
COMP 2804 — Solutions Assignment 1

Question 1:

• Write your name and student number.

Solution:

• Name: Zlatan Ibrahimović

• Student number: 9

Question 2: Let n ≥ 2 be an integer.

• Determine the number of strings consisting of n characters, where each character is an
element of the set {a, b, 0}.

• Let S be a set consisting of n elements. Determine the number of ordered pairs (A,B),
where A ⊆ S, B ⊆ S, and A ∩B = ∅.

• Let S be a set consisting of n elements. Consider ordered pairs (A,B), where A ⊆ S,
B ⊆ S, and |A ∩B| = 1. Prove that the number of such pairs is equal to n · 3n−1.

Solution: The first part is a standard application of the Product Rule: The procedure is
“write a string consisting of n characters, where each character is one of the symbols a, b,
and 0”. For i = 1, 2, . . . , n, the i-th task is “write one of the symbols a, b, and 0”.

For each i, there are 3 ways to do the i-th task; this does not depend on how we did the
previous i − 1 tasks. By the Product Rule, there are 3n ways to do the entire procedure.
Thus, the answer to this part is 3n.

For the second part, the trick is to notice that this is the same as the first part: Let
S = {s1, s2, . . . , sn}. Each ordered pair (A,B), where A ⊆ S, B ⊆ S, and A ∩ B = ∅, can
be specified by a string of n symbols, each symbol being one of a, b, and 0: If si ∈ A, then
we write the symbol a at position i. If si ∈ B, then we write the symbol b at position i. If
si is not in A and not in B, then we write the symbol 0 at position i. For example, if n = 5,
A = {s2, s5}, and B = {s1}, then we obtain the string (b, a, 0, 0, a).

It should be clear that this gives us a bijection between the objects in the first part and
the objects in the second part. As a result, these two parts have the same answer: 3n.

For the third part, we are going to use the Product Rule:

• The procedure is: Choose an ordered pair (A,B), where A ⊆ S, B ⊆ S, and |A∩B| = 1.

• First task: Choose an element of S and call it x. (This element will form the intersection
of A and B.) There are n ways to do this.
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• Second task: Take the set S ′ = S \ {x} and choose an ordered pair (A′, B′), where
A′ ⊆ S ′, B′ ⊆ S ′, and A′ ∩B′ = ∅. Since S ′ has size n− 1, it follows from the previous
part that there are 3n−1 ways to do this.

• Third task: Let A = A′ ∪ {x} and B = B′ ∪ {x}. There is one way to do this.

By the Product Rule, the total number of ways to do this procedure is equal to n · 3n−1 · 1 =
n · 3n−1.

Question 3: Consider 10 male students M1,M2, . . . ,M10 and 7 female students F1, F2, . . . , F7.
Assume these 17 students are arranged on a horizontal line such that no two female students
are standing next to each other. How many such arrangements are there? (The order of the
students matters.)
Hint: Use the Product Rule. What is easier to count: Placing the female students first and
then the male students, or placing the male students first and then the female students?

Solution: We are going to use the Product Rule:

• The first task is to place the 10 male students on a horizontal line. There are 10! ways
to do this.

• After the first task has been completed, consider the following 11 positions: One is to
the left of the males, one is to the right of the males, and there is one between any
two neighboring males. In each of these 11 positions, we can place at most one female
student. In the second task, we choose a subset consisting of 7 of these 11 positions.
There are

(
11
7

)
ways to do this.

• In the third task, we place one female in each of the 7 chosen positions. There are 7!
ways to do this.

By the Product Rule, the answer to this question is

10! ·
(

11

7

)
· 7! = 6, 035, 420, 160, 000.

Question 4: Elisa Kazan1 has a set {C1, C2, . . . , C50} consisting of 50 cider bottles. She
divides these bottles among 5 friends, so that each friend receives a subset consisting of 10
bottles. Determine the number of ways in which Elisa can divide the bottles.

Solution: We are going to use the Product Rule. Denote Elisa’s friends by F1, . . . , F5.

• Task 1: Choose a subset of 10 bottles and give them to F1. There are
(
50
10

)
ways to do

this.

• Task 2: Out of the remaining 40 bottles, choose a subset of size 10 and give them to
F2. There are

(
40
10

)
ways to do this.

1President of the Carleton Computer Science Society
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• Task 3: Out of the remaining 30 bottles, choose a subset of size 10 and give them to
F3. There are

(
30
10

)
ways to do this.

• Task 4: Out of the remaining 20 bottles, choose a subset of size 10 and give them to
F4. There are

(
20
10

)
ways to do this.

• Task 5: Give the remaining 10 bottles to F4. There is 1 way to do this.

By the Product Rule, the answer to this question is(
50

10

)
·
(

40

10

)
·
(

30

10

)
·
(

20

10

)
= 48, 334, 775, 757, 901, 219, 912, 115, 629, 238, 400.

Question 5: Let f ≥ 2, m ≥ 2, and k ≥ 2 be integers such that k ≤ f and k ≤ m.
The Carleton Computer Science program has f female students and m male students. The
Carleton Computer Science Society has a Board of Directors consisting of k students. At
least one of the board members is female and at least one of the board members is male.
Determine the number of ways in which a Board of Directors can be chosen.

Solution: We define the following three sets:

• U : the set of all k-member Board of Directors (without any restrictions).

• A: the set of all k-member Board of Directors consisting of female students only.

• B: the set of all k-member Board of Directors consisting of male students only.

Then we have to determine the size of the set

A ∩B,

which is the same as the size of the set

A ∪B,

which is the same as
|U | − |A ∪B|.

Since each element of the set U is a subset of k students, we have

|U | =
(
m + f

k

)
.

Since each element of the set A is a subset of k female students, we have

|A| =
(
f

k

)
.
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Since each element of the set B is a subset of k male students, we have

|B| =
(
m

k

)
.

Since A ∩B = ∅, we have

|A ∪B| = |A|+ |B| − |A ∩B| =
(
f

k

)
+

(
m

k

)
− 0 =

(
f

k

)
+

(
m

k

)
.

We conclude that the answer to this question is

|U | − |A ∪B| =
(
m + f

k

)
−
(
f

k

)
−
(
m

k

)
.

Question 6: You have won the first prize in the Louis van Gaal Impersonation Contest2.
When you arrive at Louis’ home to collect your prize, you see n beer bottles B1, B2, . . . , Bn,
n cider bottles C1, C2, . . . , Cn, and n wine bottles W1,W2, . . . ,Wn. Here, n is an integer with
n ≥ 2. Louis tells you that your prize consists of one beer bottle of your choice, one cider
bottle of your choice, and one wine bottle of your choice.

Prove that
n3 = (n− 1)3 + 3(n− 1)2 + 3(n− 1) + 1,

by counting, in two different ways, the number of ways in which you can choose your prize.

Solution: First way of counting: You can choose your prize by choosing one beer bottle (n
choices), one cider bottle (n choices), and one wine bottle (n choices). By the Product Rule,
the number of ways to choose your prize is equal to

n · n · n = n3. (1)

Second way of counting: Any way of choosing your prize is of exactly one of the following
four possible cases:

• Case 1: Do not choose any bottle with index n.

For this case, there are n− 1 choices for each bottle. Thus, there are (n− 1)3 ways for
this case.

• Case 2: Choose exactly one bottle with index n.

– We choose one of the categories B, C, and W . There are
(
3
1

)
= 3 ways to do this.

– Choose the bottle with index n in the chosen category. There is one way to do
this.

2Louis van Gaal has been coach of AZ, Ajax, Barcelona, Bayern München, Manchester United, and the
Netherlands.
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– For each of the two other categories, choose one of the indices 1, 2, . . . , n − 1.
There are (n− 1)2 ways to do this.

The number of ways to do this second case is equal to

3 · 1 · (n− 1)2 = 3(n− 1)2.

• Case 3: Choose exactly two bottles with index n.

– We choose two of the categories B, C, and W . There are
(
3
2

)
= 3 ways to do this.

– For each of the chosen categories, choose the bottle with index n in this category.
There is one way to do this.

– For the remaining category, choose one of the indices 1, 2, . . . , n − 1. There are
n− 1 ways to do this.

The number of ways to do this third case is equal to

3 · 1 · (n− 1) = 3(n− 1).

• Case 4: Choose three bottles with index n. There is one way to do this.

Since the four cases are pairwise disjoint, the total number of ways to choose your prize is
equal to

(n− 1)3 + 3(n− 1)2 + 3(n− 1) + 1. (2)

Since (1) and (2) count the same things, these expressions must be equal.

Question 7: Let a ≥ 0, b ≥ 0, and n ≥ 0 be integers, and consider the set S =
{1, 2, 3, . . . , a + b + n + 1}.

• How many subsets of size a + b + 1 does S have?

• Let k be an integer with 0 ≤ k ≤ n. Consider subsets T of S such that |T | = a+ b+ 1
and the (a+ 1)-st smallest element in T is equal to a+ k + 1. How many such subsets
T are there?

• Use the above results to prove that

n∑
k=0

(
a + k

k

)(
b + n− k

n− k

)
=

(
a + b + n + 1

n

)
.

Solution: The answer to the first part is of course(
a + b + n + 1

a + b + 1

)
.
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For the second part, we fix an integer k with 0 ≤ k ≤ n. We divide the set S into three
subsets:

L = {1, 2, . . . , a + k},
M = {a + k + 1},
R = {a + k + 2, a + k + 3, . . . , a + b + n + 1}.

Any subset T of S such that |T | = a + b + 1 and the (a + 1)-st smallest element is equal to
a + k + 1 is obtained in the following way:

• Choose an a-element subset from the set L. There are
(
a+k
a

)
ways to do this.

• Choose the element in M . There is one way to do this.

• Choose a b-element subset from the set R. Since R has size b+n−k, there are
(
b+n−k

b

)
ways to do this.

By the Product Rule, the answer to this part of the question is(
a + k

a

)(
b + n− k

b

)
.

For the third part, we are again going to count the subsets of size a + b + 1. We divide
all these subsets into groups, based on the (a + 1)-st smallest element in the subset:

• Group Gk: these are all subsets of size a+b+1 for which the (a+1)-st smallest element
is equal to a + k + 1.

• The possible values for k are 0, 1, 2, . . . , n.

Since each subset of size a + b + 1 is in exactly one of these groups, we have

n∑
k=0

|Gk| =
(
a + b + n + 1

a + b + 1

)
.

We have seen in the second part that

|Gk| =
(
a + k

a

)(
b + n− k

b

)
.

It follows that
n∑

k=0

(
a + k

a

)(
b + n− k

b

)
=

(
a + b + n + 1

a + b + 1

)
.

Using
(
x
y

)
=
(

x
x−y

)
, we conclude that

n∑
k=0

(
a + k

k

)(
b + n− k

n− k

)
=

(
a + b + n + 1

n

)
.
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Question 8: In this exercise, we consider strings that can be obtained by reordering the
letters of the word ENGINE.

• Determine the number of strings that can be obtained.

• Determine the number of strings in which the two letters E are next to each other.

• Determine the number of strings in which the two letters E are not next to each other
and the two letters N are not next to each other.

(You do not get marks if you write out all possible strings. You must use the counting
rules that you learned in class.)

Solution: For the first part, we use the approach that we have seen in class: The letter E
occurs twice, the letter N occurs twice, the letter G occurs once, and the letter I occurs once.
Thus, the number of strings that can be obtained is equal to(

6

2

)(
4

2

)(
2

1

)(
1

1

)
= 180.

For the second part, the two letters E must be next to each other. We imagine that EE
is one symbol, say X. Then we are looking for the number of strings that can be obtained
by reordering the letters of the word XNGIN. Again, we use the approach that we have seen
in class: The letter X occurs once, the letter N occurs twice, the letter G occurs once, and
the letter I occurs once. Thus, the number of strings that can be obtained is equal to(

5

1

)(
4

2

)(
2

1

)(
1

1

)
= 60.

For the third part, we define the following three sets:

• U : the set of all strings, without any restrictions, that can be obtained from ENGINE.

• A: the set of all strings in which the two letters E are next to each other.

• B: the set of all strings in which the two letters N are next to each other.

Then we have to determine the size of the set

A ∩B,

which is the same as the size of the set

A ∪B,

which is the same as
|U | − |A ∪B|.
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We have seen in the first part that |U | = 180. By the Principle of Inclusion and Exclusion,
we have

|A ∪B| = |A|+ |B| − |A ∩B|.
We know from the second part that |A| = 60. Of course, the set B has the same size, i.e.,
|B| = 60. To determine the size of the set A ∩B, we imagine that EE is one symbol, say X,
and NN is one symbol, say Y. Then |A ∩ B| is the number of strings that can be obtained
by reordering the letters of the word XYGI. This gives |A ∩B| = 4! = 24. Thus,

|A ∪B| = |A|+ |B| − |A ∩B| = 60 + 60− 24 = 96.

We conclude that the answer to this part of the question is

|U | − |A ∪B| = 180− 96 = 84.

Question 9: The square in the left figure below is divided into nine cells. In each cell, we
write one of the numbers −1, 0, and 1.

Use the Pigeonhole Principle to prove that, among the rows, columns, and main diagonals,
there exist two that have the same sum. For example, in the right figure below, both main
diagonals have sum 0. (Also, the two topmost rows both have sum 1, whereas the bottom
row and the right column both have sum −2.)

0 0

0

1

11 −1

−1−1

Solution: The largest possible row/column/diagonal sum is equal to 1 + 1 + 1 = 3, whereas
the smallest possible sum is equal to −1−1−1 = −3. It follows that each sum is an element
of {−3,−2,−1, 0, 1, 2, 3}. Note that this set has 7 elements.

How many row/column/diagonal sums are there: There are 3 rows, 3 columns, and 2
main diagonals. Thus, the number of sums is equal to 8.

Let us do this in a more formal way: We make 7 boxes, each one being labeled with one
element of the set {−3,−2,−1, 0, 1, 2, 3}. Each row/column/diagonal is placed in the box
whose label is the sum of the three numbers involved. By doing this, we place 8 sums into
7 boxes. By the Pigeonhole Principle, there is a box that receives at least two sums. This
means that among the rows, columns, and main diagonals, there exist two that have the
same sum.
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Question 10: Let d ≥ 1 be an integer. A point p in Rd is represented by its d real coordinates
as p = (p1, p2, . . . , pd). The midpoint of two points p = (p1, p2, . . . , pd) and q = (q1, q2, . . . , qd)
is the point (

p1 + q1
2

,
p2 + q2

2
, . . . ,

pd + qd
2

)
.

Let P be a set of 2d + 1 points in Rd, all of which have integer coordinates.
Use the Pigeonhole Principle to prove that this set P contains two distinct elements

whose midpoint has integer coordinates.
Hint: The sum of two even integers is even, and the sum of two odd integers is even.

Solution: We are going to use 2d boxes, each one being labeled by a bitstring of length d.
Each point p = (p1, p2, . . . , pd) in the set P is placed in the box having label

(p1 mod 2, p2 mod 2, . . . , pd mod 2).

Since the set P has 2d + 1 elements, and we have 2d boxes, the Pigeonhole Principle implies
that there is a box that receives at least two points of P .

Let p and q be two distinct points of P that are in the same box. Then

(p1 mod 2, p2 mod 2, . . . , pd mod 2) = (q1 mod 2, q2 mod 2, . . . , qd mod 2).

Thus, for each i = 1, 2, . . . , d, we have

pi mod 2 = qi mod 2.

If both pi mod 2 and qi mod 2 are equal to 0, then both pi and qi are even and, therefore,
pi + qi is even and, therefore, (pi + qi)/2 is an integer.

If both pi mod 2 and qi mod 2 are equal to 1, then both pi and qi are odd and, therefore,
pi + qi is even and, therefore, (pi + qi)/2 is an integer.

9


