Midterm COMP 2804

October 23, 2015

- All questions must be answered on the scantron sheet.
- Write your name and student number on the scantron sheet.
- You do not have to hand in this examination paper.
- Calculators are allowed.

Marking scheme: Each of the 17 questions is worth 1 mark.

- $\binom{n}{k}=\frac{n!}{k!(n-k)!}$
- Newton: $(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k} y^{k}$.

1. The Carleton Computer Science Society has a Board of Directors consisting of a President, two Vice-Presidents, and a five-person Advisory Board. The President cannot be VicePresident and cannot be on the Advisory Board. A Vice-President cannot be on the Advisory Board. Let n be the number of students in Carleton's Computer Science program, where $n \geq 8$. In how many ways can a Board of Directors be chosen?
(a) $n\binom{n}{2}\binom{n}{5}$
(b) $(n-2)\binom{n}{2}\binom{n-2}{5}$
(c) $(n-5)\binom{n}{2}\binom{n-1}{5}$
(d) $(n-7)\binom{n}{2}\binom{n-2}{5}$
2. Let S be a set of 25 elements and let x, y, and z be three distinct elements of S. What is the number of subsets of S that contain both x and y, but do not contain z ?
(a) $2^{25}-2^{22}$
(b) $2^{25}-2^{24}+2^{23}$
(c) 2^{22}
(d) 2^{23}
3. Let A be a set of 6 elements and let B be a set of 13 elements. How many one-to-one (i.e., injective) functions $f: A \rightarrow B$ are there?
(a) $5 \cdot 6 \cdot 7 \cdot 8 \cdot 9 \cdot 10 \cdot 11 \cdot 12 \cdot 13$
(b) $6 \cdot 7 \cdot 8 \cdot 9 \cdot 10 \cdot 11 \cdot 12 \cdot 13$
(c) $7 \cdot 8 \cdot 9 \cdot 10 \cdot 11 \cdot 12 \cdot 13$
(d) $8 \cdot 9 \cdot 10 \cdot 11 \cdot 12 \cdot 13$
4. For any integer $n \geq 2$, let S_{n} be the number of bitstrings of length n in which the first bit is not equal to the last bit. Which of the following is true?
(a) $S_{n}=2^{n-2}$
(b) $S_{n}=2^{n-1}$
(c) $S_{n}=2^{n}-2^{n-2}$
(d) $S_{n}=2^{n}-2^{n-1}+2^{n-2}$
5. Consider strings of length 99 consisting of the characters a, b, and c. How many such strings are there that start with $a b c$ or end with $b b b$?
(a) $3^{96}+3^{96}$
(b) $3^{99}-2 \cdot 3^{96}$
(c) $2 \cdot 3^{96}-3^{93}$
(d) None of the above.
6. What does

$$
\sum_{k=1}^{m}\binom{m}{k}
$$

count?
(a) The number of non-empty subsets of a set of size m.
(b) The number of subsets of a set of size m.
(c) The number of bitstrings of length m having exactly k many 1 s .
(d) None of the above.
7. In the city of ShortLastName, every person has a last name consisting of two characters, the first one being an uppercase letter and the second one being a lowercase letter. What is the minimum number of people needed so that we can guarantee that at least 4 of them have the same last name?
(a) $3 \cdot 26^{2}$
(b) $4 \cdot 26^{2}$
(c) $3 \cdot 26^{2}+1$
(d) $4 \cdot 26^{2}+1$
8. What is the coefficient of $x^{81} y^{7}$ in the expansion of $(3 x-17 y)^{88}$?
(a) $\binom{88}{7} \cdot 3^{81} \cdot 17^{7}$
(b) $-\binom{88}{7} \cdot 3^{81} \cdot 17^{7}$
(c) $\binom{88}{7} \cdot 3^{7} \cdot 17^{81}$
(d) $-\binom{88}{7} \cdot 3^{7} \cdot 17^{81}$
9. How many solutions are there to the equation $x_{1}+x_{2}+x_{3}+x_{4}=55$, where $x_{1} \geq 0, x_{2} \geq 0$, $x_{3} \geq 0$, and $x_{4} \geq 0$ are integers?
(a) $\binom{58}{3}$
(b) $\binom{58}{4}$
(c) $\binom{59}{3}$
(d) $\binom{59}{4}$
10. The function $f: \mathbb{N} \rightarrow \mathbb{N}$ is defined by

$$
\begin{aligned}
& f(0)=7 \\
& f(n)=f(n-1)+10 n-6 \text { for } n \geq 1
\end{aligned}
$$

What is $f(n)$?
(a) $f(n)=4 n^{2}-2 n+7$
(b) $f(n)=4 n^{2}-n+7$
(c) $f(n)=5 n^{2}-2 n+7$
(d) $f(n)=5 n^{2}-n+7$
11. Let S_{n} be the number of bitstrings of length n that contain the substring 0000 . Which of the following is true?
(a) $S_{n}=S_{n-1}+S_{n-2}+S_{n-3}+S_{n-4}$
(b) $S_{n}=S_{n-1}+S_{n-2}+S_{n-3}+S_{n-4}+2^{n-4}$
(c) $S_{n}=S_{n-1}+S_{n-2}+S_{n-3}$
(d) $S_{n}=S_{n-1}+S_{n-2}+S_{n-3}+2^{n-3}$
12. Let $n \geq 1$ be an integer and let S_{n} be the number of ways in which n can be written as a sum of 1 s and 2 s , such that

- the order in which the 1 s and 2 s occur in the sum matters, and
- it is not allowed to have two consecutive 2 s .

For example, if $n=7$, then both

$$
7=1+2+1+2+1
$$

and

$$
7=2+1+1+2+1
$$

are allowed, whereas

$$
7=1+2+2+1+1
$$

is not allowed.
Which of the following is true?
(a) $S_{n}=S_{n-1}+S_{n-2}$
(b) $S_{n}=S_{n-1}+S_{n-3}$
(c) $S_{n}=S_{n-2}+S_{n-3}$
(d) $S_{n}=S_{n-1}+S_{n-2}+S_{n-3}$
13. Consider the following recursive algorithm FIB, which takes as input an integer $n \geq 0$:

```
Algorithm \(\operatorname{Fib}(n)\) :
if \(n=0\) or \(n=1\)
then \(f=n\)
else \(f=\operatorname{FIB}(n-1)+\operatorname{FIB}(n-2)\)
endif;
return \(f\)
```

When running $\operatorname{FIB}(55)$, how many calls are there to $\operatorname{FiB}(50)$?
(a) 6
(b) 7
(c) 8
(d) 9
14. Consider the following recursive algorithm JustinBieber, which takes as input an integer $n \geq 1$, which is a power of 2 :

```
Algorithm JustinBieber( \(n\) ):
if \(n=1\)
then order chicken wings
else if \(n=2\)
    then drink one pint of India Pale Ale
    else print "I don't like Justin Bieber";
        JustinBieber ( \(n / 2\) )
    endif
endif
```

For n a power of 2 , let $B(n)$ be the number of times you print "I don't like Justin Bieber" when running algorithm $\operatorname{Justin} \operatorname{Bieber}(n)$. Which of the following is true?
(a) $B(n)=\log n-1$ for all $n \geq 2$.
(b) $B(n)=\log n-1$ for all $n \geq 1$.
(c) $B(n)=\log n$ for all $n \geq 2$.
(d) $B(n)=n-2$ for all $n \geq 2$.
15. You flip a fair coin 7 times. Define the event

$$
A=\text { "the result of the first flip is equal to the result of the } 7 \text {-th flip". }
$$

What is $\operatorname{Pr}(A)$?
(a) $\frac{2^{5}+2}{2^{7}}$
(b) $1 / 2$
(c) $1 / 3$
(d) $1 / 4$
16. You roll a fair 6 -sided die twice. Define the events

$$
A=\text { "the sum of the results of the two rolls is } 7 "
$$

and

$$
B=\text { "the result of the first roll is } 3 \text { ". }
$$

Which of the following is true?
(a) $\operatorname{Pr}(A)=\operatorname{Pr}(B)$
(b) $\operatorname{Pr}(A)<\operatorname{Pr}(B)$
(c) $\operatorname{Pr}(A)>\operatorname{Pr}(B)$
(d) None of the above.
17. Let $S=\{1,2,3,4,5,6,7\}$. You choose a uniformly random 3 -element subset X of S. Thus, each 3 -element subset of S has a probability of $1 /\binom{7}{3}$ of being X. Define the event

$$
A=" 4 \text { is an element of } X "
$$

What is $\operatorname{Pr}(A)$?
(a) $7 / 15$
(b) $15 / 7$
(c) $3 / 7$
(d) $7 / 3$

