
Group Testing: Single Pooling and Multiple Pooling

Michiel Smid∗

October 29, 2020

1 Introduction
Consider a group of people, some of which are infected by a virus such as COVID-19 or
Ebola. We would like to identify the infected people in this group. Assume that we have a
sample for each person in the group. For example, when testing for COVID-19, the sample
is collected through a nasal swab, whereas a blood sample is used when testing for Ebola.
These samples are analyzed in a laboratory. The obvious approach is to analyze each sample
individually. The drawback is that one laboratory test is needed for each person. In 1943,
Robert Dorfman1 proposed single pooling : For a given integer s, we divide the people into
subgroups, each having size s. For each subgroup, we combine (parts of) the samples of
the people in this subgroup and do one laboratory test for the resulting mix. If the test
is negative, then none of the people in the subgroup is infected. Otherwise, i.e., if the test
is positive, we know that at least one person in the subgroup is infected. In the latter
case, we use the remainders of the samples to test each person in the subgroup individually.
Assuming that we have a good estimate for the number of infected people, Dorfman showed
that, by choosing the pool size s appropriately, the number of laboratory tests can be reduced
significantly. In these notes, we will work out the details of Dorfman’s approach. We will also
present the generalization to multiple pooling, which was proposed by Broder and Kumar2
in 2020.

2 Notation and Assumptions
1. The number of people in the group is denoted by n. We number these people, arbi-

trarily, as P1, P2, . . . , Pn.
∗School of Computer Science, Carleton University, Ottawa, Canada.
1The Detection of Defective Members of Large Populations, The Annals of Mathematical Statistics,

14(4), pages 436–440.
2A Note on Double Pooling Tests, https://arxiv.org/abs/2004.01684.

1

2. The number of infected people in the group is denoted by k. We assume that we know
the exact value of k. (Even though this is not a realistic assumption, a reasonable
estimate of k can be obtained from previous testing results.)

3. We have a procedure Test(T), which takes as input a non-empty subset T of {1, 2, . . . , n}.
This procedure combines (parts of) the samples of the people in the subset {Pi : i ∈ T}
and tests the mix. The procedure returns either

• negative, meaning that none of the people in {Pi : i ∈ T} is infected, or
• positive, meaning that at least one person in {Pi : i ∈ T} is infected. In this case,

if |T | ≥ 2, we do not know who is/are infected.

(For COVID-19 testing, this is possible for sets T of sizes up to 64. See the references
in the paper by Broder and Kumar.)

4. We assume that the output of the procedure Test(T) is always correct. Thus, there
are no false positives and no false negatives. (This is not a realistic assumption, but it
makes the analysis much simpler.)

Our goal is to design a testing algorithm, i.e., a sequence of calls to the procedure
Test(T), using different sets T , such that, at termination, we know for each i in {1, 2, . . . , n},
whether or not person Pi is infected. The goal is to minimize the number of calls to the
procedure Test.

An obvious algorithm tests each sample individually : For each i = 1, 2, . . . , n, we make
one call to Test({i}). In this way, the procedure is called n times.

In the rest of these notes, we will show that, if the number of infected people is “small”,
we can identify them using a much smaller number of calls to the procedure Test.

3 Single Pooling
As was mentioned in Section 1, single pooling was proposed by Robert Dorfman in 1943. It
is being used for COVID-19 testing in Germany and Israel; see the references in the paper
by Broder and Kumar.

Recall that n denotes the number of people to be tested. In single pooling, we choose
an integer s ≥ 2 such that n is a multiple of s. Consider a permutation Π of the people
P1, P2, . . . , Pn. We divide this permutation into n/s blocks : The first s people in Π form
the first block, the next s people form the second block, etc. For each block, we run the
procedure Test on the indices of the people in this block. If the result for a block is negative,
then we know that none of the people in this block is infected. On the other hand, if the
result for a block is positive, then at least one person in this block is infected. In the latter
case, we test the sample of each person in this block individually.

Observe that one person may be involved in two calls to the procedure Test. Therefore,
we divide each person’s sample into two subsamples. In each call to Test, we use a different
subsample.

2

It is clear that this testing algorithm is correct: For each i with 1 ≤ i ≤ n, it correctly
determines whether or not Pi is infected. The number of calls to the procedure Test depends
on the permutation Π. Since, at the start of the algorithm, we do not know who is infected
and who is not infected, we choose Π uniformly at random from the set of all n! permutations.
Here is a formal description of the algorithm:

Algorithm SinglePooling(n, s)

Comment: n denotes the number of people and s denotes the block size. We assume
that n is a multiple of s. The people to be tested are denoted by P1, P2, . . . , Pn.

Let Π be a uniformly random permutation of P1, P2, . . . , Pn.
Divide Π into n/s blocks, each of size s.
For each j = 1, 2, . . . , n/s, do the following:

1. Run the procedure Test on the indices of the people in the j-th block of Π.

2. If the result is negative, then none of the people in this block is infected.

3. If the result is positive , then run the procedure Test on the index of each person
in this block individually.

Consider the random variable

X = the total number of calls to the procedure Test when running
algorithm SinglePooling(n, s).

We are going to determine the expected value E(X) of X.
It is natural to introduce the indicator random variables X1, X2, . . . , Xn, where

Xi =

{
1 if the sample of Pi is tested individually,
0 otherwise.

Let I be the set of indices of the infected people, and let N be the set of indices of the
non-infected people. Observe that

X =
n

s
+

n∑
i=1

Xi =
n

s
+
∑
i∈I

Xi +
∑
i∈N

Xi. (1)

Recall that k denotes the number of infected people, i.e., k = |I|. We assume that 2 ≤ s ≤
n− k.

If i is an index in I, i.e., Pi is infected, thenXi = 1, because, no matter which permutation
Π is chosen, the sample of Pi is tested individually. Thus,

for each index i in I, E (Xi) = 1. (2)

3

Let i be an index in N . Thus, Pi is not infected. We are going to determine the expected
value E (Xi) of the random variable Xi.

Observe that Xi = 1 if and only if at least one person in Pi’s block in the permutation
Π is infected. Consider the event

A = “none of the other s− 1 people in Pi’s block in Π is infected”.

Then
E (Xi) = Pr (Xi = 1) = 1− Pr(A).

To determine Pr(A), we make the following observations:

• For a given permutation Π, whether or not the event A occurs is completely determined
by (i) the position of Pi in Π and (ii) the positions in Π of the k infected people.

• In any permutation Π, person Pi is at one of n possible positions. The k infected
people can be in any of the remaining n − 1 positions. Thus, there are

(
n−1
k

)
many

possible subsets for these k positions.

• As above, in any permutation Π, Pi is at one of n possible positions. The event A
occurs if and only if all k infected people are outside of Pi’s block in the permutation.
Thus, these infected people can be in any of n − s positions. There are

(
n−s
k

)
many

possible subsets for these positions.

It follows that

Pr(A) =
n
(
n−s
k

)
n
(
n−1
k

) =

(
n−s
k

)(
n−1
k

) . (3)

In case you do not like the above argument, here is an alternative derivation. We are
going to count the number of permutations Π for which the event A occurs. By dividing this
number by n!, we obtain Pr(A). In the following four steps, we specify a unique permutation
for which A occurs.

1. Choose a position for Pi in the permutation. There are n ways to do this. The chosen
position determines the block in the final permutation that contains Pi. Below, we
denote this block by B.

2. Choose a subset of size s− 1 from the set of n− k− 1 non-infected people that are not
equal to Pi. There are

(
n−k−1
s−1

)
ways to do this.

3. Choose a permutation of the people in the subset that was chosen in 2. Add these
people, according to the chosen permutation, to the block B. There are (s− 1)! ways
to do this.

4. Choose a permutation of the remaining n− s people, and add them, according to the
chosen permutation, to the positions outside of the block B. There are (n − s)! ways
to do this.

4

By the Product Rule, the total number of permutations for which the event A occurs is equal
to

n ·
(
n− k − 1

s− 1

)
· (s− 1)! · (n− s)!.

Therefore,

Pr(A) =
n ·
(
n−k−1
s−1

)
· (s− 1)! · (n− s)!

n!
,

which, by basic algebra, is equal to the fraction in (3).
We have shown that

for each index i in N , E (Xi) = 1− Pr(A) = 1− (n−s
k)

(n−1
k)

. (4)

By applying the Linearity of Expectation to (1), substituting (2) and (4), and using the
facts that |I| = k and |N | = n− k, we obtain

E(X) = E

(
n

s
+
∑
i∈I

Xi +
∑
i∈N

Xi

)
=

n

s
+
∑
i∈I

E (Xi) +
∑
i∈N

E (Xi)

=
n

s
+
∑
i∈I

1 +
∑
i∈N

(
1−

(
n−s
k

)(
n−1
k

))

=
n

s
+ k + (n− k)

(
1−

(
n−s
k

)(
n−1
k

))

= n +
n

s
− (n− k)

(
n−s
k

)(
n−1
k

) . (5)

Recall that our goal is to minimize the number of calls to the procedure Test. Thus, for
fixed values of n and k, we want to choose s such that E(X) is minimum.

Remark: The analysis in Dorfman’s paper, as well as in the paper by Broder and Kumar,
is different from the one given above. They consider a “streaming” version of the problem:
People arrive one by one. The current person to arrive has a probability p of being infected,
independently of all other people. In our notation, this corresponds to the case when n→∞
and k/n→ p.

3.1 An Example

We consider the case when n = 1000 and k = 10. We use the expression for E(X) as given
in (5). Using Wolfram Alpha, we get:

• For s = 5, E(X) ≈ 249.

5

• For s = 10, E(X) ≈ 196.

• For s = 20, E(X) ≈ 234.

Wolfram Alpha gives us the graph of E(X) as a function of s; see the figure below. We
see that the minimum occurs around s = 10. Thus, for this example, testing the sample of
each person individually requires 1000 calls to the procedure Test. By using single pooling
with s = 10, the expected number of calls is only 196.

4 Multiple Pooling
As was mentioned in Section 1, multiple pooling was proposed by Broder and Kumar in
2020. It is based on the power of two choices paradigm.

Let c ≥ 1 be an integer. Instead of using one permutation Π, as we did in algorithm
SinglePooling, we use c permutations. For each ` = 1, 2, . . . , c, we run the procedure
Test on each of the n/s blocks of the `-th permutation.

Consider a person Pi. If there is an ` for which the result of Pi’s block in the `-th
permutation is negative, then we know that Pi is not infected. Otherwise, Pi may be infected.
In the latter case, we test the sample of Pi individually.

Observe that one person may be involved in c+1 calls to the procedure Test. Therefore,
we divide each person’s sample into c+1 subsamples. In each call to Test, we use a different
subsample. Here is a formal description of the algorithm:

6

Algorithm MultiplePooling(n, c, s)

Comment: n denotes the number of people, c denotes the number of permutations,
and s denotes the block size for each permutation. We assume that n is a multiple of s.
The people to be tested are denoted by P1, P2, . . . , Pn.

Let Π1,Π2, . . . ,Πc be uniformly random permutations of P1, P2, . . . , Pn. These permuta-
tions are chosen independently of each other.
For each ` = 1, 2, . . . , c, do the following:

1. Divide Π` into n/s blocks, each of size s.

2. For each j = 1, 2, . . . , n/s, run the procedure Test on the indices of the people in
the j-th block of Π`.

For each i = 1, 2, . . . , n, do the following:

1. If there is an ` for which the result of Pi’s block in the permutation Π` is negative,
then Pi is not infected.

2. Otherwise, run the procedure Test({i}), i.e., run the procedure Test on the index
i of Pi.

It is not difficult to verify that this testing algorithm is correct. That is, for each i with
1 ≤ i ≤ n, it correctly determines whether or not Pi is infected.

Consider the random variables

Y = the total number of calls to the procedure Test when running
algorithm MultiplePooling(n, c, s)

and, for i = 1, 2, . . . , n,

Yi =

{
1 if the sample of Pi is tested individually,
0 otherwise.

As before, let I be the set of indices of the infected people, and let N be the set of indices of
the non-infected people. Recall that k = |I|. We assume that 2 ≤ s ≤ n− k. Observe that

Y =
cn

s
+
∑
i∈I

Yi +
∑
i∈N

Yi.

If i is an index in I, then Yi = 1, no matter which permutations are chosen. Thus, in
this case, E (Yi) = 1.

Let i be an index in N . For each ` = 1, 2, . . . , c, consider the event

A` = “none of the other s− 1 people in Pi’s block in Π` is infected”.

7

Then Yi = 1 if and only if the event

A1 ∧ A2 ∧ · · · ∧ Ac

occurs, where A` denotes the complement of A`. Since the c permutations are chosen inde-
pendently, the events A`, ` = 1, 2, . . . , c, are mutually independent. Therefore, if we let

p =

(
n−s
k

)(
n−1
k

) ,
then it follows from (3) that

E (Yi) = Pr (Yi = 1) = Pr

(
c∧

`=1

A`

)
=

c∏
`=1

Pr
(
A`

)
=

c∏
`=1

(1− p) = (1− p)c.

By putting everything together, we conclude that

E(Y) =
cn

s
+ k + (n− k)(1− p)c

=
cn

s
+ k + (n− k)

(
1−

(
n−s
k

)(
n−1
k

))c

. (6)

4.1 An Example

As in Section 3.1, we consider the case when n = 1000 and k = 10. We use the expression
for E(Y) as given in (6). For each c ∈ {2, 3, 4}, we will determine the value of s for which
E(Y) is minimum. All figures below were obtained using Wolfram Alpha.

4.1.1 Using Two Permutations

For c = 2, Wolfram Alpha gives the following values:

• For s = 5, E(Y) ≈ 412.

• For s = 10, E(Y) ≈ 218.

• For s = 20, E(Y) ≈ 141.

• For s = 25, E(Y) ≈ 137.

• For s = 30, E(Y) ≈ 142. (Note that n is not a multiple of s.)

Below, you see the graph of E(Y) as a function of s. We see that the minimum occurs
around s = 25.

8

4.1.2 Using Three Permutations

For c = 3, Wolfram Alpha gives the following value:

• For s = 38, E(Y) ≈ 120. (Note that n is not a multiple of s.)

Below, you see the graph of E(Y) as a function of s. We see that the minimum occurs
around s = 38.

9

4.1.3 Using Four Permutations

For c = 4, Wolfram Alpha gives the following value:

• For s = 50, E(Y) ≈ 114.5.

Below, you see the graph of E(Y) as a function of s. We see that the minimum occurs
around s = 50.

4.1.4 Conclusion

For the case when n = 1000 and k = 10, we have obtained the following results:

• Testing the sample of each person individually requires 1000 calls to the procedure
Test.

• By using single pooling with s = 10, the expected number of calls to Test is about
196.

• By using multiple pooling with c = 2 and s = 25, the expected number of calls to
Test is about 137.

• By using multiple pooling with c = 3 and s = 38, the expected number of calls to
Test is about 120.

• By using multiple pooling with c = 4 and s = 50, the expected number of calls to
Test is about 114.5.

10

5 Further Reading
Wikipedia has an article on Group Testing:

https://en.wikipedia.org/wiki/Group_testing

For a list of countries that use pooling for COVID-19 testing, go to
https://en.wikipedia.org/wiki/List_of_countries_implementing_pool_testing_strategy_against_COVID-19

11

