
Chapter 7

Data Structures for Strings

In this chapter, we consider data structures for storing strings; sequences of characters taken from some
alphabet. Data structures for strings are an important part of any system that does text processing,
whether it be a text-editor, word-processor, or Perl interpreter.

Formally, we study data structures for storing sequences of symbols over the alphabet Σ =
{0, . . . , |Σ|− 1}. We assume that all strings are terminated with the special character $ = |Σ|− 1 and that
$ only appears as the last character of any string. In real applications, Σ might be the ASCII alphabet
(|Σ| = 128); extended ASCII or ANSI (|Σ| = 256), or even Unicode (|Σ| = 95, 221 as of Version 3.2 of the
Unicode standard).

Storing strings of this kind is very di�erent from storing other types of comparable data. On the
one hand, we have the advantage that, because the characters are integers, we can use them as indices
into arrays. On the other hand, because strings have variable length, comparison of two strings is not a
constant time operations. In fact, the only a priori upper bound on the cost of comparing two strings
s1 and s2 is O(min(|s1|, |s2|}), where |s| denotes the length of the string s.

7.1 Two Basic Representations

In most programming languages, strings are built in as part of the language and they take one of two
basic representations, both of which involve storing the characters of the string in an array. Both
representations are illustrated in Figure 7.1.

In the null-terminated representation, strings are represented as (a pointer to) an array of
characters that ends with the special null terminator $. This representation is used, for example, in the
C and C++ programming languages. This representation is fairly straightforward. Any character of the
string can be accessed by its index in constant time. Computing the length, |s|, of a string s takes O(|s|)
time since we have to walk through the array, one character at a time until we �nd the null terminator.

Less common is the pointer/length representation in which a string is represented as (a pointer

43

CHAPTER 7. DATA STRUCTURES FOR STRINGS 44

o r g a n i c $f e di n -g r a

o r g a n i cf e di n -g r a

17

5 “organ”

p

`

Figure 7.1: The string \grain-fed organic" represented in both the null-terminated and the pointer/length
representations. In the pointer/length representation we can extract the string \organ" in constant time.

to) an array of characters along with a integer that stores the length of the string. The pointer/length
representation is a little more
exible and more e�cient for some operations.

For example, in the pointer/length representation, determining the length of the string takes
only constant time, since it is already stored. More importantly, it is possible to extract any substring
in constant time: If a string s is represented as (p, `) where p is the starting location and ` is the length,
then we can extract the substring si, si+1, . . . , si+m by creating the pair (p + i,m). For this reason
several of the data structures in this chapter will use the pointer/length representation of strings.

7.2 Ropes

A common problem that occurs when developing, for example, a text editor is how to represent a very
long string (text �le) so that operations on the string (insertions, deletions, jumping to a particular
point in the �le) can be done e�ciently. In this section we describe a data structure for just such a
problem. However, we begin by describing a data structure for storing a sequence of weights.

A pre�x tree T is a binary tree in which each node v stores two additional values weight(v) and
size(v). The value of weight(v) is a number that is assigned to a node when it is created and which may
be modi�ed later. The value of size(v) is the sum of all the weight values stored in the subtree rooted
at v, i.e.,

size(v) =
∑
u2T(v)

weight(u) .

It follows immediately that size(v) is equal to the sum of the sizes of v's two children, i.e.,

size(v) = size(left(v)) + size(right(v)) . (7.1)

When we insert a new node u by making it a child of some node already in T , the only size
values that change are those on the path from u to the root of T . Therefore, we can perform such an
insertion in time proportional to the depth of node u. Furthermore, because of identity (7.1), if all the
size values in T are correct, it is not di�cult to implement a left or right rotation so that the size values

CHAPTER 7. DATA STRUCTURES FOR STRINGS 45

remain correct after the rotation. Therefore, by using the treap rebalancing scheme (Section 2.2), we
can maintain a pre�x-tree under insertions and deletions in O(logn) expected time per operation.

Notice that, just as a binary search tree represents its elements in sorted order, a pre�x tree
implicitly represents a sequence of weights that are the weights of nodes we encounter while travering
T using an in-order (left-to-right) traversal. Let u1, . . . , un be the nodes of T in left-to-right order. We
can use pre�x-trees to perform searches on the set

W =

wi : wi =
i∑
j=1

weight(ui)

 .

That is, we can �nd the smallest value of i such that wi � x for any query value x. To execute this kind
of query we begin our search at the root of T . When the search reaches some node u, there are three
cases

1. x < weight(left(u)). In this case, we continue the search for x in left(u).

2. weight(left(u)) � x < weight(left(u)) +weight(u). In this case, u is the node we are searching for,
so we report it.

3. weight(left(u)) + weight(u) � x. In this case, we search for the value

x 0 = x− size(left(u)) − weight(u)

in the subtree rooted at right(u).

Since each step of this search only takes constant time, the overall search time is proportional
to the length of the path we follow. Therefore, if T is rebalanced as a treap then the expected search
time is O(logn).

Furthermore, we can support Split and Join operations in O(logn) time using pre�x trees.
Given a value x, we can split a pre�x tree into two trees, where one tree contains all nodes ui such that

i∑
j=1

weight(ui) � x

and the other tree contains all the remaining nodes. Given two pre�x trees T1 and T2 whose nodes in
left-to-right order are u1, . . . , un and v1, . . . , vm we can create a new tree T 0 whose nodes in left-to-right
order are u1, . . . , un, v1, . . . , vn.

Next, consider how we could use a pre�x-tree to store a very long string t = t1, . . . , tn so that
it supports the following operations.

1. Insert(i, s). Insert the string s beginning at position ti in the string t, to form a new string
t1, . . . , ti−1 � s � ti+1, . . . , tn.1

2. Delete(i, l). Delete the substring ti, . . . , ti+l−1 from S to form a new string t1, . . . , ti−1, ti+l, . . . , tn.

1Here, and throughout, s1 � s2 denotes the concatenation of strings s1 and s2.

CHAPTER 7. DATA STRUCTURES FOR STRINGS 46

3. Report(i, l). Output the string ti, . . . , ti+l−1.

To implement these operations, we use a pre�x-tree in which each node u has an extra �eld,
string(u). In this implementation, weight(u) is always equal to the length of string(u) and we can
reconstruct the string S by concatenating string(u1) � string(u2) � � � � � string(un). From this it follows
that we can �nd the character at position i in S by searching for the value i in the pre�x tree, which
will give us the node u that contains the character ti.

To perform an insertion we �rst create a new node v and set string(v) = s 0. We then �nd
the node u that contains ti and we split string(u) into two parts at ti; one part contains ti and the
characters that occur before it and the second part contains the remaining characters (that occur after
ti). We reset string(u) so that it contains the �rst part and create a new node w so that it string(w)
contains the second part. Note that this split can be done in constant time if each string is represented
using the pointer/length representation.

At this point the nodes v and w are not yet attached to T . To attach v, we �nd the leftmost
descendant of right(u) and attach v as the left child of this node. We then update all nodes on the path
from v to the root of T and perform rotations to rebalance T according to the treap rebalancing scheme.
Once v is inserted, we insert w in the same way, i.e., by �nding the leftmost descendant of right(v).
The cost of an insertion is clearly proportional to the length of the search paths for v and w, which are
O(logn) in expectation.

To perform a deletion, we apply the Split operation on treaps to make three trees. The tree T1
contains t1, . . . , ti−1, the tree T2 contains ti, . . . , ti+l−1 and the treap T3 that contains ti+l, . . . , tn. This
may require splitting the two substrings stored in nodes of T that contain the indices i and l, but the
details are straightforward. We then use the Merge operation of treaps to merge T1 and T3 and discard
T2. Since Split and Merge in treaps each take O(logn) expected time, the entire delete operation
takes in O(logn) expected time.

To report the string ti, . . . , ti+l−1 we �rst search for the node u that contains ti and then
traverse T starting at node u. We can then output ti, . . . , ti+l−1 in O(l+ logn) expected time by doing
an in-order traversal of T starting at node u. The details of this traversal and its analysis are left as an
exercise to the reader.

Theorem 18. Ropes support the operations Insert and Delete on a string of length n in O(logn)
expected time and Report in O(l+ logn) expected time.

7.3 Tries

Next, we consider the problem of storing a collection of strings so that we can quickly test if a query
string is in the collection. The most obvious application of such a data structure is in a spell-checker.

A trie is a rooted tree T in which each node has somewhere between 0 and |Σ| children. All
edges of T are assigned labels in Σ such that all the edges leading to the children of a particular node
receive di�erent labels. Strings are stored as root-to-leaf paths in the trie so that, if the null-terminated
string s is stored in T , then there is a leaf v in T such that the sequence of edge labels encountered on
the path from the root of T to v is precisely the string s, including the null terminator. An example is

CHAPTER 7. DATA STRUCTURES FOR STRINGS 47

a o

r

g

a

n

s

m

$

p

l

e

$

$

e p

i$

Figure 7.2: A trie containing the strings \ape", \apple", \organ", and \organism".

shown in Figure 7.2.

Notice that it is important that the strings stored in a trie are null-terminated, so that no string
is the pre�x of any other string. If this were not the case, it would be impossible to distinguish, for
example, a trie that contained both \organism" and \organ" from a trie that contained just \organism".

Implementation-wise, a trie node is represented as an array of pointers of size |Σ|, which point
to the children of the node. In this way, the labelling of edges is implicit, since the ith element of the
array can represent the edge with label i − 1. When we create a new node, we initialize all of its |Σ|
pointers to nil.

Searching for the string s in a trie, T , is a simple operation. We examine each of the characters
of s in turn and follow the appropriate pointers in the tree. If at any time we attempt to follow a pointer
that is nil we conclude that s is not stored in T . Otherwise we reach a leaf v that represents s and we
conclude that s is stored in T . Since the edges at each vertex are stored in an array and the individual
characters of s are integers, we can follow each pointer in constant time. Thus, the cost of searching for
s is O(|s|).

Insertion into a trie is not any more di�cult. We simply the follow the search path for s, and
any time we encounter a nil pointer we create a new node. Since a trie node has size O(|Σ|), this insertion

CHAPTER 7. DATA STRUCTURES FOR STRINGS 48

“e$” “ple$” ‘$” “ism$”

“ap” “organ”

Figure 7.3: A Patricia tree containing the strings \ape", \apple", \organ", and \organism".

procedure runs in O(|s| � |Σ|) time.

Deletion from a trie is again very similar. We search for the leaf v that represents s. Once we
have found it, we delete all nodes on the path from s to the root of T until we reach a node with more
than 1 child. This algorithm is easily seen to run in O(|s| � |Σ|) time.

If a trie holds a set of n strings, S, which have a total length of N then the total size of the trie
is O(N � |Σ|). This follows from the fact that each character of each string results in the creation of at
most 1 trie node.

Theorem 19. Tries support insertion or deletion of a string s in O(|s| � |Σ|) time and searching
for s in O(|s|) time. If N is the total length of all strings stored in a trie then the storage used by
the trie is O(N � |Σ|).

7.4 Patricia Trees

A Patricia tree (a.k.a. a compressed trie) is a simple variant on a trie in which any path whose interior
vertices all have only one child is compressed into a single edge. For this to make sense, we now label
the edges with strings, so that the string corresponding to a leaf v is the concatenation of all the edge
labels we encounter on the path from the root of T to v. An example is given in Figure 7.3.

The edge labels of a Patricia tree are represented using the pointer/length representation for
strings. As with tries, and for the same reason, it is important that the strings stored in a patricia tree
are null-terminated. Implementation-wise, it makes sense to store the edge label of an edge uw directed
from a parent u to it's child w in the node the w (since nodes can have many children, but at most one
parent). See Figure 7.4 for an example.

Searching for a string s in a Patricia tree is similar to searching in a trie, except that when
the search traverses an edge it checks the edge label against a whole substring of s, not just a single
character. If the substring matches, the edge is traversed. If there is a mismatch, the search fails without
�nding s. If the search uses up all the characters of s, then it succeeds by reaching a leaf corresponding
to s. In any case, this takes O(|s|) time.

Descriptions of the insertion and deletion algorithms follow below. Figure 7.5 illustrates the

CHAPTER 7. DATA STRUCTURES FOR STRINGS 49

“ap”

a p e $

a p p l e $

o r g a n $

o r g a n i s m $

“organ”

“ism$”“ple$” “$”“e$”

2 4 1 4

52

Figure 7.4: The edge labels of a Patricia tree use the pointer/length representation.

o r g a n i s m $o r a n g e $

“orange$”

“or$”

“ganism$”“ange$”

“organism$”

Insert(“organism”) Delete(“orange”)

7 5 9

2

7

Figure 7.5: The evolution of a Patricia tree containing \orange$" as the string \organism$" is inserted
and the string \orange$" is deleted.

actions of these algorithms. In this �gure, a Patricia tree that initially stores only the string \orange"
has the string \organism" added to it and then has the string \orange" deleted from it.

Inserting a string s into a Patricia tree is similar to searching right up until the point where the
search gets stuck because s is not in the tree. If the search gets stuck in the middle of an edge, e, then
e is split into two new edges joined by a new node, u, and the remainder of the string s becomes the
edge label of the edge leading from u to a newly created leaf. If the search gets stuck at a node, u, then
the remainder of s is used as an edge label for a new edge leading from u to a newly created leaf. Either
case takes O(|s| + |Σ|) time, since they each involve a search for s followed by the creation of at most
two new nodes, each of size O(|Σ|).

Removing a string s from a Patricia tree is the opposite of insertion. We �rst locate the leaf
corresponding to s and remove it from the tree. If the parent, u, of this leaf is left with only one child,
w, then we also remove u and replace it with a single edge, e, joining u's parent to w. The label for e
is obtained in constant time by extending the edge label that was previously on the edge uw. How long

CHAPTER 7. DATA STRUCTURES FOR STRINGS 50

this takes depends on how long it takes to delete two nodes of size |Σ|. If we consider this deletion to be
a constant time operation, then running time is O(|s|). If we consider this deletion to take O(N) time,
then the running time is O(|s|+N).

An important di�erence between Patricia trees and tries is that Patricia trees contain no nodes
with only one child. Every node is either a leaf or has at least two children. This immediately implies
that the number of internal (non-leaf) nodes does not exceed the number of leaves. Now, recall that each
leaf corresponds to a string that is stored in the Patricia tree so if the Patricia tree stores n strings, the
total storage used by nodes is O(n � |Σ|). Of course, this requires that we also store the strings separately
at a cost of O(N). (As before, N is the total length of all strings stored in the Patricia tree.)

Theorem 20. Patricia trees support insertion or deletion of any string s in O(|s|+ |Σ|) time and
searching for s in O(|s|) time. If N is the total length of all strings and n is the number of all
strings stored in a Patricia tree then the storage used is O(n � |Σ|+N).

In addition to the operations described in the preceding theorem, Patricia trees also support
pre�x matches ; they can return a list of all strings that have some not-null-terminated string s as a
pre�x. This is done by searching for s in the usual way until running out of characters in s. At this
point, every leaf in the subtree that the search ended at corresponds to a string that starts with s. Since
every internal node has at least two children, this subtree can be traversed in O(k) time, where k is the
number of leaves in the subtree.

If we are only interested in reporting one string that has s as a pre�x, we can look at the edge
label of the last edge on the search path for s. This edge label is represented using the pointer/length
representation and the pointer points to a longer string that has s as a pre�x (consider, for example,
the edge labelled \ple$" in Figure 7.4, whose pointer points to the second `p' of \apple$"). This edge
label can therefore be extended backwards to report the actual string that contains this label.

Theorem 21. For a query string s, a Patricia tree can report one string that has s as a pre�x
in O(|s|) time and can report all strings that have s as a pre�x in O(|s| + k) time, where k is the
number of strings that have s as a pre�x.

7.5 Suffix Trees

Suppose we have a large body of text and we would like a data structure that allows us to query if
particular strings occur in the text. Given a string t of length n, we can insert each of the n su�xes of
t into a Patricia tree. We call the resulting tree the su�x tree for t. Now, if we want to know if some
string s occurs in t we need only do a pre�x search for s in the Patricia tree. Thus, we can test if s
occurs in t in O(|s|) time. In the same amount of time, we can locate some occurrence of s in t and in
O(|s|+ k) time we can locate all occurrences of s in t, where k is the number of occurrences.

What is the storage required by the su�x tree for T? Since we only insert n su�xes, the storage
required by tree nodes is O(n � |Σ|). Furthermore, recall that the labels on edges of T are represented
as pointers into the strings that were inserted into T . However, every string that is inserted into T is a
su�x of t, so all labels can be represented as pointers into a single copy of t, so the total spaced used
to store t and all its edge labels is only O(n). Thus, the total storage used by a su�x tree is O(n � |Σ|).

The cost of constructing the su�x tree for t can be split into two parts: The cost of creating

CHAPTER 7. DATA STRUCTURES FOR STRINGS 51

and initializing new nodes, which is clearly O(n � |Σ|) because there are only O(n) nodes; and the cost
of following paths, which is clearly O(n2).

Theorem 22. The su�x tree for a string t of length n can be constructed in O(n � |Σ| + n2) time
and uses O(n � |Σ|) storage. The su�x tree can be used to determine if any string s is a substring
of t in O(|s|) time. The su�x tree can also report the locations of all occurrences of s in t in
O(m+ k) time, where k is the number of occurrences of s in t.

The construction time in Theorem 22 is non-optimal. In particular, the O(n2) term is unnec-
essary. In the next few section we will develop the tools needed to construct a su�x tree in O(n � |Σ|)
time.

7.6 Suffix Arrays

The su�x array A1, . . . , An of a string t = t1, . . . , tn lists the su�xes of t in lexicographically increasing
order. That is, Ai is the index such that tAi , . . . , tn has rank i among all su�xes of A.

For example, consider the string t = \counterrevoluationary$":

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
c o u n t e r r e v o l u t i o n a r y $

The su�x array for t is A = h18, 1, 6, 9, 15, 12, 17, 4, 11, 16, 2, 8, 7, 19, 5, 14, 3, 13, 10, 20, 21i. This is hard
to verify, so here is a table that helps:

i Ai tAi , . . . , tn
1 18 s1 = \ary$"
2 1 s2 = \counterrevolutionary$"
3 6 s3 = \errevolutionary$"
4 9 s4 = \evolutionary$"
5 15 s4 = \ionary$"
6 12 s5 = \lutionary$"
7 17 s7 = \nary$"
8 4 s8 = \nterrevolutionary$"
9 11 s9 = \olutionary$"
10 16 s10 = \onary$"
11 2 s11 = \ounterrevolutionary$"
12 8 s12 = \revolutionary$"
13 7 s13 = \rrevolutionary$"
14 19 s14 = \ry$"
15 5 s15 = \terrevolutionary$"
16 14 s16 = \tionary$"
17 3 s17 = \unterrevolutionary$"
18 13 s18 = \utionary$"
19 10 s19 = \volutionary$"
20 20 s20 = \y$"
21 21 s21 = \$"

CHAPTER 7. DATA STRUCTURES FOR STRINGS 52

Given a su�x-array A = A1, . . . , An for t and a not-null-terminated query string s one can
do binary search in O(|s| logn) time to determine whether s occurs in t; binary search uses O(logn)
comparison and each comparison takes O(|s|) time.

7.6.1 Faster Searching with an ` Matrix

We can do searches a little faster|in O(|s| + logn) time|if, in addition to the su�x array, we have a
little more information. Let si = tAi , tAi+1, . . . , tn. In other words, si is the string in the ith row of
the preceding table. In other other words the string si is the ith su�x of t when all su�xes of t are
sorted in lexicographic order.

Suppose, that we have access to a table `, where, for any pair of indices (i, j) with 1 � i � j � n,
`i,j is the length of the longest common pre�x of si and sj. In our running example, `9,11 = 1, since
s9 = \olutionary$

00
and s11 = \ounterrevolutionary" have the �rst character \o" in common but di�er

on their second character. Notice that this also implies that s10 starts with the same letter as s9 and
s11, otherwise s10 would not be between s9 and s11 in sorted order. More generally, if `i,j = r, then the
su�xes si, si+1, . . . , sj all start with the same r characters.

The value `i,j is called the longest common pre�x (LCP) of si and sj since it is the length
of the longest string s 0 that is a pre�x of both si and sj. With the extra LCP information provided
by `, binary search on the su�x array can be sped up. The sped-up binary search routine maintains
four integer values i, j, a and b. At all times, the search has deduced that a matching string|if it is
exists|is among si, si+1, . . . , sj (because si < s < sj) and that the longest pre�xes of si and sj that
match s have length a and b respectively. The algorithm starts with (i = 1, j = n, a, b = 0) where the
value of a is obtained by comparing s with s1.

Suppose, without loss of generality, that a � b (the case where b > a is symmetric). Now, con-
sider the entry `i,m which tells us how many characters of sm match si. As an example, suppose we are
searching for the string s = \programmer", and we have reached a state where si = \programmable. . . $",
sj = \protectionism", so a = 8 and b = 3.:

si = \programmable. . . $"

...

sm = \pro. . . $"

...

sj = \protectionism. . . $"

Since si and sj share the common pre�x \pro" of length min{a, b} = 3, we are certain that sm must also
have \pro" as a pre�x. There are now three cases to consider:

1. If `i,m < a, then we can immediately conclude that sm > s. This is because sm > si, so the

CHAPTER 7. DATA STRUCTURES FOR STRINGS 53

character at position `i,m + 1 in sm is greater than the corresponding character in si and s. An
example of this occurs when sm = \progress. . . $", so that `i,m = 5 and character at position 6 in
sm (an `e') is greater than the character at position 6 in si and s (an `a').

Therefore, our search can now be restricted to si, . . . , sm. Furthermore, we know that the longest
pre�x of sm that matches s has length b 0 = `i,m. Therefore, we can recursively search si, . . . , sm
using the values a 0 = a and b 0 = `i,m. That is, we recurse with the values (i,m, a, `i,m)

2. If `i,m > a, then we can immediately conclude that sm < s, for the same reason that si < s;
namely si and s di�er in character a + 1 and this character is greater in s than it is in si and
sm. In this case, we recurse with the values (m, j, a, b). An example of this occurs when sm =
\programmatically. . . $", so that `i,m = 9. In this case si and sm both have a `a' at position
a+ 1 = 9 while s has an `e'.

3. If `i,m = a, then we can begin comparing sm and s starting at the (a + 1)th character position.
After matching k � 0 additional characters of s and sm this will eventually result in one of three
possible outcomes:

(a) If s < sm, then the search can recursive on the set si, . . . sm using the values (i,m, a, a+ k).
An example of this occurs when sm = \programmes. . . $", so k = 1 and we recurse on
(i,m, 8, 9).

(b) If s > sm, then the search can recurse on the set sm, . . . , sj using the values (m, j, a+k, b). An
example of this occurs when sm = \programmed. . . $", so k = 1 and we recurse on (m, j, 9, 3).

(c) If all characters of s match the �rst |s| characters of sm, then sm represents an occurrence of
s in the text. An example of this occurs when sm = \programmers. . . $".

The search can proceed in this manner, until the string is found at some sm or until j = i + 1.
In the latter case, the algorithm concludes that s does not occur as a substring of t since si < s < si+1.

To see that this search runs in O(|s| + logn) time, notice that each stage of the search reduces
j − i by roughly a factor of 2, so there are only O(logn) stages. Now, the time spent during a stage is
proportional to k, the number of additional characters of sm that match s. Observe that, at the end
of the phase max{a, b} is increased by at least k. Since a and b are indices into s, a � |s| and b � |s|.
Therefore, the total sum of all k values during all phases is at most |s|. Thus, the total time spent
searching for s is O(|s|+ logn).

In case the search is successful, it is even possible to �nd all occurences of s in time proportional
to the number of occurrences. This is done by the �nding the maximal integers x and y such that
`m−x,m+y � |s|. Finding x is easily done by trying x = 1, 2, 3, . . . until �nding a value, x + 1, such
that `m−(x+1),m is less than |s|. Finding y is done in the same way. When this happens, all strings
sm−x, . . . , sm+y have s as a pre�x.

Unfortunately, the assumption that we have an access to a longest common pre�x matrix `�,� is
unrealistic and impractical, since this matrix has

�
n
2

�
entries. Note, however, that we do not need to

store `i,j for every value i, j 2 {1, . . . , n}. For example, when n is one more than a power of 2, then we
only need to know `i,j for values in which i = 1 + q2p and j = i + 2p, with p 2 {0, . . . , blognc} and
q 2 {0, . . . , bn/2pc}. This means that the longest common pre�x information stored in ` consists of no
more than

blognc∑
i=0

n/2i < 2n

CHAPTER 7. DATA STRUCTURES FOR STRINGS 54

values. In the next two sections we will show how the su�x array and the longest common pre�x
information can be computed e�ciently given the string t.

7.6.2 Constructing the Suffix Array in Linear Time

Next, we show that a su�x array can be constructed in linear time from the input string, t. The algorithm
we present makes use of the radix-sort algorithm, which allows us to sort an array of n integers whose
values are in the set {0, . . . , nc− 1} in O(cn) time. In addition to being a sorting algorithm, we can also
think of radix-sort as a compression algorithm. It can be used to convert a sequence, X, of n integers
in the range {0, . . . , nc − 1} into a sequence, Y, of n integers in the range {0, . . . , n − 1}. The resulting
sequence, Y, preserves the ordering of X, so that Yi < Yj if and only if Xi < Xj for all i, j 2 {1, . . . , n}.

The su�x-array construction algorithm, which is called the skew algorithm is recursive. It
takes as input a string s whose length is n, which is terminated with two $ characters, and whose
characters come from the alphabet {0, . . . n}.

Let S denote the set of all su�xes of t, and let Sr, for r 2 {0, 1, 2} denote the set of su�xes
ti, ti+1, . . . , tn where i � r (mod 3). That is, we partition the sets of su�xes into three sets, each having
roughly n/3 su�xes in them. The outline of the algorithm is as follows:

1. Recursively sort the su�xes in S1 [S2.
2. Use radix-sort to sort the su�xes in S0.

3. Merge the two sorted sets resulting from steps 1 and 2 to obtain the sorted order of the su�xes in
S0 [S1 [S2 = S.

If the overall running time of the algorithm is denoted by T(n), then the �rst step takes T(2n/3) time
and we will show, shortly, that steps 2 and 3 each take O(n) time. Thus, the total running time of the
algorithm is given by the recurrence

T(n) � cn+ T(2n/3) � cn
∞∑
i=0

(2/3)i � 3cn .

Next we describe how to implement each of the three steps e�ciently.

Step 1. Assume n = 3k+1 for some integer k. If not, then append at most two additional $ characters
to the end of t to make it so. To implement Step 1, we transform the string t into the sequence of triples:

t 0 = (t1, t2, t3), (t4, t5, t6), . . . , (tn−3, tn−2, tn−1)︸ ︷︷ ︸
su�xes in S1

, (t2, t3, t4), (t5, t6, t7), . . . , (tn−2, tn−1, tn)︸ ︷︷ ︸
su�xes in S2

Observe that each su�x in S1 [S2 is represented somewhere in this sequence. That, is, for any
ti, ti+1, . . . , tn with i 6� 0 (mod 3), the su�x

(ti, ti+1, ti+2), (ti+3, ti+4, ti+5), . . . , (ti+3d(n−i)/3e, ti+3d(n−i)/3e+1, ti+3d(n−i)/3e+2)

CHAPTER 7. DATA STRUCTURES FOR STRINGS 55

appears in our transformed string. Therefore, if we can sort the su�xes of the transformed string, we
will have sorted all the su�xes in S1 [S2. The string t 0 contains about 2n/3 characters, as required,
but each character is a triple of characters in the range (1, . . . , n), so we cannot immediately recurse on
t 0. Instead, we �rst apply radix sort to relabel each triple with an integer in the range 1, . . . , 2n/3. We
can now recursively sort the relabelled transformed string|which contains 2n/3 characters in the range
1, . . . , 2n/3|and undo the relabelling to obtain the sorted order of S1 [S2. Aside from the recursive
call, which takes T(2n/3) time, all of the sorting and relabelling takes only O(n) time.

When Step 1 is done, we know, for each index i 6� 0 (mod 3), the rank of the su�x ti, . . . , tn in
the set S1 [S2. This means that for any pair of indices i, j 6� 0 (mod 3), we can determine|in constant
time, by comparing ranks|if the su�x ti, . . . , tn comes before or after the su�x tj, . . . , tn.

Step 2. To implement Step 2, we observe that every su�x in S0 starts with a single character and
is the followed by a su�x in S1. That is, each su�x ti, . . . , tn with i � 0 (mod 3) can be represented
as a pair (ti, `) where ` 2 {1, . . . , 2n/3) is the rank of the su�x ti+1, . . . , tn obtained during Step 1.
Applying radix sort to all of these pairs allows us to sort S0 in O(n) time.

Step 3. To implement Step 3, we have to merge two sorted lists, one of length 2n/3 and one of length
n/3 in O(n) time. Merging two sorted lists using O(n) comparisons is straightforward. Therefore, the
only trick here is to ensure that we can compare two elements|one from the �rst list and one from the
second list|in constant time.

To see why this is possible, suppose we are comparing ti, . . . , tn 2 S0 with tj, . . . , tn 2 S1. Then
we can write these as comparing

ti, ti+1, . . . , tn︸ ︷︷ ︸
a su�x in S1

and
tj, tj+1, . . . , tn︸ ︷︷ ︸

a su�x in S2

.

Now this can certainly be done in constant time, by comparing ti and tj and, in case of a tie, comparing
two su�xes whose relative order was already determined in Step 1.

Similarly, if we are comparing ti, . . . , tn 2 S0 with tj, . . . , tn 2 S2, then we can treat this as
comparing

ti, ti+1, ti+2, . . . , tn︸ ︷︷ ︸
a su�x in S2

and
tj, tj+1, tj+2, . . . , tn︸ ︷︷ ︸

a su�x in S1

.

This can also be done in constant time, by comparing at most two pairs of characters in t and, if necessary
an su�x in S1 with a su�x in S2. The relative order of the su�xes in S1 and S2 were determined in
Step 1 of the algorithm.

This completes the description of all the steps required to construct a su�x array in O(n) time.

CHAPTER 7. DATA STRUCTURES FOR STRINGS 56

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 7.6: To implement binary search using a su�x array, only O(n) LCP values are needed.

Theorem 23. Given a string t = t1, . . . , tn over the alphabet {1, . . . , n}, there exists an O(n) time
algorithm that can construct the su�x array for t.

Of course, the preceding theorem can be generalized to larger alphabets. In particular, if the
alphabet has size nc, then the string t can be preprocessed in O(cn) time using radix sort to reduce the
alphabet size to n. The su�x array of the preprocessed string is then also a su�x array for the original
string.

7.6.3 Constructing the Longest-Common-Prefix Array in Linear Time

As we have seen, O(|s|+ logn) time searches in su�x arrays make use of an auxiliary data structure to
determine the length of the longest common pre�x between two su�xes si and sj.

The longest common pre�x array (LCP array) of a su�x array A = A1, . . . , An is an array
L = L1, . . . , Ln−1 where Li is the length of the longest common pre�x between si = tAi , . . . , tn and
si+1 = tAi+1 , . . . , tn. That is, L contains information about lexicographically consecutive su�xes of the
string t. In terms of the notation in the previous section, Li = `i,i+1.

Before showing how to construct the LCP array, we recall that, in order to implement e�cient
pre�x searches in a su�x array, we need more than an LCP array. When n is a power of two, the binary
search algorithm needs to know the values `i,j for all pairs i, j of form i = 1+q2p and j = min{n, i+2p},
with p 2 {1, . . . , dlogne− 1} and q 2 {0, . . . , dn/2pe}. See Figure 7.6 for an illustration.

To see that these can be e�ciently obtained from the longest common pre�x array, L, we �rst
note that, for any 1 � i � j � n, `i,j = min{Li, Li+1, . . . , Lj−1}. Next, we observe that, the pairs (i, j)
needed by the binary search algorithm are nicely nested so that `i,j can be computed as the minimum
of two smaller values. Speci�cally,

`q2p,q2p+2p = min{`2q2p−1,2q2p−1+2p−1 , `(2q+1)2p−1,(2q+1)2p−1+2p−1 } .

(This is really easier to understand by looking at Figure 7.6 which shows that, for example, `9,13 can be
obtained as `9,13 = min{`9,11, `11,13}.) This allows for an easy algorithm that constructs the required
values in a bottom up fashion, starting with p = 1 (which is directly available from the LCP array, L)
and working up to p = blognc. Each value can be computed in constant time and there are only O(n)
values to compute, so converting the LCP array, L into a structure useable for binary search can be done
in O(n) time. By doing this carefully, all the values needed to implement the O(|s|+ logn) time search
algorithm can be packed into a single array of length less than 2n.

CHAPTER 7. DATA STRUCTURES FOR STRINGS 57

All that remains is to show how to compute the LCP array L = L1, . . . , Ln−1. The algorithm
to do this uses an auxilliary array, R, which is the inverse of the su�x array, A, so that RAi = i for all
i 2 {1, . . . , n}. Another way to think of this is that Ri gives the location of Ai. Yet another way to think
of this is that Ri is the rank of the su�x tAi , . . . , tn in the lexicographically sorted list of all su�xes of
t.

The algorithm processes the su�xes in order of their occurrence in t. That is, t1, . . . , tn is
processed �rst. In our notation, this is su�x sR1 and we want to compare it to the su�x sR1−1 in order
to determine the value of LR1−1. We can do this by comparing letter by letter to determine that the
length of the longest common pre�x of sR1−1 and sR1 is h.

Things get more interesting when we move onto the string sR2 = t2, . . . , tn and we want to
compare it to sR2−1. Notice that the strings sR1 = t1, . . . , tn that we just considered and the string
sR2 = t2, . . . , tn that we are now considering have a lot in common. In particular, if h > 0, then we can
be guaranteed that sR2 matches the �rst h− 1 characters of sR2−1. Stop now and think about why this
is so, with the help of the following pictogram:

sR1 = t1 , t2 , t3 , . . . , th , . . .

= = = . . . = . . .
sR1−1= ti , ti+1 , ti+2 , . . . , ti+h−1 , . . .

= = . . . = . . .
sR2 = , t2 , t3 , . . . , th , . . .

The string sR1−1 is a proof that t has some su�x|namely ti+1, . . . , tn|that comes before sR2
in sorted order and matches the �rst h−1 characters of sR2 . Therefore, the su�x sR2−1 that immediately
precedes sR2 in sorted order must match at least the �rst h− 1 characters of sR2 . This means that the
comparison between sR2 and sR2−1 can start at the hth character position.

More generally, if the longest common pre�x of sRi and sRi−1 has length h, then the longest
common pre�x of SRi+1 and sRi+1−1 has length at least h − 1. This gives the following very slick
algorithm for computing the LCP array, L.

BuildLCP(A, t)

for i← 1, . . . , n do
RAi ← i

h← 0
for i← 1, . . . , n do

if Ri > 1 then
k← ARi−1
while ti+h = tAk+h do
h← h+ 1

LRi−1 ← h
h← max{h− 1, 0}

return L

The correctness ofBuildLCP(A, t) follows from the preceding discussion. To bound the running
time, we note that, with the exception of code inside the while loop, the algorithm clearly runs in O(n)
time. To bound the total time spent in the while loop, we notice that the value of h is initially 0, never

CHAPTER 7. DATA STRUCTURES FOR STRINGS 58

exceeds n, is incremented each time the body of the while loop executes, and is decremented at most n
times. It follows that the body of the while loop can not execute more than 2n times during the entire
execution of the algorithm.

Theorem 24. Given a su�x array A for a string t of length n, the LCP array, L, can be con-
structed in O(n) time.

To summarize everything we know about su�x arrays: Given a string t, the su�x array, A for
t can be constructed in O(n) time. From A and t, the LCP array, L can be constructed in O(n) time.
From the LCP array, L, an additional array L 0 of length 2n can be constructed that, in combination with
A and t makes it possible to locate any string s in t in O(|s|+ logn) time or report all k occurrences of
s in t in O(|s|+ logn+ k) time..

In addition to storing the original text, t, this data structure needs the su�x array A, of length
n and the auxiliary array L 0 of length 2n. The values in A and L 0 are integers in the range 1, . . . , n, so
they can be represented using dlog2 ne words. Thus, the entire structure for indexing t requires only 3n
words of space.

7.7 Linear Time Suffix Tree Construction

Although a su�x array, in combination with an LCP array, is a viable substitute for a su�x tree in
many applications, there are still times when one wants a su�x tree. In this section, we show that,
given the su�x array, A, and the LCP array, L, for the string t, it is possible to compute the su�x tree,
T , for t in O(n � |Σ|) time. Indeed, the tree structure can be constructed in O(n) time, the factor of |Σ|
comes only from creating an array of length |Σ| at each of the nodes in the su�x tree.

The key observation in this algorithm is that the su�x array and LCP array allow us to perform
a traversal of the su�x tree|creating nodes as we go. To see how this works, recall that the �rst node
traversed in an in-order traversal is lexicographically smallest. This node corresponds to the �rst su�x
s1 corresponding to the index, A1 in the su�x array. We join this node, u1, to a sibling, u2 that
corresponds to s2. The sibling leaves u1 and u2 are joined to a common parent, x, and the labels on the
edges xu1 and xu2 are su�xes of s1 and s2, respectively. The lengths of these labels can be computed
by the length of the longest common pre�x between s1 and s2, which is given by the value L1. And now
we can continue this way using s3 and L2 to determine how the leaf, u3, corresponding to s3 �ts into
the picture. The length of s2 and the value of L2 tells us whether

1. The parent of u3 should subdivide the edge xu2; or

2. The parent of u3 should be x; or

3. The parent of u3 should be a parent of x.

In general, when we process the su�x si, the length of si−1 and Li−1 are used to determine how the
new leaf, ui should be attached to the partial tree constructed so far. Speci�cally, these values allow
the algorithm to walk upward from ui−1 to �nd an appropriate location to attach ui. This will either
result in

CHAPTER 7. DATA STRUCTURES FOR STRINGS 59

1. A new parent for u3 being created by splitting an existing edge;

2. Attaching u3 as the child of an existing node; or

3. A new parent for u3 being created and becoming the root of the current tree.

Processing ui may require walking up many, say k, steps from ui−1, which takes O(k) time. However,
when this process walks past a node, this node is never visited again by the algorithm. Since the �nal
result is a su�x tree that has at most 2n − 1 nodes, the total running time is therefore O(n). The
�rst few steps of running this algorithm on the su�x array for \counterrevolutionary$" are illustrated
in Figure 7.7.

Theorem 25. Given a su�x array and LCP array for a string t, the structure of the su�x tree,
T , for t can be constructed in O(n) time. If one wants to also allocate and populate the arrays
associated with the nodes of T then this can be done in an additional

7.8 Ternary Tries

The last three sections discussed data structures for storing strings where the running times of the
operations were independent of the number of strings actually stored in the data structure. This is not
to be underestimated. Consider that, if we store the collected works of Shakespeare in a su�x tree, it
is possible to test if the word \warble" appears anywhere in the text by following 7 pointers.

This result is possible because the individual characters of strings are used as indices into
arrays. Unfortunately, this approach has two drawbacks: The �rst is that it requires that the characters
be integers. The second is that |Σ|, the size of the alphabet becomes a factor in the storage and running
time.

To avoid having |Σ| play a role in the running time, we can restrict ourselves to algorithms that
only perform comparisons between characters. One way to do this would be to simply store our strings
in a binary search tree, in lexicographic order. Then a search for the string s could be done with O(logn)
string comparison, each of which takes O(|s|) time, for a total of O(|s| logn).

Another way to reduce the dependence on |Σ| is to store child pointers in a binary search tree.
A ternary trie is a trie in which pointers to the children of each of node v are stored in a binary search
tree. If we use a balanced binary search trees for this, then it is clear that the insertion, deletion and
search times for the string s are O(|s| log |Σ|. If N is large, we can do signi�cantly better than this, by
using a di�erent method of balancing our search trees.

Note that a ternary trie can be viewed as a single tree in which each node has up to 3 children
(hence the name). Each node v has a left child, left(v), a right child, right(v), a middle child, mid(v),
and is labelled with a character, denoted m(v). A root-to-leaf path P in the tree corresponds to exactly
one string, which is obtained by concatenating the characters m(v) for each node v whose successor in
P is a middle child.

Now, suppose that every node v of our ternary trie has the balance property |L(right(v))| �
|L(v)|/2 and |L(left(v))| � |L(v)|/2, where L(v) denotes the set of leaves in the subtree rooted at v.
Then the length of any root-to-leaf path P is at most O(|s|+ logn) where |s| is the length of the string

CHAPTER 7. DATA STRUCTURES FOR STRINGS 60

e v o l u t i o nc o u n t e r r a r y $

4

e v o l u t i o nc o u n t e r r a r y $

4 21

e v o l u t i o nc o u n t e r r a r y $

4 21 16

e v o l u t i o nc o u n t e r r a r y $

4 21

1

15 12

Figure 7.7: Building a su�x tree for \counterrevoluationary$" in a bottom-up fashion starting with the
su�xes \ary$", \counterrevoluationary$", \errevoluationary$", and \evoluationary$".

CHAPTER 7. DATA STRUCTURES FOR STRINGS 61

represented by P. This is easy to see, because every time the path traverses an edge represented by
a mid pointer the number of symbols in s that are unmatched decreases by one and every time the
path traverses an edge represented by a left or right pointer the number of leaves in the current subtree
decreases a factor of at least 1/2.

Given a set S of strings, constructing a ternary trie with the above balance property is easily
done. We �rst sort all our input strings and then look at the �rst character, m, of the string whose rank
is n/2 in the sorted order. We then create a new node u with label m to be the root of the ternary trie.
We collect all the strings that begin with m, strip o� their �rst character, and recursively insert these
into the middle child of u. Finally, we recursively insert all strings beginning with characters less than
u in the left child of u and all strings beginning with characters greater than u in the right child of u.

Ignoring the cost of sorting and recursive calls, the above algorithm can easily be implemented to
run in O(n 0) time, where n 0 is the number of strings beginning with m. However, during this operation,
we strip o� n 0 characters from strings and never have to look at these again. Therefore the total running
time, including recursive calls, is not more than O(M), where M is the total length of all strings stored
in the ternary trie.

Theorem 26. After sorting the input strings, a ternary trie can be constructed in O(M) time and
can search for a string s in O(|s|+ logn) time.

TODO: Talk about how ternary quicksort can build a ternary search tree in O(M+ n logn).

TODO: Talk about how to make ternary tries dynamic using treaps, splaying, weight-balancing,
or partial rebuilding.

7.9 Quad-Trees

An interesting generalization of tries occurs when we want to store two (or more) dimensional data.
Imagine that we want to store real values in the unit square [0, 1)2, where each point (x, y) is represented
by two binary strings x1, x2, x3, . . . and y1, y2, y3, . . . where xi (respectively yi) is the ith bit in the binary
expansion of x (respectively, y). When we consider the most-signi�cant bits of the binary expansion of
x and y, four cases can occur:

(x, y) =
(.0 . . . , .1 . . .) (.1 . . . , .1 . . .)
(.0 . . . , .0 . . .) (.1 . . . , .0 . . .)

Thus, it is natural that we store our points in a tree where each node has up to four chil-
dren. In fact, if we treat (x, y) as the string (x1, y1)(x2, y2)(x3, y3), . . . , over the alphabet Σ =
{(0, 0), (0, 1), (1, 0), (1, 1)} and store (x, y) in a trie then this is exactly what happens. The tree that
we obtain is called a quad tree.

Quad trees have many applications because they preserve spatial relationships very well, much
in the way that tries preserve pre�x relationships between strings. As a simple example, we can consider
queries of the form: report all points in the rectangle with bottom left corner [.0101010, .1111110]

CHAPTER 7. DATA STRUCTURES FOR STRINGS 62

and top right corner [.0101011, .1111111]. To answer such a query, we simply follow the path for
(0, 1)(1, 1)(0, 1)(1, 1)(0, 1)(1, 1) in the quadtree (trie) and report all leaves of the subtree we �nd.

Quadtrees can be generalized in many ways. Instead of considering binary expansions of the x
and y coordinates we can consider m-ary expansions, in which case we obtain a tree in which each node
has up to m2 children. If, instead of points in the unit square, we have points in the unit hypercube in
Rd then we obtain a tree in which each node has 2d children. If we use a Patricia tree in place of a trie
then we obtain a compressed quadtree which, like the Patricia tree uses only O(n+M) storage where
M is the total size of (the binary expansion of) all points stored in the quadtree.

7.10 Discussion and References

Pre�x-trees seem be part of the computer science folklore, though they are not always implemented
using treaps. The �rst documented use of a pre�x-tree is unclear.

Ropes (sometimes called cords) are described by Boehm et al [3] as an alternative to strings
represented as arrays. They are so useful that they have made it into the SGI implementation of the
C++ Standard Template Library [?].

Tries, also known as digital search trees, have a very long history. Knuth [7] is a good resource to
help unravel some of their history. Patricia trees were described and given their name by Morrison [10].
PATRICIA is an acronym for Practical Algorithm To Retrieve Information Coded In Alphanumeric.

Su�x trees were introduced by Weiner [14], who also showed that, if N, the size of the alphabet,
is constant then there is an O(n) time algorithm for their construction. Since then, several other
simpli�ed O(n) time construction algorithms for su�x trees have been presented [4, 8, 5].

Su�x arrays were introduced by Manber and Myers [?], who gave an O(n logn) time algorithm
for their construction. TheO(n) time su�x array construction algorithm given here is due to Karkainnen
and Sanders [?], though several other O(n) time construction algorithms are known [?]. The LCP array
construction algorithm given here is due to Kasai et al [?].

Karwere viewed as an way of compressing su�x trees [?]

Recently, Farach [5] gave an O(n) time algorithm for the case where N is as large as n, the
length of the string.

Ternary tries also have a long history, dating back at least until 1964, when Clampett [6]
suggested storing the children of trie nodes in a binary search tree. Mehlhorn [9] shows that ternary
tries can be rebalanced so that insertions and deletions can be done in O(|s| + logn) time. Sleator
and Tarjan [12] showed that, if the splay heuristic (Section 6.1) is applied to ternary tries, then the
cost of a sequence of n operations involving a set of strings whose total length is M is O(M+ n logn).
Furthermore, with splaying, a sequence of n searches can be executed in O(M+nH) time, where H is the
empirical entropy (Section 5.1) of the access sequence. Vaishnavi [13] and Bentley and Saxe [1] arrived
at ternary tries through the geometric problem of storing a set of vectors in d-dimensions. Finally,
ternary tries were recently revisited by Bentley and Sedgewick [2].

BIBLIOGRAPHY 63

Samet's books [11, ?, ?] provide an encyclopedic treatment of quadtrees and their applications.

Bibliography

[1] J. L. Bentley and J. B. Saxe. Algorithms on vector sets. SIGACT News, 11(9):36{39, 1979.

[2] J. L. Bentley and R. Sedgewick. Fast algorithms for sorting and searching strings. In Proceedings
of the Eighth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA2000), pages
360{369, 1997.

[3] Hans-Juergen Boehm, Russ Atkinson, and Michael F. Plass. Ropes: An alternative to strings.
Software|Practice and Experience, 25(12):1315{1330, 1995.

[4] M. T. Chen and J. Seiferas. E�cient and elegant subword tree construction. In A. Apostolico
and Z. Galil, editors, Combinatorial Algorithms on Words, NATO ASI Series F: Computer and
System Sciences, chapter 12, pages 97{107. NATO, 1985.

[5] M. Farach. Optimal su�x tree construction with large alphabets. In 38th Annual Symposium on
Foundations of Computer Science (FOCS'97, pages 137{143, 1997.

[6] H. H. Clampett Jr. Randomized binary searching with tree structures. Communications of the
ACM, 7(3):163{165, 1964.

[7] Donald E. Knuth. The Art of Computer Programming. Volume III: Sorting and Searching.
Addison-Wesley, 1973.

[8] E. M. McCreight. A space-economical su�x tree construction algorithm. Journal of the ACM,
23(2):262{272, 1976.

[9] K. Mehlhorn. Dynamic binary searching. SIAM Journal on Computing, 8(2):175{198, 1979.

[10] D. R. Morrison. PATRICIA - practical algorithm to retrieve information coded in alphanumeric.
Journal of the ACM, 15(4):514{534, October 1968.

[11] Hanan Samet. The Design and Analysis of Spatial Data Structures. Series in Computer Science.
Addison-Wesley, Reading, Massachusetts, U.S.A., 1990.

[12] D. D. Sleator and R. E. Tarjan. Self-adjusting binary search trees. Journal of the ACM, 32(2):652{
686, 1985.

[13] V. K. Vaishnavi. Multidimensional height-balanced trees. IEEE Transactions on Computers,
C-33(4):334{343, 1984.

[14] P. Weiner. Linear pattern matching algorithm. In Proceedings of the 14th Annual IEEE Sym-
posium on Switching and Automata Theory, pages 1{11, Washington, DC, 1973.

