8c+1 2-transmitters to cover all the edges. The
shaded rings are guaranteed to be covered. The white rings are not necessarily covered.
(b) The shaded region is not covered by the 2-transmitters located at the red vertices.
Only the three involved layers are shown.

in the class G = {Pj | j ∈ {1, . . . , k}, j ≡ i(mod 3)}, i ∈ {1, 2, 3} having less or
equal than bn

3 c vertices, with the possible help of an additional 2-transmitter in
the interior of Pk. The situation is illustrated in Figure 7. ut

Fig. 7. Location of the at most bn
6
c+ 1 2-transmitters to cover the entire plane.

General case In this section we study the general case, independent of the
parity (odd, even) of the vertex count in each layer.

Lemma 8. Placing a 2-transmitter at each vertex of a given layer i guarantees
to completely cover layers i− 3, i− 2, i− 1, i, i+ 1, i+ 2 and i+ 3, as well as
rings i− 3, i− 2, i− 1, i, i+ 1 and i+ 2.

Proof. The fact that layers i − 3, i − 2, i − 1, i and rings i − 3, i − 2 and i − 1
are covered is a consequence of Lemma 5. As for the remaining layers and rings,



notice that, in the internal visibility angle of a 2-transmitter vj ∈ Pi, visibility
is determined by the supporting lines from vj to layers i+ 1, i+ 2 and i+ 3, as
illustrated in Figure 8. Having a 2-transmitter on each of the vertices of layer i,

Fig. 8. External and internal visibility from a 2-transmitter located in a vertex of layer
i. Only layers i−3, i−2, i−1, i, i+1, i+2 and i+3 are shown. The transmitter is marked
in red. The black unfilled vertices are the supporting points from the transmitter to
the internal layers.

combined with the fact that all polygons are convex, guarantees total covering
of layers i+ 1, i+ 2 and i+ 3 and rings i, i+ 1 and i+ 2. ut

Theorem 4. bn
7 c+ 5 2-transmitters are always sufficient to cover the edges of

any nested set of convex polygons with a total of n vertices.

Proof. If the number of layers is k ∈ {1, 2, 3, 4, 5, 6}, five 2-transmitters trivially
suffice: one in the interior of Pk and the other four at the corners of the bounding
box of P1. If k ≥ 7, from the pigeonhole principle one of i ∈ {1, 2, 3, 4, 5, 6, 7}
is such that the set G = {Pj | j ∈ {1, . . . , k}, j ≡ i(mod 7)} has no more
than bn

7 c vertices. Place one 2-transmitter at each vertex of each Pj ∈ G. From
Lemma 8, for a certain value of m ∈ Z all edges in the following layers are
covered: i− 3, i− 2, i− 1 (if they exist), i, . . . , i+ 7m, i+ 7m+ 1, i+ 7m+ 2 and
i + 7m + 3 (if they exist). In the worst case, the only layers that may remain
uncovered are 1, 2 and 3, as well as k− 2, k− 1 and k. Because of the convexity
of the polygons, four 2-transmitters conveniently located at the corners of the
bounding box of P1, and one 2-transmitter located in the interior of Pk, can take
care of covering these remaining layers. The total number of 2-transmitters used
is, at most, bn

7 c+ 5. ut

Again, as in Lemma 6, the transmitter placement from Theorem 4 guarantees
that all edges are covered, while some rings may not remain uncovered.

Theorem 5. bn
6 c+ 3 2-transmitters are always sufficient to cover the plane in

the presence of any nested set of convex polygons with a total of n vertices.

Proof. The proof is a slight modification of that of Theorem 4, by locating the
2-transmitters in all vertices of one every 6 (as opposed to 7) layers. ut



Tighter bounds for small values of n For small values of n, 3 extra 2-
transmitters (used in the bounds of Thms. 4 and 5) may contribute to a signifi-
cant increase in the number of transmitters used. In this section we seek better
bounds for small values of n.

Lemma 9. The vertices of any triangulation of a given ring Ri, with each tri-
angle incident to both layers, can be 3-colored by duplicating at most one vertex.

Proof. The dual graph of the triangulation is necessarily a cycle. The vertices
of the triangulation can be 3-colored in a straightforward manner, starting from
an arbitrary vertex, until the cycle gets completed. At that point, two different
things may happen: either the coloring closes nicely or up to two pairs of adjacent
vertices get assigned the same color. In this last case, duplicating one of each
pair and giving it the color which is missing in the corresponding triangle solves
the coloring. See Figure 9 for an illustration. ut

Fig. 9. Duplicating two vertices for 3-coloring a triangulation of a ring. Left: two pairs
of adjacent vertices get assigned the same color. Right: duplicating two vertices to
obtain a correct coloring. The dual graph of the triangulation is shown with dashed
edges and unfilled vertices.

Lemma 10. Placing one 2-transmitter at each vertex in the smallest color class
of a 3-colored triangulation of a ring R = Pi − Pi+2 guarantees to completely
cover layers i− 1, i, i+ 1 and i+ 2, as well as rings i− 1, i, and i+ 1.

Proof. The situation is illustrated in Figure 10. Rings i and i+1, as well as layer
i + 2 are contained in the triangulation. Taking a 2-transmitter at each vertex
of the smallest color class, ensures that each triangle will have a 2-transmitter
at one of its vertices (since each triangle has a vertex of each color). Hence we
need only argue that a triangle of the triangulation can be fully covered by a
2-transmitter placed at any one of its vertices. Let v be a vertex of a triangle
T in the triangulation, and let p be any point in T . The only obstruction to v
seeing p is layer i+1. Now because layer i+1 is convex, segment vp crosses layer



layer i
layer i-1

layer i+2

Fig. 10. Covering layers i− 1, i, i+ 1 and i+ 2, as well as rings i− 1, i and i+ 1, from
the vertices of the least popular color.

i+ 1 at most once if v is on layer i+ 2 and at most twice if v is on layer i. Hence
v can see p under 2-transmission.

Finally we must argue that we will also have covered ring i − 1. Each edge
vj−1vj of layer i supports a triangle T of the triangulation whose third vertex,
u belongs to layer i + 2. Extend the edges uvj−1 and uvj until they each hit
layer i− 1. The edge extensions define a visibility cone in ring i− 1, as shown in
Figure 11 (left). A transmitter placed at any vertex of T can see the entire cone.

Fig. 11. Left: the visibility cone of a triangle. Right: the union of such visibility cones
fully covers ring i− 1.

We showed above that it can see all of T . To see that it covers the rest of the
cone, consider any point p that is in the cone but not in T . If the transmitter is
at a vertex v on layer i + 2, then it follows that v can see p from an analogous
argument to the one above, except that now segment vp crosses layers i+ 1 and
i exactly once each. If the transmitter is at a vertex v on layer i, then segment
vp crosses no layers since it doesn’t pass through T . Furthermore the union of



the cones (i.e. taking the cone for each edge in layer i) fully covers ring i− 1, as
illustrated in Figure 11 (right). This shows that ring i− 1 is also covered. ut

Theorem 6. b 2n
9 c+ 1 2-transmitters are always sufficient to cover the edges of

any nested set of convex polygons with a total of n vertices.

Proof. If the number of layers is k ∈ {1, 2, 3}, one transmitter trivially suffices.
If k ≥ 4, from the pigeonhole principle one of i ∈ {1, 2} is such that the set
G = {Pj | j ∈ {1, . . . , k}, j ≡ i(mod 2)} has no more than bn

2 c vertices. Consider
only the layers in G. Triangulate every other ring in the resulting set of nested
layers, starting from the fist ring, using chords connecting vertices of different
layers (see Figure 12).

Fig. 12. Triangulating every other ring in G. Layers with filled vertices are in G, layers
with unfilled vertices are not in G.

From Lemma 9, all the selected rings can be 3-colored by duplicating at most
two vertices per ring. Since there are bn

2 c vertices in total, and each ring must at
least have 6 vertices, at most bn

6 c vertices get duplicated, giving rise to a total
of at most bn

2 c+b
n
6 c ≤ b

2n
3 c colored vertices. From the pigeonhole principle, the

least popular of the 3 colors must have at most b 13b
2n
3 cc = b 2n

9 c vertices. Place
one 2-transmitter at each of these vertices, plus possibly one 2-transmitter in
the interior of Pk.

Let us now prove that these 2-transmitters cover the entire set of layers.
Notice that each of the triangulated rings is formed by some layers i and i+ 2.
From Lemma 10, layers i− 1, i, i+ 1 and i+ 2 are covered. Layers lying in the
exterior or in the interior of the configuration of rings must also be taken care
of. Notice that at most one layer (not belonging to G) can lie in the exterior of
a triangulated ring, and Lemma 10 guarantees that this layer is covered. As for
the interior, in the worst case G may end up with three uncovered layers (see
Figure 13). In this case, one more 2-transmitter located in the interior of Pk will
complete the job. ut



Fig. 13. Covering the interior layers.

Theorem 6 guarantees that the entire set of layers is covered, however some
of the rings may not be fully covered. We achieve different bounds for the case
of covering the entire plane in Theorem 7.

Theorem 7. b 8n
27 c+ 1 2-transmitters are always sufficient to cover the plane in

the presence of any nested set of convex polygons with a total of n vertices.

Proof. The proof is a slight modification of that of Theorem 6. In this case, we
consider the class H = {Pj | j ∈ {1, . . . , k}, j ≡ i(mod 3)} for i ∈ {1, 2, 3}
having at least dn

3 e vertices, and let G be the set of the remaining layers. The
rings to be triangulated are those of G embedding the layers of H in their
interior (refer to Figure 14). In this case, G contains at most b 2n

3 c vertices and

Fig. 14. Triangulating the rings ofG (filled vertices) containing the layers ofH (unfilled
vertices).

the coloring of the triangulations of the rings may require the duplication of at



most two points per layer. Hence, the number of vertices of the smallest color
class is less or equal than b

(
b 2n

3 c+ 2b 16
2n
3 c
)

1
3c ≤ b

8n
27 c.

Again, the layers lying in the exterior of the configuration of rings cannot
produce an occlusion to transmission, since there cannot be more than one.
Hence, R0 is covered. As for the most interior rings, one more 2-transmitter,
located in the interior of Pk guarantees they are covered. ut

Lower bounds

Lemma 11. bn
8 c 2-transmitters are sometimes necessary to cover the plane in

the presence of any nested set of convex polygons with a total of n vertices.

Proof. This lower bound is established by the example from Figure 15, which
shows four nested regular t-gons, with t even (so n = 4t). Consider the set S

u1

u2

u3

u4u5

u1

u2

u3

u4u5
(a) (b)

Fig. 15. (a) bn
8
c 2-transmitters are necessary to cover the edges of these four nested

convex layers. (b) bn
8
c 2-transmitters are necessary to cover the edges of this spirangle

polygon.

of midpoints of alternating edges of the outermost convex layer (marked ui in
Figure 15). The gap between adjacent layers controls the size of the visibility
regions of the points in S (by symmetry, all visibility regions have identical size).
A small enough gap guarantees that the visibility regions of the points in S are all
disjoint, as illustrated in Figure 15. This means that at least t/2 2-transmitters
are necessary to cover all points in S (one transmitter in the visibility region
of each point). So the number of 2-transmitters necessary to cover all edges is
t/2 = n/8. ut



3 Coverage of Simple Polygons

This section addresses the problem of covering polygonal regions P with 2-
transmitters placed interior to P . Therefore, when we talk about a vertex or an
edge transmitter, the implicit assumption is that the transmitter is placed just
inside the polygonal region, and so must penetrate one wall to reach the exterior.
Our construction places a small (constant) number of transmitters outside P ,
but still within the bounding box for P .

3.1 Lower Bounds For Covering Polygons

p
p

Fig. 16. A family of polygons requiring at least n/6 interior 2-transmitters to cover.
For labeled point p located in the tip of a barb (shown magnified on the right), the
locus of all interior points from which a 2-transmitter can cover p is shown shaded.

Theorem 8. There are simple polygons that require at least bn
6 c 2-transmitters

to cover when transmitters are restricted to the interior of the polygon.

Proof. Figure 16 shows the construction for a n = 36 vertex polygon, and it
generalizes to n = 6m, for any m ≥ 3. It is a pinwheel whose n/12 vanes
alternate between spikes and barbs. Consider an interior point p at the tip of
a barb. The locus of all interior points from which a 2-transmitter can cover
p includes the spike counter-clockwise from the barb, the barb containing p,
and a small section of the pinwheel center. This region is shown shaded for the
point p labeled in Figure 16. Observe that this shaded region is disjoint from the
analogous regions associated with the other barb tips. Hence no two barb tips
can be covered by the same 2-transmitter. Since there are n/6 barbs, the lower
bound is obtained. ut

3.2 Spirangles

Two edges are homothetic if one edge is a scaled and translated image of the
other. A t-spirangle is a polygonal chain A = a1, a2, ..., am that spirals inward



about a center point such that every t edges it completes a 2π turn, and each
edge pair aiai+1, ai+tai+1+t is homethetic, for 1 ≤ i ≤ m − t. We assume that
the spiral direction is clockwise. A t-sided convex polygon may be thought of as
generating a family of t-spirangles where the ith edge of each spirangle is parallel
to the (i mod t)th edge of the polygon, for i = 0, 1, 2, . . .. See Figure 17(a) for
a 4-spirangle example and a polygon generating it.

A homothetic t-spirangle polygon P is a simple polygon whose boundary
consists of two nested t-spirangles A = a1, a2, ..., am and B = b1, b2, ..., bm from
the same family, plus two additional edges a1b1 and ambm joining their endpoints.
See Figure 17(b) for an example. We refer to A as the convex chain and B as
the reflex chain.
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a4

a5

a6

(a)
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a10

a11

a  = b0 1

b2

b3

b4

b5

b6

b7
b8

b9

b10

12b  = a11

(b)

a7
a8

a9

a10

a11

a6

Fig. 17. Definitions (a) A 4-spirangle and corresponding convex polygon (b) Edge-
homothetic spiral polygon (left) and quadrilaterals entirely visible to a6 (right).

Property 1. Let P be a homothetic spirangle polygon, composed of a convex
spirangle A = a1, a2, . . ., and a reflex spirangle B = b1, b2, . . .. Then ai and bi
see each other, and the set of diagonals {aibi | i = 1, 2, . . .}, induces a partition
of P into quadrilaterals. Furthermore, the visibility region of ai includes six
quadrilaterals: two quadrilaterals adjacent to ai−tbi−t, two adjacent to aibi, and
two adjacent to ai+tbi+t. See right of Figure 17(b).

Theorem 9. bn
8 c 2-transmitters are sufficient, and sometimes necessary, to

cover a homothetic t-spirangle polygon P with n vertices.

Proof. The algorithm that places transmitters at vertices of P to cover the in-
terior of P is fairly simple, and is outlined in Table 1.
We now turn to proving that the algorithm described in Table 1 covers the
interior of P . If the total turn angle of A is no greater than 2π, then one 2-
transmitter placed at an innermost vertex suffices, as illustrated in Figure 18(a).
Such a transmitter can reach any point interior to P by passing through at most



(c)
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a2

a7
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a9a11

a17
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a11
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a6

a7

(b)
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Fig. 18. Covering spirangles with 2-transmitters. (a) A t-spirangle (t = 5) with 2t+ 4
edges covered with one transmitter. (b) A t-spirangle (t = 5) with 8t edges. (c) A t-
spirangle (t = 5) with 6t+ 4 edges covered with t/2 + 1 transmitters. (d) A t-spirangle
(t = 4) with 6t edges covered with t/2 transmitters.

two edges of P . If the total turn angle of A is greater than 2π, the algorithm
skips the first 2π turn, places transmitters at every other vertex of the second 2π
turn, then skips the third 2π turn before recursing. This procedure is depicted
in Figure 18(b,c). By Property 1, a transmitter placed at a vertex ai covers all
six quadrilaterals incident to ai−t, ai and ai+t (see left of Figure 18c). It follows
that the entire P gets covered.

To obtain an upper bound on the number of transmitters, we charge four
quadrilaterals (eight spirangle edges) to each transmitter ai – those adjacent to
aibi and ai−tbi−t (see top of Figure 18b). It may appear that we could charge
to ai the two quadrilaterals adjacent to ai−tbi−t as well, however it may be that
the spirangle does not extend this far (i.e., the total turn angle of the spirangle
is less than 6π).

Since transmitters are placed at every other vertex, only the last transmitter
may share two edges with the first (see a7 and a11 in Figure 18b), case in which
we compensate by charging the end edges a1b1 and ambm to the last transmitter
as well. Then each transmitter is in charge of precisely eight edges, yielding a
bound of bn

8 c transmitters.
The fact that this bound is tight is established by the spirangle polygon

example from Figure 15(b), which shows a 4π turn spirangle polygon P cor-
responding to a t-sided regular polygon. The total number of vertices of P is
n = 4t. This is a worst-case scenario in which transmitters do not get the chance
to use their full coverage potential, since the total the total turn angle of the
spirangle is between 2π and 6π.

The argument here is similar to the one used in the proof of Lemma 11.
Consider the set S of midpoints of alternating outermost edges (marked ui in
Figure 15b). The gap between the turns controls the size of the visibility regions
of the points in S. A small enough gap guarantees that the visibility regions
of the points in S are all disjoint, meaning that at least t/2 2-transmitters are
necessary to cover all points in S (one transmitter in the visibility region of each



Homothetic t-Spirangle Polygon Cover(P )

Let A = a1, a2, . . . am be the convex spirangle of P , with a1 outermost.
Let B = b1, b2, . . . bm be the reflex spirangle of P .

1. If m ≤ t+ 2 (or equivalently, the total turn angle of A is ≤ 2π):
Place one transmitter at am, and return (see Figure 18a).

2. Place the first transmitter at vertex at+2 (see a7 in Figure 18b).
3. Starting at at+2, place transmitters at every other vertex of A, up to a2t+1

(i.e., for a 2π turn angle of A, but excluding a2t+2).
4. Let aj be the vertex hosting the last transmitter placed in step 3.

(j = 2t+ 1 for t odd, j = 2t for t even.)
Let P1 be the subpolygon of P induced by vertices a1, . . . , aj+t+1 and
b1, . . . , bj+t+1 (shaded left of Figure 18b.)

Recurse on P \ P1: Homothetic t-Spirangle Polygon Cover(P \ P1).

Table 1. Covering the interior of a homothetic spirangle polygon with 2-transmitters.

point). So the number of 2-transmitters necessary to cover all edges is t/2 = n/8.
ut

Special Cases In this section we establish tighter bounds for special situations
when the total turn angle of the spirangle polygon is greater than 6π. These
situations enable most transmitters to use their maximum coverage potential.

Lemma 12. Let P be a homothetic t-spirangle polygon with t even, total turn
angle greater than 6π, and n total vertices. Then P can be covered with b n

12c+
t
2

2-transmitters.

Proof. This upper bound is established by the algorithm from Table 1. The
t
2 transmitters placed in step 2 of the algorithm cover 6t spirangle edges (see
Figure 18d). The number of recursion steps in the algorithm is therefore at most
b n

6tc+1. The extra recursion step occurs when n is not a multiple of 6t, and uses
no more than t

2 transmitters. The overall number of transmitters is (b n
6tc+1) · t

2 ,
proving the claim of the lemma. ut

Lemma 13. Let P be a homothetic t-spirangle polygon with t odd, total turn
angle greater than 6π, and n total vertices. Then P can be covered with b n

10c+ 2
2-transmitters.

Proof. The t+1
2 transmitters placed in step 2 of the algorithm cover 6t + 2 spi-

rangle edges (see Figure 18c). The number of recursion steps in the algorithm is
therefore at most b n

6t+2c + 1. The extra recursion step occurs when n is not a
multiple of (6t+2), and uses no more than t+1

2 transmitters. The overall number
of transmitters is ( n

6t+2 + 1) · t+1
2 . Since t ≥ 3, the largest value is T (3) = n

10 + 2,



and we will later show (Theorem 9) that this bound is tight, up to 2 transmit-
ters. The bound clearly improves with larger t values. ut

Lemma 14. There are homothetic 3-spirangle polygons that require d n
10e 2-

transmitters.

Proof. This lower bound is established by the triangular spirangle polygon P
from Figure 19b. We show inductively that at least d n

10e 2-transmitters are
necessary to cover the interior of P . Let A = a1, . . . , am be the convex 3-
spirangle of P , with a1 an outermost vertex. Similarly, let B = b1, b2, . . . , bm)
be the reflex 3-spirangle of P . For i = 0, 1, . . ., define layer Li to be the spi-
rangle subpolygon of P induced by the subchains (a3i+1, a3i+2, a3i+3, a3i+4) and
(b3i+1, b3i+2, b3i+3, b3i+4). Thus, adjacent layers share two vertices, one a-vertex
and one b-vertex.

p

q r

s

(a)

(c)

p

(b)

b11

a1

a4a7
b7

t

Fig. 19. Homothetic 3-spirangles require d n
10
e transmitters (a) Visibility area V(p)

(b) Maximum area covered by transmitters visible to p, q, and r (c) Coverage by the
algorithm from Table 1.

Consider now three points p, q, r placed halfway along the three outer edges of
layer L0. The locus of all points visible from p, denoted V (p), can be obtained by
extending from p tangents to the convex and reflex chains of L1. These tangents
delimit the area V (p), shaded in Figure 19(a). Note that V (p), V (q) and V (r)
have pairwise non-empty intersections (shaded in a lighter color in Figure 19b),
however the three of them share no common point. This implies that at least two
transmitters are necessary to cover all three of p, q and r, and these transmitters
must be placed in the area V (p, q, r) = V (p) ∪ V (q) ∪ V (r). We take one step
further and delineate the visibility region V 2(p, q, r) of all points in V (p, q, r).
Note that V 2(p, q, r) can be obtained by restricting our attention to vertices
of V (p, q, r). Using the same approach of extending tangents from vertices of



V (p, q, r)\L0 to the reflex and convex chains of L2, we determine that V (p, q, r)
can see the entire layer L2, plus a small piece of layer L3 extending past the
diagonal a11b11 (see entire shaded area in Figure 19b). The actual size of this L3

piece is irrelevant to our analysis. The important observation is that the removal
of V 2(p, q, r) leaves an edge-homothetic spiral polygon with n− 20 edges.

We have established p, q and r require at least two transmitters placed in
the area V (p, q, r), and that those transmitters can cover no points outside of
V 2(p, q, r). Inductively, we can argue that P \ V 2(p, q, r) requires dn−20

10 e =
d n

10e−2 transmitters. Summing up these transmitters with the two transmitters
placed in the area V (p, q, r), yields the lower bound claimed by the theorem.
Figure 19c shows the coverage of a 3-spirangle polygon with d n

10e transmitters,
produced by the upper bound algorithm from Table 1. ut

3.3 Arbitrary Spirals

A spiral polygon P consists of a clockwise convex chain and a clockwise reflex
chain that meet at their endpoints. A trivial bn

4 c upper bound for the number
of 2-transmitters that are sufficient to cover P can be obtained as follows. Pick
the chain Γ of P with fewer vertices (i.e., Γ is the reflex chain of P , if the
number of reflex vertices exceeds the number of convex vertices, and the convex
chain of P otherwise). Then simply place one vertex 2-transmitter at every other
vertex of Γ . By definition, the visibility ray from one 2-transmitter can cross the
boundary of P at most twice. Note however that, even under the restriction
that transmitters be placed interior of P , the visibility ray of one transmitter
can leave and re-enter P , as depicted in Fig. 20(a) for transmitter labeled a.
Then arguments similar to the ones used in Lemma 5 show that the union of
the external visibility angles of all these 2-transmitters cover the entire plane.
So we have the following result:

Lemma 15. bn
4 c 2-transmitters placed interior to an arbitrary polygonal spiral

P are sufficient to cover P (in fact, the entire plane).

We remark two special situations. In the case of transmitters placed at every
other reflex vertex of P , 0-transmitters are sufficient to cover the interior of P ,
and 1-transmitters are sufficient to cover the entire plane. In the case of trans-
mitters placed at every other convex vertex of P , 1-transmitters are sufficient to
cover P , if they are placed outside of P .

Next we establish an improved upper bound for non-degenerate spirals, which
we define as spirals in which each 2π-turn of each of the convex and reflex chain
of P is homothetic to a convex polygon (i.e., it contains at least 3 vertices).
We distinguish two situations, depending on the relative number of reflex and
convex vertices. If the number of convex vertices does not exceed b 4n

9 c, then we
place a 2-transmitter at every other convex vertex of P , for a total number of
b 2n

9 c 2-transmitters. Arguments similar to the ones above show that the entire
plane is covered in this case.

If the number of convex vertices is greater than b 4n
9 c, then the number of

reflex vertices is at most b 5n
9 c. In this case, we partition P into “layers” P1,
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Fig. 20. Transmitters marked with a small circle (a) Visibility angle of a (b) The dark
area is not covered by a and b (c) P is covered.

P2, P3, . . ., using a split ray that starts at the last (innermost) vertex and
passes through the first (outermost) vertex of the reflex chain of P . Let Ri be
the reflex chain of Pi. See Fig. 20(b). We divide these reflex chains into two
sets Si = {Rj | j ∈ {1, 2}, j ≡ i(mod 2)}, for i = 0, 1. By the pigeonhole
principle, one of these sets (call it S) has no more than b 5n

18 c vertices. We place
2-transmitters at every other reflex vertex of each chain Rj ∈ S, starting with
the first vertex of Rj ; if Rj has an even number of vertices, we add one extra
2-transmitter at the last vertex of Rj . We claim that the transmitters placed on
Rj cover the layers Pj and Pj−1 (if j > 1).

To see this, note that the visibility angles of the 2-transmitters placed at
every other vertex of Rj overlap so that collectively they cover a contiguous
region of each of Pj and Pj−1, starting at the split ray and extending clockwise
(see Fig. 20c). If Rj has an odd number of vertices, then the visibility angles
of the first and last transmitters on Rj also overlap so that Pj and Pj−1 are
entirely covered. Otherwise, there may be end pieces of Pj and Pj−1 that remain
uncovered, unless an extra transmitter is placed at the last vertex of Rj (see,
for example, the chain R2 with 6 reflex vertices from Fig. 20(b), in which the
transmitters a and b do not cover the dark region of P1). Let c be the last vertex
of Rj . The edge of P extending clockwise from c must cross the split ray, since
since Rj starts and ends on the split ray (by definition). This implies that the
visibility angle of the 2-transmitter at c overlaps the visibility angle of the first
transmitter on Rj , and the apex of the shared angle is on the other side of the
split ray. This shows that c and the first transmitter on Rj cover a contiguous
region of Pj and Pj−1, and similarly c and the previous transmitter on Rj cover
a contiguous region of Pj and Pj−1. Therefore, Pj and Pj−1 are entirely covered.

The total number of 2-transmitters used is b 5n
36 c+d

`
2e, where ` is the number

of layers. By our non-degeneracy assumption, each layer has at least 6 vertices
(at least 3 reflex vertices and at least 3 convex vertices), which implies ` ≤ n

6
(the last innermost layer could be covered with a single 2-transmitter, so we do
not count it here). This gives us a total of at most b 5n

36 c+ d n
12e, which is upper

bounded by d 2n
9 e. So we have the following result.



Lemma 16. Let P be a polygonal spiral whose every 2π turn chain has at least
3 vertices. Then d 2n

9 e + 1 2-transmitters placed interior to P are sufficient to
cover the interior of P (in fact, the entire plane).

4 Conclusion

In this paper we study the problem of covering (“guarding”) a given target
region in the plane with k-transmitters, in the presence of obstacles. For a fixed
integer k ≥ 0, a k-transmitter is a wireless transmitters able to penetrate up to k
line segments in the plane. We develop lower and upper bounds for the problem
instance in which the target region is the plane, and the obstacles are lines and
line segments, a guillotine subdivision, or nested convex layers in the plane. We
also develop lower and upper bounds for the problem instance in which the target
region is the set of rings embedded by nested convex layers, or the interior of
a spiral polygon. Our work leaves open two main problems: (i) closing the gap
between the bn

8 c lower bound and the bn
6 c upper bound in the case of nested

convex layers, and (ii) closing the gap between the bn
8 c lower bound and the

bn
4 c upper bound for spiral polygons. Investigating the k-transmitter problem

for other classes of polygons (such as orthogonal polygons) and for arbitrary k
also remains open.
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