Assignment 2 Solutions

COMP2804 Fall 2019

October 15, 2019

1 ID

Name: Lenny Learning Combinatorics
Student ID: 100000000

2 Arrangements of MOOSONEE

1. We will use the product rule. The final string will have 8 letters.
(a) Choose the locations of the three Os in one of $\binom{8}{3}$ ways (5 empty positions remain).
(b) Choose the locations of the two Es in one of $\binom{5}{2}$ ways (3 empty positions remain).
(c) Choose the location of the M in one of $\binom{3}{1}$ ways (2 empty positions remain).
(d) Choose the location of the S in one of $\binom{2}{1}$ ways (1 empty position remains).
(e) Place the N in the last remaining empty position in on of $\binom{1}{1}$ ways.

Therefore, the number of distinct orderings of the letters in MOOSONEE is

$$
\binom{8}{3} \times\binom{ 5}{2} \times\binom{ 3}{1} \times\binom{ 2}{1} \times\binom{ 1}{1}=3360
$$

3 Self-Inverting Functions

1. Let $B \subset S$ be the set of fixed points of f and let $A=S \backslash B$. Then, for every $x \in A, x \neq f(x)$ but $x=f(f(x))$. Therefore, the elements of A can be partitioned into two disjoint sets A_{1} and A_{2} such that f is a bijection from A_{1} onto A_{2}. By the bijection rule, $\left|A_{1}\right|=\left|A_{2}\right|$. Therefore,

$$
|S|-k=|A|=\left|A_{1}\right|+\left|A_{2}\right|+2\left|A_{1}\right| .
$$

Since $\left|A_{1}\right|$ is an integer, $2\left|A_{1}\right|$ is even.
2. Let S be an n-element set and let X be the set of self-inverting functions $f: S \rightarrow S$.

The hard part is counting the number of self-inverting functions with no fixed points, so let's count those first. The hardest part of this is avoiding double-counting (counting the same function more than once). Using the notation above, let $A \subset S$ have even size and let X_{A} be the set of self-inverting functions $f: A \rightarrow A$ with no fixed points. We want to determine $\left|X_{A}\right|$. Consider the following procedure:
(a) Choose a set $A_{1} \subset A$ of $|A| / 2$ elements in A and let $A_{2}=A \backslash A_{1}$. By the definition of binomial coefficients, there are $\binom{|A|}{|A| / 2}$ ways to do this.
(b) Choose a one-to-one function $f: A_{1} \rightarrow A_{2}$. We've seen several times that there are $(|A| / 2)$! ways to do this. (For example, it's a consequence of Theorem 3.1.2 when $n=m=|A| / 2$.)
(c) For each $x \in A_{1}$, let $y=f(x)$ and define $f(y)=x$. There is only one way to do this.

Therefore there are $\binom{|A|}{|A| / 2 \mid} \times(|A| / 2)!\times 1$ ways to execute this procedure.
This procedure produces a self-inverting function $f: A \rightarrow A$ with no fixed points. In other words, it produces an element of X_{A}. However, for a particular $f \in X_{A}$, there is more than one execution of this procedure that generates f. Indeed, if f is the function defined by $f\left(x_{i}\right)=y_{i}$ and $f\left(y_{i}\right)=x_{i}$ for $i \in\{1, \ldots,|A| / 2\}$, then any execution of the procedure above that, for each $i \in\{1, \ldots,|A| / 2\}$
(a) item puts x_{i} in A_{1} and y_{i} in A_{2} and set $f\left(x_{i}\right)=y_{i}$; or
(b) puts x_{i} in A_{2} and y_{i} in A_{1} and sets $f\left(y_{i}\right)=x_{i}$,
will produce the function f. Therefore, there are exactly $2^{|A| / 2 \mid}$ executions of the procedure that generate f, so

$$
\binom{|A|}{|A| / 2} \times(|A| / 2)!=2^{|A| / 2}\left|X_{A}\right|
$$

so

$$
\left|X_{A}\right|=\left(\frac{1}{2^{|A| / 2}}\right)\binom{|A|}{|A| / 2}(|A| / 2)!.
$$

Now we can easily finish up using the Product Rule and the Sum Rule. If we want a function $f: S \rightarrow S$ with exactly $2 k$ fixed points, then we choose the set $B \subset S$ of $2 k$ fixed points, let $A=S \backslash B$ and then choose a self-inverting function $f: A \rightarrow A$ with no fixed points. There are $\binom{n}{2 k}$ ways to perform the first step and, from the preceding discussion, there are $\left|X_{A}\right|$ ways to perform the second step. Therefore, the number of self-inverting functions $f: S \rightarrow S$ with exactly $2 k$ fixed points is

$$
\binom{n}{2 k}\left(\frac{1}{2^{n / 2-k}}\right)\binom{n-2 k}{n / 2-k}(n / 2-k)!
$$

Finally, for each $k \in\{0, \ldots, n / 2\}$, let X_{k} be the set of self-inverting functions $f: S \rightarrow S$ with exactly $2 k$ fixed points. ${ }^{1}$ By the Sum Rule,

$$
|X|=\sum_{k=0}^{n / 2}\left|X_{k}\right|=\sum_{k=0}^{n / 2}\binom{n}{2 k}\left(\frac{1}{2^{n / 2-k}}\right)\binom{n-2 k}{n / 2-k}(n / 2-k)!
$$

as required.

4 Pigeonholing

1. If we look at what lossless compression means, it is that there is a compression function f and an uncompression (decompression) function g such that $g(f(x))=x$ for any valid input x.
In this case, the set of valid inputs, S_{1024}, of 1024 -bit strings has size 2^{1024}. For any $n<0$, the set S_{n} of n-bit strings has size 2^{n}. Therefore the set $S_{<1024}$ of bitstrings of length at most 1023 is

$$
\sum_{n=0}^{1023}\left|S_{n}\right|=\sum_{n=0}^{1023} 2^{n}=2^{1024}-1
$$

The set S_{1023} of 1023 -bit strings has size $2^{1023}<2^{1024}$. Therefore, by the Pigeonhole Principle, there is no one-to-one function $f: S_{1024} \rightarrow S_{<1024}$. This means that, if f is the compression function that

[^0]Pied Piper claims to implement and g is the uncompression function, then there must be two different 1024-bit strings x_{1} and x_{2} such that $f\left(x_{1}\right)=y=f\left(x_{2}\right)$. Since the compression is lossless this means that $g(y)=x_{1}$ and $g(y)=x_{2}$. But this isn't possible, since $x_{1} \neq x_{2}$.
2. Let $S \subseteq\{1, \ldots, n\}$ have size k. Consider the set X consisting of the $\binom{k}{2}$ pairs of elements in S and let $f: X \rightarrow\{3, \ldots, 2 n-1\}$ be defined as $f(\{a, b\})=a+b$. Notice that

$$
|X|=\binom{k}{2}=\frac{k(k-1)}{2} \geq 2 n-1
$$

since $k(k-1) \geq 4 n-2$ is stated as part of the question. Therefore, by the Pigeonhole Principle f is not one-to-one (its range only has size $2 n-2$), so there are two pairs $\{a, b\} \subset S$ and $\{x, y\} \subset S$ such that $f(\{a, b\})=f(\{x, y\})$, i.e., $a+b=x+y$. Now, since $a \neq b, x \neq y,\{a, b\} \neq\{x, y\}$, and $a+b=x+y$, it must be the case that $a \neq x, a \neq y, b \neq x$, and $b \neq y$ so $\{a, b, x, y\}$ is a 4-element subset of S with $a+b=x+y$.
3. Every midpoint has an x and y coordinate that each come from the set $M=\{k / 2: k \in\{2, \ldots, 2 n\}$, which has size $|M|=2 n-1$. Therefore, the number of possible midpoints is at most $|M|^{2}=(2 n-1)^{2}=$ $4 n^{2}-2 n+1$.
Let S be a subset of G with $|S|=k$. Consider the set X consisting of the $\binom{k}{2}$ pairs of elements in S. We want to apply the Pigeonhole Principle to the midpoint function $m: X \rightarrow M^{2}$, so let's check:

$$
\binom{k}{2}=\frac{k(k-1)}{2}>(2 n-1)^{2}=\left|M^{2}\right|
$$

since $k(k+1)>2(2 n-1)^{2}$ is stated as part of the question. Therefore, by the Pigeonhole Principle, f is not one-to-one, so there are two pairs $\{a, b\} \in X$ and $\{x, y\} \in X$ such that $m(a, b)=m(x, y)$. Again, we can check that a, b, x, and y are all distinct, so $\{a, b, x, y\}$ is a 4-element subset of S with $m(a, b)=m(x, y)$, as required.
4. Partition Q into $n^{2} 1 \times 1$ (unit) squares using the vertices lines $x=i$ for $i \in\{1, \ldots, n-1\}$ and the horizontal lines $y=i$ for $i \in\{1, \ldots, n-1\}$. The points of S are pigeons and the squares are holes. In each unit square the maximum distance between any pair of points is $\sqrt{2}$. By the Pigeonhole Principle, there are two distinct points $p, q \in S$ that are contained in the same unit square, so the distance between p and and q is at most $\sqrt{2}$, as required.
(Note: We were a bit sloppy here with the word "partition" since the n^{2} unit squares overlap on their boundaries. For a point is on the boundary of 2 or more squares we can assign that point, arbitrarily, to one of those squares.)
5. Let f be the function that counts the number of zeroes in a binary string. Then $f:\{0,1\}^{n} \rightarrow\{0, \ldots, n\}$. Thus, if S is a set of $n+2$ binary strings of length n then, by the Pigeonhole Principle $f(x)=f(y)$ for two distinct strings $x, y \in S$. So the number of zeroes in x is equal to the number of zeroes in y. But the number of ones in x and y is $n-f(x)=n-f(y)$. Therefore x and y are anagrams.
6. For any string s over the alphabet $\{a, b, c, d\}$, let s_{a}, s_{b}, s_{c} and s_{d} denote the number of a 's, b 's, c 's and d 's in s, respectively. Notice that two strings s and t are anagrams if and only if $s_{a}=t_{a}, s_{b}=t_{b}$, $s_{c}=t_{c}$, and $s_{d}=t_{d}$. Next, observe that, if s has length 12 then

$$
s_{a}+s_{b}+s_{c}+s_{d}=12
$$

Let

$$
R=\left\{(a, b, c, d): a, b, c, d \in \mathbb{Z}_{\geq 0}, \quad a+b+c+d=12\right\}
$$

We saw in class that $|R|=\binom{12+3}{3}=455$. (This is Theorem 3.9.1 in the textbook with $n=12$ and $k=4$.)
Now let S be any set of 45612 -character strings over $\{a, b, c, d\}$ and let f be the function defined by $f(s)=\left(s_{a}, s_{b}, s_{c}, s_{d}\right)$, so $f: S \rightarrow R$. Since $|S|=456>455=|R|$, the Pigeonhole Principle implies that there are distinct $s, t \in S$ such that $f(s)=f(t)$, so s and t are a pair of anagrams, as required.

5 Recurrences

1. The proof is by induction on n. For the base case $n=0$ we have

$$
f(0)=1=2^{0^{2}}
$$

as required. Now assume $f(n-1)=2^{(n-1)^{2}}$. Then, for $n \geq 1$,

$$
\begin{array}{rlr}
f(n) & =\frac{1}{2} \times 4^{n} \times f(n-1) & \text { (by definition of } f(n) \text {) } \\
& =\frac{1}{2} \times 4^{n} \times 2^{(n-1)^{2}} & \text { (by the inductive hypothesis) } \\
& =\frac{1}{2} \times 4^{n} \times 2^{n^{2}-2 n+1} & \left(\text { since }(n-1)^{2}=n^{2}-2 n+1\right) \\
& =\frac{1}{2} \times 2^{2 n} \times 2^{n^{2}-2 n+1} & \left(\text { since } 4^{n}=\left(2^{2}\right)^{n}=2^{2 n}\right)
\end{array}
$$

$$
=2^{-1} \times 2^{2 n} \times 2^{n^{2}-2 n+1} \quad\left(\text { since } 1 / 2=2^{-1}\right)
$$

$$
=2^{n^{2}}
$$

2. To get a feel for the recurrence, we write out the first few values

n	0	1	2	3	4	5	6	7	8	9

$f(n)$	1	1	3	3	9	9	27	27	81	81

So it looks like the sequence is just powers of 3 with each power occuring twice. So $f(n)=3^{\lfloor n / 2\rfloor}$ a natural guess and we can prove this by induction on n.
For the base cases we have $f(0)=1=3^{0}=3^{\lfloor 0 / 2\rfloor}$ and $f(1)=1=3^{0}=3^{\lfloor 1 / 2\rfloor}$, so those check out. Now assume $f(k)=3^{\lfloor k / 2\rfloor}$ for all $k \in\{1, \ldots, n-1\}$. So,

$$
\begin{array}{rlr}
f(n) & =3 \times f(n-2) & \text { (by definition of } f(n)) \\
& =3 \times 3^{\lfloor(n-2) / 2\rfloor} & \text { (by the inductive hypothesis) } \\
& =3 \times 3^{\lfloor n / 2-1\rfloor} & (\text { since }(n-2) / 2=n / 2-1) \\
& =3 \times 3^{\lfloor n / 2\rfloor-1} & \text { (since }\lfloor x-1\rfloor=\lfloor x\rfloor-1) \\
& =3^{\lfloor n / 2\rfloor} &
\end{array}
$$

as required.
3. For $n \geq 2$, any string in S_{n} either
(a) begins with b followed by a string in S_{n-1};
(b) begins with c followed by a string in S_{n-1};
(c) begins with $a b$ followed by a string in S_{n-2};
(d) begins with $a c$ followed by a string in S_{n-2}.

Therefore, for $n \geq 2$,

$$
\left|S_{n}\right|=2\left|S_{n-1}\right|+2\left|S_{n-2}\right|
$$

or, in you prefer the notation we've been using, define $f(n)=\left|S_{n}\right|$, so we have

$$
f(n)= \begin{cases}1 & \text { if } n=0 \\ 3 & \text { if } n=1 \\ 2 f(n-1)+2 f(n-2) & \text { if } n \geq 2\end{cases}
$$

The question gives us the solution to this recurrence, we just have to verify, using induction on n, that it's correct. Let $a=\sqrt{3} / 3+1 / 2, b=\sqrt{3} / 2-1 / 2, \alpha=1+\sqrt{3}$ and $\beta=1-\sqrt{3}$. We think that the solution is

$$
f(n)=a \alpha^{n}-b \beta^{n} .
$$

First we check the two base cases, starting with $n=0$

$$
\begin{aligned}
a \alpha^{0}-b \beta^{0} & =a-b \\
& =\sqrt{3} / 3+1 / 2-\sqrt{3} / 3+1 / 2 \\
& =1=f(0)
\end{aligned}
$$

and then $n=1$

$$
\begin{aligned}
a \alpha^{1}-b \beta^{1} & =a \alpha-b \beta \\
& =(\sqrt{3} / 3+1 / 2)(1+\sqrt{3})-(\sqrt{3} / 3-1 / 2)(1-\sqrt{3}) \\
& =(\sqrt{3} / 3+1+1 / 2+\sqrt{3} / 2)-(\sqrt{3} / 3-1 / 2-1+\sqrt{3} / 2) \\
& =3=f(1) .
\end{aligned}
$$

Now we assume that $f(k)=a \alpha^{k}-b \beta^{k}$ for all $k \in\{0, \ldots, n-1\}$. Then, for $n \geq 2$,

$$
\begin{aligned}
f(n) & =2 f(n-1)+2 f(n-2) \\
& =2\left(a \alpha^{n-1}-b \beta^{n-1}\right)+2\left(a \alpha^{n-2}-b \beta^{n-2}\right) \\
& =2\left(a \alpha^{n-1}+a \alpha^{n-2}\right)-2\left(b \beta^{n-1}-b \beta^{n-2}\right) \\
& =2 a\left(\alpha^{n-1}+\alpha^{n-2}\right)-2 b\left(\beta^{n-1}-\beta^{n-2}\right) \\
& =2 a\left(\alpha^{n-2}(\alpha+1)\right)-2 b\left(\beta^{n-2}(\beta+1)\right) \\
& =a\left(\alpha^{n-2}(2 \alpha+2)\right)-b\left(\beta^{n-2}(2 \beta+2)\right) \\
& =a\left(\alpha^{n-2} \alpha^{2}\right)-b\left(\beta^{n-2} \beta^{2}\right) \\
& =a \alpha^{n}-b \beta^{n},
\end{aligned}
$$

as required.
4. Any string in S_{n} either
(a) begins with a b followed by any string in S_{n-1}; or
(b) begins with a b followed by any string in S_{n-1}; or
(c) begins with with $k-1$ a's followed by a c followed by a string in S_{n-k} (for some $k \in\{2, \ldots, n\}$); or
(d) consists entirely of a 's.

Therefore

$$
\left|S_{n}\right|= \begin{cases}1 & \text { if } n=0 \\ 3 & \text { if } n=1 \\ 2\left|S_{n-1}\right|+\sum_{k=2}^{n} S_{n-k-1}+1 & \text { if } n \geq 2\end{cases}
$$

5. Here is some nave Python code to compute this sequence:
```
def f(n):
    if n == 0: return 1
    if n == 1: return 3
    return 2*f(n-1) + sum([f(n-k) for k in range(2,n+1)]) + 1
print(",".join([str(f(n)) for n in range(21)]))
```

and it produces the sequence $1,3,8,21,55,144,377,987,2584,6765,17711,46368,121393,317811,832040,2178309$, $5702887,14930352,39088169,102334155,267914296$. This is sequence A001906 in the OEIS (https: //oeis.org/A001906).
6. This recurrence solves to

$$
f(n, k)=\binom{n}{k}
$$

We can prove this by induction on $n+k$. If $n+k=0$, then $n=k=0$ and $f(n, k)=1$ by definition and $\binom{0}{0}=1$, also by definition. When $n+k \geq 2$ then there are two cases to consider:
(a) $n>k$. In this case

$$
f(n, k)=f(n-1, k)+f(n-1, k-1)=\binom{n-1}{k}+\binom{n-1}{k-1}=\binom{n}{k}
$$

where the last step is an application of Pascal's Identity.
(b) $n=k$. In this case

$$
f(n, n)=f(n-1, n)+f(n-1, n-1)=0+\binom{n-1}{n-1}=1=\binom{n}{n}
$$

as required.

[^0]: ${ }^{1}$ Note that, since n is even, any self-inverting function $f: S \rightarrow S$ has an even number of fixed points.

