
COMP 2804 — Assignment 2

Due: Sunday October 15, 2023, 11:59 pm.

Assignment Policy:

� Your assignment must be submitted as a single .pdf file. Typesetting (using Latex,
Word, Google docs, etc) is recommended but not required. Marks will be deducted for
illegible or messy solutions. This includes but is not limited to excessive scribbling,
shadows, blurry photos, messy handwriting, etc.

� No late assignments will be accepted.

� You are encouraged to collaborate on assignments, but at the level of discussion only.
When writing your solutions, you must do so in your own words.

� Past experience has shown conclusively that those who do not put adequate effort into
the assignments do not learn the material and have a probability near 1 of doing poorly
on the exams (which is where most of the marks are).

� When writing your solutions, you must follow the guidelines below.

– You must justify your answers.

– The answers should be concise, clear and neat.

– When presenting proofs, every step should be justified.

Question 1:

� Write your name and student number.

Question 2: A degree in computer science has 8 elective topics, and students must complete
2 or 3 of them in order to graduate. If 1000 students graduate, show that there is a group
of at least 12 students that all completed the same electives.

Solution: The number of different ways for a student to choose electives is (using the
sum rule): (

8

2

)
+

(
8

3

)
= 84. (1)

To show there are at least 12 students with the same set of electives, we can use the gener-
alized pigeonhole principle, which states (paraphrased) that the maximum is at least as big
as the average. Let Emax be the set of electives that is shared by the most students. For
each distinct choice of electives, the average number of students is 1000/84 > 11.9. That
means Emax > 11.9. Since we cannot have a fraction of a student, the maximum number of

1



students who took all the same electives Emax ≥ 12.

Question 3: Consider the following recursive function:

� f(0) = 8,

� f(n) = 2 · f(n− 1)− 5n+ 3.

Prove that the closed form is f(n) = 2n + 5n+ 7.
Solution: We will prove by induction.

Base Case: f(0) = 20 + 0n+ 7 = 8.
So the base case holds.

Inductive hypothesis: f(k) = 2k + 5k + 7, ∀k < n.
Inductive step:

f(n) = 2 · f(n− 1)− 5n+ 3

= 2 · (2n−1 + 5(n− 1) + 7)− 5n+ 3 inductive hypothesis

= 2n + 10n− 10 + 14− 5n+ 3

= 2n + 5n+ 7.

Question 4: The functions f : N → N and g : N2 → N are recursively defined as follows,
where n and m are each a power of 2:

f(0) = 1,
f(n) = g(n, f(n− 1)) if n ≥ 1
g(0, n) = 0 if n ≥ 1
g(m,n) = g(m− 1, n) + 2n if m ≥ 1 and n ≥ 1

(a) Express g(m,n) as a function of m and n.

Solution: g(m,n) = 2mn for m ≥ 1.

(b) Prove by induction that your closed form expression for g(m,n) is correct.

Solution:

We prove this by induction on m that g(m,n) = 2mn.

Base Case: m = 0. We note that by definition g(0, n) = 0n = 0. So the base case
holds.

Inductive Hypothesis: Assume that for all values m < k, k > 1, that g(m,n) =
2mn.

2



Inductive Step: Using the recursive definition, we must show that for m = k, we
have g(k, n) = 2kn.

g(k, n) = g(k − 1, n) + 2n by the recursive definition

= 2(k − 1)n+ 2n by the inductive hypothesis

= 2kn− 2n+ 2n

= 2kn.

as required.

(c) Express the recurrence for f(n) in terms of f(n− 1) and without any g(...) terms.

Solution: f(n) = 2nf(n− 1) for n ≥ 1 and f(0) = 1.

(d) Express f(n) in terms of n.

Solution: After expanding it out a bit we guess that f(n) = 2nn!, ∀n ≥ 0

(e) Prove by induction that your closed form expression for f(n) is correct.

Solution: We prove this by induction on n.

Base Case: n = 0. f(0) = 200! = 1. So the base case holds.

Inductive Hypothesis: Assume that for all values k < n, n ≥ 1, that f(k) = 2kk!.

Inductive Step: Using the recursive definition and the inductive hypothesis we will
show that f(n) = 2nn!.

f(n) = 2nf(n− 1) by the recursive definition

= 2n2n−1(n− 1)! by the inductive hypothesis

= 2nn!

as required.

Question 5: Your assignment is due tomorrow so you decide to stream some shows on your
laptop. To make sure you finish finish your assignment, you run the following algorithm.

3



Algorithm AssignmentAlgo(n):

if n = 1:
Complete one question;
return;

else
Watch n episodes of a show;
AssignmentAlgo(n/4);
AssignmentAlgo(n/4);

You should assume that n is a power of 4.

a) Determine the number of questions that you complete as a function of n. Hint: You
can change the base of a logarithm with the following formula (here we change base a
to base c ):

loga b =
logc b

logc a

Solution: Let F (n) be the number of questions that you complete in the above
algorithm on an input of n. We know that F (1) = 1. A call to F (n) calls itself
recursively twice. We have

F (n) = 2 · F (n/4)

= 2 · 2 · F (n/42)

= 22 · F (n/42)

= 23 · F (n/43)

. . .

= 2k · F (n/4k).

The recursion ends at F (n/4k) = F (1), or when n/4k = 1 or n = 4k. If we take log4 of
both sides we have k = log4 n. Thus

F (n) = 2log4 n · F (1)

= 2log4 n

= 2
log2 n
log2 4

= 2log2 n·
1
2

= n
1
2

=
√
n.

So we end up completing
√
n questions.

4



b) Determine the number of episodes that you watch as a function of n. You may wish
to use

k−1∑
j=0

arj = a

(
1− rk

1− r

)
,

where 0 < r < 1 and a is a real number (this formula gives the closed form of a geo-
metric series).
Solution: Let T (n) be the number of episodes that you watch in the above algo-
rithm for an input of n. Each call to AssignmentAlgo(n) results in you watching
n episodes, then it recursively calls itself twice with n

4
as a parameter. Let k be the

number of times we recursively call AssignmentAlgo. Thus our recursion is:

T (n) = 2 · T (n/4) + n

T (n) = 2 ·
(
2 · T (n/42) + n

4

)
+ n

= 22 · T (n/42) + n

(
1

2

)
+ n

T (n) = 22 ·
(
2 · T (n/43) + n

42

)
+ n

(
1

2

)
+ n

T (n) = 23 · T (n/43) + n

(
1

2

)2

+ n

(
1

2

)
+ n

...

T (n) = 2k · T (n/4k) + n

(
1

2

)k−1

+ n

(
1

2

)k−2

+ · · ·+ n

(
1

2

)
+ n

This recursion ends when n/4k = 1, or when n = 4k, or (taking the log4 of both sides)
when k = log4 n. In T (1) we watch no further episodes, thus T (n/4k) = T (1) = 0.
Thus the total number of episodes we watch is

n

(
1

2

)k−1

+ n

(
1

2

)k−2

+ · · ·+ n

(
1

2

)
+ n

which we can rewrite as

n ·

(
1 +

1

2
+

(
1

2

)2

+

(
1

2

)3

+ ...

(
1

2

)k−1
)
.

We can use the formula
k−1∑
j=0

arj = a

(
1− rk

1− r

)

5



where in our case a = n and r = 1
2
. Thus

k−1∑
j=0

n ·
(
1

2

)j

= n ·
1−

(
1
2

)k
1− 1

2

= n ·
1−

(
1
2

)log3 n
1− 1

2

= 2n

(
1−

(
1

2

)log4 n
)

= 2n

(
1− 1

nlog4 n

)
= 2n

(
1− 1√

n

)
= 2n− 2 ·

√
n.

Therefore you watch 2n− 2 ·
√
n episodes over the course of the night.

Question 6:
Let n ≥ 1 be an integer and consider a 1 × n board Bn consisting of n cells, each one

having side length one. The top part of the figure below shows B9.

W YR G B

We have an unlimited supply of bricks which are of the following types (see the bottom
part of the figure above):

� There are red (R) and green (G) bricks which are 1× 1 cells.

� There are white (W ), yellow (Y ), and blue (B) bricks which are 1× 2 cells.

A tiling of a board Bn is a placement of bricks on the board such that:

� the bricks exactly cover Bn and

� no two bricks overlap.

6



In a tiling and colour can be used more than once and some colours might not be used at
all. The figure below shows one possible tiling of B9.

W R G B RW

Let Tn be the number of different tilings of the board Bn.

(a) Determine T1 and T2.

Solution: We can tile any board B1 using a red or green block. Thus T1 = 2. We can
tile any board B2 one of 7 different ways:

1) 1 white block,

2) 1 blue block,

3) 1 yellow block,

4) 2 red blocks,

5) 2 green blocks,

6) 1 red and 1 green block,

7) 1 green and 1 red block.

Thus T2 = 7.

(b) Express Tn recursively for n ≥ 3.

Solution: Consider Bn. If we put a red or green block in the first position, then there
are Tn−1 ways to tile the rest of Bn. If we put a white block in the first two positions,
then there are Tn−2 ways to tile the rest of Bn, and the same goes if we put a yellow
block or a blue block in the first two positions. Therefore:

Tn = 2 · Tn−1 + 3 · Tn−2

(c) Prove that for any integer n ≥ 1,

Tn =
1

4

[
3n+1 + (−1)n

]
.

Solution: We will prove by induction. We have T1 = 2, T2 = 7, and Tn = 2 · Tn−1 +
3 · Tn−2. We require two base cases.

7



T1 =
1

4

[
31+1 + (−1)1

]
=

1

4
[9 + (−1)]

=
1

4
· 8

= 2

as required.

T2 =
1

4

[
32+1 + (−1)2

]
=

1

4

[
33 + 1

]
=

1

4
· 28

= 7

as required. Thus the two base cases hold. For the inductive case we have

Tn = 2 · Tn−1 + 3 · Tn−2

= 2 · 1
4

[
3n + (−1)n−1

]
+ 3 · 1

4

[
3n−1 + (−1)n−2

]
=

1

4

[
2 · 3n + 2 · (−1)n−1 + 3 · 3n−1 + 3 · (−1)n−2

]
=

1

4

[
2 · 3n + 3n + 2 · (−1)n−1 + 3 · (−1)n−2

]
=

1

4

[
3 · 3n + 2 · (−1)n−1 + 3 · (−1)n−2

]
=

1

4

[
3n+1 + (−1)n

]
proof below

We will break the last equality into 2 cases.

Case 1: n is even. Then 2 · (−1)n−1 + 3 · (−1)n−2 = 2 · (−1) + 3 = 1 = (−1)n, as required.

Case 2: n is odd. Then 2 · (−1)n−1 + 3 · (−1)n−2 = 2− 3 = −1 = (−1)n, as required.

(d) Show that T2n+2 = T 2
n+1 + 3 · T 2

n . Hint: you can use the closed form from above and
prove this, or prove this by induction, but those are both long and painful. It would
be easier to prove it combinatorially by describing corresponding tilings.

8



Solution: Number the locations from left to right as 1..2n+ 2. Consider locations
n+ 1 and n+ 2. If there is a white, blue, or yellow tile on n+ 1 and n+ 2, then there
are Tn ways to tile the first n tiles and Tn ways to tile the last n tiles, and 3 ways to
choose the colour of the tile on n+ 1 and n+ 2. Using the product rule that gives us
3 · T 2

n possible tilings in this case. If there is not a white, blue or yellow tile spanning
locations n + 1 and n + 2, then we can break the tiling down into Tn+1 ways to tile
the first n+ 1 locations, and Tn+1 to tile the last n+ 1 locations, for T 2

n+1 ways total.
Since those two cases cover all possibilities, T2n+2 = T 2

n+1 + 3 · T 2
n .

(e) Show that T2n+1 = 2 · T 2
n + 6 · TnTn−1.

Solution: If location n+1 has a red or green tile, then there are 2 ways to select this
tile, Tn ways to tile the first n locations and Tn ways to tile the last n locations for a
total of 2 · T 2

n ways. If it is a white, blue, or yellow tile on location n + 1, then there
are 2 choices of where to put this tile:

(a) if that tile covers n and n + 1, then there are Tn−1 ways to tile the first n − 1
locations and Tn ways to tile the last n locations.

(b) if that tile covers n+1 and n+2, then there are Tn ways to tile the first n locations
and Tn−1 ways to tile the last n− 1 locations.

That gives us 2 choices for the tile location, 3 choices for the colour, and TnTn−1 ways
to tile the remaining locations. Thus T2n+1 = 2 · T 2

n + 6 · TnTn−1 as required.

Question 7:
Consider the following recursive algorithm:

Algorithm Eu-seful(time, x, y):

if x < time:
study math
Eu-seful(time, 2x+ 3y, x)

else:
print(”My brain is fried.”)

Let n be the number of times you study math on a call to Eu-seful(time, 2, 1). We will
prove that n ≤ 2 + log3 time, ∀n ≥ 2. For the inequalities below assume that n ≥ 2. Use
the definition of Tn from the previous question.

(a) Prove that Tn−1 ≤ time ≤ Tn.

Prove that Tn ≤ time ≤ Tn+1.
Solution: The recursion ends when x > time. If you study math n times that means

9



there were n + 1 recursive calls in total, including the initial call, on a call to Eu-
seful(time, 2, 1) (since on the last call, call n + 1 your brain is fried and you do not
study math). We will prove by induction on the number of calls to Eu-seful that the
final call is made with parameters x = Tn+1 and y = Tn. We will then use this fact to
prove the above.

There are two possible ways to define the base case. If we take n = 0 then there is only
the initial call Eu-seful(time, 2, 1), where we have x = 2 = T1 = Tn+1 and y = 1. If the
student defines T0 = 1, then the base case holds. If we use n = 1 as the base case, then
on the second call to Eu-seful, x = 2(2)+ 3(1) = 7 = T2 = Tn+1, and y = 2 = T1 = Tn,
so the base case holds (I really should have specified to prove this for n ≥ 2, but c’est
la vie).

For our inductive hypothesis, assume that on recursive call n, n ≥ 2, the arguments
were x′ = Tn and y′ = Tn−1. We established in Question 6 that Tn+1 = 2 ·Tn+3 ·Tn−1.
Then

y = x′ = Tn

and

x = 2 · x′ + 3 · y′

= 2 · Tn + 3 · Tn−1

= Tn+1

as required.

Since we make n+1 recursive calls and the recursion ends when x > time, and we have
shown that on the final call that x = Tn+1, it must be that time < Tn+1 (which implies
time ≤ Tn+1), which shows the second inequality. We will prove the first inequality
(Tn ≤ time) by contradiction. Thus assume time < Tn. Since x = Tn on recursive
call n, then x > time and the recursion would have ended after n calls, which is a
contradiction to our assumption that there were n+ 1 recursive calls.
As long as the student arguments follows this approach loosely, you should give them
the marks.

(b) Prove that 3n−2 ≤ Tn−1.

Prove that 3n−2 ≤ Tn.

Solution: The student can prove this using the closed form defined in the previous
question, or induction. The closed form should be straightforward, so we will proceed
by induction.

� Base Cases:

◦ n = 1: 3−1 = 1
3
≤ T1 = 2, which is correct.

10



◦ n = 2: 30 = 1 ≤ T2 = 7, which is correct.

◦ n = 3: 31 = 3 ≤ T3 = 20, which is correct.

Thus the base cases hold. The student should have two of these - if they have
only one, deduct 1/2 mark.

� Inductive Hypothesis, n ≥ 4:

◦ 3n−3 ≤ Tn−1 and

◦ 3n−4 ≤ Tn−2.

Then we have:

3n−2 = 3 · 3n−3

= 2 · 3n−3 + 3n−3

= 2 · 3n−3 + 3 · 3n−4

≤ 2 · Tn−1 + 3 · Tn−2 by the Inductive Hypothesis

= Tn

as required.

(c) Using the inequalities from above, prove that n ≤ 2 + log3 time.

Solution: We have 3n−2 ≤ Tn ≤ time, thus

3n−2 ≤ time

log3 3
n−2 ≤ log3 time take log3 of both sides

n− 2 ≤ log3 time

n ≤ 2 + log3 time

as required.

11


