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1 Rolling two D20

For these questions we’re working in a uniform sample space S = {(d1, d2) : d1, d2 ∈ {1, . . . , 20}} of size
20 · 20 = 400 and it helps to explicitly know what A, B, and C, are.

A = {(13, 1), (13, 2), (13, 3), . . . , (13, 19), (13, 20)}

B = {(1, 14), (2, 13), (3, 12), . . . , (13, 2), (14, 1)}

C = {(1, 20), (2, 19), (3, 18), . . . , (19, 2), (20, 1)}

We see that |A| = 20, |B| = 14, and |C| = 20.

Pr(A) =
|A|
|S|

=
20

400
=

1

20

Pr(B) =
|B|
|S|

=
14

400
=

7

200

Pr(C) =
|C|
|S|

=
20

400
=

1

20

1. A ∩B = {(13, 2)} so |A ∩B| = 1 and

Pr(A ∩B) =
|A ∩B|
|S|

= 1/400 6= Pr(A) · Pr(B) =
1

20

7

200
=

7

4000
.

Therefore A and B are not independent.

2. A ∩ C = {(13, 8)} so |A ∩ C| = 1 and

Pr(A ∩ C) =
|A ∩ C|
|S|

= 1/400 =
1

20
· 1

20
= Pr(A) · Pr(B) .

Therefore A and C are independent.
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2 Randomized Leader Election

1. Person xi leaves the circle in the first round if they toss heads and their two neighbours xi−1 and
xi+1 toss tails. Therefore, no two adjacent people leave the circle in the first round. Therefore, the
maximum number of people who leave the circle in the first round is not more than bn/2c. On the
other hand, if the coin tosses alternate between tails and heads so that c0, . . . , cn−1 = T,H, T,H, T, . . .
then persons x1, x3, x5, x7, . . . , x2bn/2c−1 will all leave the circle, so the maximum number of people
who can leave the circle in the first round is not less than bn/2c.

2. Since the coin tosses are independent

Pr(“xi survives”) = 1− Pr(“ci−1 = T and ci = H and ci+1 = T”) = 1− 1

2
· 1

2
· 1

2
= 7/8 .

3. Person xi survives the first r rounds if they survive round 1 and they survive round 2 and then
they survive round 3,. . . , and then they survive round r. From the first question, we know that the
number of people who survive up to the beginning of round r′ is at least n/2r

′−1 > 3 for r′ − 1 <
log2(n/3). Therefore, if xi survives to the beginning of Round r′ then round r′ proceeds under the
same assumptions we used for the previous question. Therefore,

Pr(“xi survives round r′” | “xi survives rounds 1, . . . , r′ − 1”) = 7/8 .

Therefore,

Pr(“xi survives rounds 1, . . . , r”) =

r∏
r′=1

Pr(“xi survives round r′” | “xi survives rounds 1, . . . , r′ − 1”)

=

r∏
r′=1

7/8 = (7/8)r .

If we let Ii be the indicator variable

Ii =

{
1 if xi survives rounds 1, . . . , r

0 otherwise

then E(Ii) = Pr(Ii = 1) = (7/8)r. Then the expected number of people who survive the first r rounds
is

E

(
n∑

i=1

Ii

)
=

n∑
i=1

E(Ii) = n(7/8)r .

3 Sampling With Replacement

For this one, recall the sum that we used to analyze geometric random variables: For any 0 < p < 1,

∞∑
k=1

k · (1− p)k−1 · p =
1

p

1. For each k ∈ N, X = k if and only if π1 = π2 = · · · = πk−1 = T and πk = H. Since the coin tosses are
independent:

Pr(X = k) = Pr(π1 = π2 = · = πk−1 = T and πk = H)

= Pr(π1 = T ) · Pr(π2 = T ) · · · · · Pr(πk−1 = T ) · Pr(πk = H)

= (2/n)k−1 · (1− 2/n) .
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Now, using the definition of expected value, we get

E(X) =

∞∑
k=1

kPr(X = k) =

∞∑
k=1

k · (2/n)k−1 · (1− 2/n) =
1

1− 2/n
=

n

n− 2
.

(Or we can observe that X is a gemetric(1− 2/n) random variable to get the same result.)

2. To compute E(Y ), we proceed exactly as above except reversing the roles of 1− 2/n and 2/n to finish
with

E(Y ) =

∞∑
k=1

k · (1− 2/n)k−1 · (2/n) =
n

2
.

4 Sampling without Replacement

1. Computing E(X) is not too difficult because X has only three possible values:

(a) X = 1 and this happens when π1 is a beer bottle. There are n − 2 choices for π1 and (n − 1)!
choices for the permutation π2, . . . , πn of the remaining n− 1 bottles. So,

Pr(X = 1) =
(n− 2) · (n− 1)!

n!
=
n− 2

n

(b) X = 2 and this happens when π1 is a cider bottle and π2 is a beer bottle. There are 2 choices
for the cider bottle π1, there are n− 2 choices for the beer bottle π2, and then there are (n− 2)!
choices for the permutation π3, . . . , πn of the remaining n− 2 bottles. So

Pr(X = 2) =
2 · (n− 2) · (n− 2)!

n!
=

2(n− 2)

n(n− 1)

(c) X = 3 and this happens when π1 and π2 are cider bottles and π3 is a beer bottle. There are
2! = 2 choices for the ordering of the cider bottles (either π1π2 = c1c2 or π1π2 = c2c1) and then
there are (n− 2)! choices for the ordering π3, . . . , πn of the remaining n− 2 beer bottles. So,

Pr(X = 3) =
2 · (n− 2)!

n!
=

2

n(n− 1)

Applying the definition of expected value, we get

E(X) =
∑

k∈{1,2,3}

k · Pr(X = k)

=
n− 2

n
+

4(n− 2)

n(n− 1)
+

6

n(n− 1)

=
n+ 1

n− 1
.

2. To compute E(Y ) we should figure out Pr(Y = k) for each k ∈ {1, . . . , n}. Now, X = k exactly when
π1, . . . , πk−1 are beer bottles and πk is a cider bottle. We can count the number of such permutations
using the Product Rule:

(a) Select the beer bottles π1, . . . , πk−1. There are n− 2 choices for π1 and n− 3 choices for π2,. . . ,
and n− 2− (k − 2) = n− k choices for πk−1, for a total of (n− 2)!/(n− k − 1)! ways to execute
this step.

(b) Select a cider bottle πk from c1 or c2. There are two ways to execute this step.

3



(c) Select a permutation πk+1, . . . , πn of the remaining n − k bottles. There are (n − k)! ways to
perform this step.

Therefore, there are

(n− 2)!

(n− k − 1)!
· 2 · (n− k)! = (n− 2)(n− 3) · · · (n− k + 1)(n− k) · 2 · (n− k)(n− k − 1) · · · 1

= (n− 2)! · 2 · (n− k)

permutations π1, . . . , πn for which Y = k. Therefore,

Pr(Y = k) =
(n− 2)! · 2 · (n− k)

n!
=

2(n− k)

n(n− 1)

Finally, we finish by applying the definition of expected value

E(Y ) =

n∑
k=1

k · Pr(X = k)

=

n∑
k=1

k · 2(n− k)

n(n− 1)

=
1

n(n− 1)
·

n∑
k=1

k · 2(n− k)

=
1

n(n− 1)
·

(
n∑

k=1

2kn−
n∑

k=1

2k2

)

=
1

n(n− 1)
·

(
2n

n∑
k=1

k −
n∑

k=1

2k2

)

=
1

n(n− 1)
·

(
n2(n+ 1)−

n∑
k=1

2k2

)

=
1

n(n− 1)
·

(
n2(n+ 1)−

n∑
k=1

2k2

)

=
1

n(n− 1)
·

(
n2(n+ 1)− 2

n∑
k=1

k2

)

=
1

n(n− 1)
·
(
n2(n+ 1)− n(n+ 1)(2n+ 1)

3

)
=

1

n(n− 1)
· n(n+ 1)

(
n− (2n+ 1)

3

)
=

1

n(n− 1)
· n(n+ 1)

(
n− 1

3

)
=
n+ 1

3

Notice that, although this random variable Y looks a lot like the one in Question 3.1, its expected
value is quite a bit different.
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5 Doing (much) Better by Taking the Minimum

1. We are told that Pr(X ≥ i) ≤ a/i, so

E(X) =

n∑
i=1

i · Pr(X = i) =

n∑
i=1

Pr(X ≥ i) ≤
n∑

i=1

a/i = aHn ,

where Hn =
∑n

i=1 1/i is the n-th harmonic number.

2. Since X1 and X2 are independent,

Pr(Z ≥ i) = Pr(X1 ≥ i and X2 ≥ i) = Pr(X1 ≥ i) · Pr(X2 ≥ i) ≤ (a/i)2 .

3. Following the same procedure we used for E(X).

E(Z) =

n∑
i=1

Pr(Z ≥ i) ≤
n∑

i=1

(a/i)2 = a2
n∑

i=1

1/i2 .

Now we’re stuck until we can say something about
∑n

i=1 1/i2.

4. Following the link provided to the Basel Problem explains that
∑∞

i=1 1/i2 = π2/6. We can use this by
continuing from the previous derivation:

E(Z) ≤ a2
n∑

i=1

1/i2 ≤ a2
∞∑
i=1

1/i2 =
(aπ)2

6
.

Notice that, by taking the minimum of two samples we went from a random variable whose expected
value was Hn ≈ lnn to a random variable whose expected value is at most (aπ)2/6—a constant that doesn’t
depend on n. This idea of taking the best of 2 (or more) samples has useful applications in randomized
algorithms.
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