## COMP2804B Midterm Exam

Fall 2019

- All questions must be answered on the scantron sheet.
- Write your name and student number on the scantron sheet.
- You do not have to hand in this examination paper.
- Calculators are allowed.

Marking Scheme: Each of the 17 questions is worth 1 mark.

- Binomial coefficients:

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

- Newton's Binomial Theorem:

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k} y^{k}
$$

- Fibonacci numbers:

$$
f_{n}= \begin{cases}0 & \text { if } n=0 \\ 1 & \text { if } n=1 \\ f_{n-1}+f_{n-2} & \text { if } n \geq 2\end{cases}
$$

1. Carletons Computer Science program has $f$ female students and $m$ male students, where $f \geq 1$ and $f+m \geq 4$. The Carleton Computer Science Society has a Board of Directors consisting of a President and three Vice-Presidents, all of whom are Computer Science students. The President is female and cannot be a Vice-President. In how many ways can a Board of Directors be chosen?
(a) $\binom{f+m}{3}$
(b) $f \cdot\binom{f+m-1}{3}$
(c) $f \cdot\binom{f+m}{3}$
(d) $(f-1) \cdot\binom{f+m}{3}$
2. Let $k$ and $n$ be integers with $2 \leq k \leq n$ and consider the set $S=\{1,2, \ldots, n\}$. What is the number of $k$-element subsets of $S$ that do not contain 1 and do not contain 2 ?
(a) $\binom{n-1}{k-1}$
(b) $\binom{n-1}{k}$
(c) $\binom{n-2}{k-2}$
(d) $\binom{n-2}{k}$
3. Let $k$ and $n$ be integers with $2 \leq k \leq n$ and consider the set $S=\{1,2, \ldots, n\}$. What is the number of $k$-element subsets of $S$ that do not contain 1 or do not contain 2 ?
(a) $\binom{n-1}{k}+\binom{n-1}{k}$
(b) $\binom{n-2}{k}$
(c) $\binom{n}{k}-\binom{n-2}{k-2}$
(d) $\binom{n}{k}-\binom{n-1}{k-1}-\binom{n-1}{k-1}$
4. For any integer $n \geq 3$, let $B_{n}$ be the number of bitstrings of length $n$ in which the first three bits are not all equal. Which of the following is true?
(a) $B_{n}=2 \cdot 2^{n-3}$
(b) $B_{n}=6 \cdot 2^{n-3}$
(c) $B_{n}=2^{n}-2$
(d) $B_{n}=2^{n}-6$
5. Consider strings of length 4 over the alphabet $\{a, b, c, d\}$. How many such strings are there that start with $a d$ or end with $d c b$ ?
(a) 17
(b) 18
(c) 19
(d) 20
6. Let $n \geq 5$ and consider strings of length $n$ over the alphabet $\{a, b, c, d\}$. How many such strings are there that start with $a d$ or end with $d c b$ ?
(a) $4^{n-2}+4^{n-3}-4^{n-5}$
(b) $4^{n-2}+4^{n-3}$
(c) $4^{n}-4^{n-5}$
(d) $4^{n}-4^{n-2}-4^{n-3}$
7. What does

$$
\binom{w}{3} \cdot\binom{m}{2}+\binom{w}{4} \cdot m+\binom{w}{5}
$$

count?
(a) The number of ways to choose 5 people out of a group consisting of $w$ women and $m$ men, where at most 3 women can be chosen.
(b) The number of ways to choose 5 people out of a group consisting of $w$ women and $m$ men, where at most 3 men can be chosen.
(c) The number of ways to choose 5 people out of a group consisting of $w$ women and $m$ men, where at least 3 women must be chosen.
(d) The number of ways to choose 5 people out of a group consisting of $w$ women and $m$ men, where at least 3 men must be chosen.
8. Let $n \geq 2$ be an integer and let $S$ be a set of $m$ integers. What is the minimum value of $m$ such that we can guarantee that $S$ contains at least two elements whose difference is divisible by $n$ ?
(a) $n-1$
(b) $n$
(c) $n+1$
(d) $n+2$
9. What is the coefficient of $x^{24} y^{26}$ in the expansion of $(5 x-7 y)^{50}$ ?
(a) $-\binom{50}{24} \cdot 5^{26} \cdot 7^{24}$
(b) $-\binom{50}{26} \cdot 5^{24} \cdot 7^{26}$
(c) $\binom{50}{24} \cdot 5^{26} \cdot 7^{24}$
(d) $\binom{50}{26} \cdot 5^{24} \cdot 7^{26}$
10. The function $f: \mathbb{Z}_{\geq 0} \rightarrow \mathbb{R}$ is defined by

$$
f(n)= \begin{cases}7 & \text { if } n=0 \\ \frac{n}{3} \cdot f(n-1) & \text { if } n \geq 1\end{cases}
$$

What is $f(n)$ ?
(a) $f(n)=7 \cdot \frac{n!}{3^{n}}$
(b) $f(n)=7^{n} \cdot \frac{n!}{3^{n}}$
(c) $f(n)=7 \cdot \frac{(n+1)!}{3^{n}}$
(d) $f(n)=7^{n} \cdot \frac{(n+1)!}{3^{n}}$
11. For any integer $n \geq 1$, let $B_{n}$ be the number of bitstrings of length $n$ that do not contain the substring 11 and do not contain the substring 101. Which of the following is true for any $n \geq 4$ ?
(a) $B_{n}=B_{n-1}+B_{n-2}$
(b) $B_{n}=B_{n-1}+B_{n-3}$
(c) $B_{n}=B_{n-2}+B_{n-3}$
(d) $B_{n}=B_{n-2}+B_{n-4}$
12. Let $n \geq 1$ be an integer, and let $S_{n}$ be the number of ways in which $n$ can be written as a sum of 3 s and 4 s , such that the order in which the 3 s and 4 s occur in the sum matters. For example, $S_{5}=0$, because 5 cannot be written as a sum of 3 s and 4 s . We have $S_{11}=3$, because

$$
11=3+4+4=4+3+4=4+4+3 .
$$

Which of the following is true for any $n \geq 5$ ?
(a) $S_{n}=2 \cdot S_{n-1}$
(b) $S_{n}=S_{n-1}+S_{n-2}$
(c) $S_{n}=S_{n-2}+S_{n-3}$
(d) $S_{n}=S_{n-3}+S_{n-4}$
13. Consider the following recursive algorithm Fib, which takes as input an integer $n \geq 0$ :
$\operatorname{Fib}(n)$ :

$$
\text { if } n=0 \text { or } n=1 \text { then }
$$

$f=n$
else
$f=\operatorname{FIB}(n-1)+\operatorname{FiB}(n-2)$
return $f$
When running $\operatorname{FIB}(12)$, how many calls are there to $\operatorname{Fib}(8)$ ?
(a) 4
(b) 5
(c) 6
(d) 7
14. Consider the following recursive algorithm ElisaDrinksCider, which takes as input an integer $n \geq 1$, which is a power of 2 :
ElisaDrinksCider $(n)$ :

## if $n=1$ then

then order Fibonachos
else
ElisaDrinksCider( $n / 2$ )
drink $n$ bottles of cider
ElisaDrinksCider ( $n / 2$ )
For $n$ a power of 2 , let $C(n)$ be the total number of bottles of cider that you drink when running algorithm $\operatorname{ElisaDrinksCider}(n)$. Which of the following is true for any $n \geq 1$ that is a power of 2 ?
(a) $C(n)=n \log n-1$
(b) $C(n)=n \log n+1$
(c) $C(n)=n \log n$
(d) $C(n)=2 n \log n$
15. You flip a fair coin 9 times. Define the event

$$
A=\text { "the result of the first flip is not equal to the result of the second flip" . }
$$

What is $\operatorname{Pr}(A)$ ?
(a) $1 / 4$
(b) $1 / 3$
(c) $1 / 2$
(d) 1
16. Consider 4 people, each of which has a uniformly random birthday. We ignore leap years; thus, one year has 365 days. Define the event

$$
A=\text { "at least } 2 \text { of these } 4 \text { people have the same birthday". }
$$

What is $\operatorname{Pr}(A)$ ?
(a) $\binom{4}{2} \cdot \frac{1}{365}$
(b) $\binom{4}{2} \cdot \frac{1}{365}+\binom{4}{3} \cdot \frac{1}{365^{2}}+\binom{4}{4} \cdot \frac{1}{365^{3}}$
(c) $1-\frac{361 \cdot 362 \cdot 363 \cdot 364}{365^{4}}$
(d) $1-\frac{362 \cdot 363 \cdot 364}{365^{3}}$
17. In the game of Hearthstone, you are given a deck of 18 distinct cards. One of the cards is the Raven Idol. You choose a uniformly random hand of 3 cards. Define the event

$$
A=\text { "the hand of } 3 \text { cards contains the Raven Idol" . }
$$

What is $\operatorname{Pr}(A)$ ?
(a) $3 / 17$
(b) $3 / 18$
(c) $4 / 19$
(d) $1-(17 / 18)^{3}$

Blank Page - Work Here

Blank Page - Work Here

