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Why Static Checking?
• Parsing finds syntactic errors

– An input that can't be derived from the grammar

• Static checking finds semantic errors
– Calling a function with the wrong number/kind of 

arguments
– Applying operators to the wrong kinds of arguments
– Using undeclared variables
– Warnings about common errors

• if (a = b) { ... }
– Invalid conditions (not boolean) in conditionals
– Instantiation of virtual classes
– inappropriate instruction

• return, break, continue used in wrong place
– ...
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Why Static Checking?
• Parsing finds syntactic errors

– An input that can't be derived from the grammar

• Static checking finds semantic errors
– Calling a function with the wrong number/kind of 

arguments
– Applying operators to the wrong kinds of arguments
– Using undeclared variables
– Warnings about common errors

• if (a = b) { ... }
– Invalid conditions (not boolean) in conditionals
– Instantiation of virtual classes
– inappropriate instruction

• return, break, continue used in wrong place

• Typechecking errors
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The Need for Type Inference
• We want to generate machine code

• Memory layout
– Different data types have different sizes

• In C, char, short, int, long, float, double usually 
have different sizes

• Need to allocate different amounts of memory for 
different types

• Choice of instructions
– Machine instructions are different for different types

• add (for i386 ints)
• fadd (for i386 floats)



6

CarletonWide_Tag_K_186

Type Checking
• One important kind of static checking is 

type checking
– Do operators match their operands?
– Do types of variables match the values assigned to 

them
– Do function parameters match the function 

declarations
– Have called function and variable names been 

declared?

• Not all languages can be completely type 
checked

• All compiled languages must be at least 
partially type checked
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Type Checking (Cont'd)
• Type checking can be done bottom up 

using the parse tree

• For convenience, we may create one or 
more pseudo-types for error handling 
purposes
– Error type can be generated when a type checking 

error occurs
• e.g., adding a number and a string

– Unknown type can be generated when the type of an 
expression is unknown

• e.g., an undeclared variable 
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Type Checking Operators
• For each operator, create a table

– TypeA op TypeB = TypeC

• This allows us to assign a type to an 
operation if we know the types of its 
operands

+ String Number Boolean Error

String String String String String

Number String Number Error Number

Boolean String Error Error Boolean

Error String Number Boolean Error
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Type Checking Function Calls
• To type-check function calls we need to

– Check that the arguments to a function match the 
function's declaration

• The return type of a function call is 
specified by its declaration
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Determining Types of Constants
• Determining the types of constants is 

usually done by the tokenizer

• The type of a constant determines the type 
of the node in the parse tree
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Determining the Types of 
Variables
• To determine the type of a variable, we 

need to keep track of the current 
environment.

• Usually, an environment is a stack of 
frames, where each frame maps variable 
names onto types
– Starting a new code block or new function definition 

creates a new frame
– Closing a code block pops a frame
– Declaring a variable or function adds a new mapping 

to the current frame
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Environment Example
• Show the environment at lines 0, 2, 4, 6, 

and 8
 0
 1 int x, y;
 2
 3 if (x > y) {
 4   int p = x * y;
 5 } else {
 6   int q = x + y;
 7 }
 8
 9
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Object-Oriented Languages
• Object-oriented languages are a little more 

complicated

• In addition to the usual environment, there 
is an environment containing all the 
object's variables and methods

• And objects inherit environments from their 
superclasses.

• Typically use two environments, one for the 
object and one usual environment
– The object environments are organized according to 

the inheritance tree
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OO Environment Examples

class Book {
  String title;
};

class Novel 
  extends Book {
  String author;
}

class Collection 
  extends Book {
  String editor;
} 

Book
title -> String

Novel
author -> String

Collection
editor -> String
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OO Type Inference
• To identify the type of a variable, we 

usually
– Look first in the usual environment
– Next look in the object environment

• Many OO languages provide a method of 
scope resolution

class Book {
  String title;

  public Book(String title) {
    this.title = title;
  }
}
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Scope Resolution (C++ style)

class Book {
  String title;
}

class Collection extends Book {
  String title;

  Collection (String title) {
    this.title = title;
    Book::title = title + " (collected works)"; 
  }
}
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Multiple Inheritance

• Object environment becomes more 
complex

Person
name -> String

Musician
instruments -> String[]

Worker
employer -> String
salary   -> int

WorkingMusician
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Typechecking Return Values
• Functions should only return values of the 

correct type

• This is easily checked by introducing a 
pseudovariable __retval to the function's 
environment whose type is the function's 
return type

• Return statements should check that the 
returned value matches the type of __retval



program

function
name=dumb
rettype=int
param1=int y

=decl
int y

y x

return

y

function
name=main
rettype=int

decl
double j

fncall
name=dumb

10

decl
double d

double d;

int dumb(int x)
{
  int y;
  y = x;
  return y
}

int main()
{
  double j;
  j = dumb(10);
}
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Type Checking Summary
• A type checker includes

– Rules for deriving the types of operators given the 
types of their operands

– Mapping from constant tokens onto types
– A mechanism (environments) for matching variables 

and function names with their declarations to 
determine their type

• The type inference mechanism gets reused 
during code generation



21

CarletonWide_Tag_K_186

Other Static Checks
• A variety of other miscellaneous static 

checks can be performed
– Check for return statements outside of a function
– Check for case statements outside of a switch 

statement
– Check for duplicate cases in a case statement
– Check for break or continue statements outside of 

any loop
– Check for goto statements that jump to undefined 

labels 
– Check for goto statements that jump to labels not in 

scope

• Most such checks can be done using 1 or 2 
traversals of (part of) the parse tree
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Intermediate Code Generation
• A compiler may have several levels of 

intermediate code
– High level intermediate code is simpler
– Low level intermediate code is closer to machine 

code

• The choice of intermediate representations 
varies between compilers
– Parse tree
– Assembly-like language (e.g., 3-address codes, and 

virtual stack machines)
– High level programming language (e.g., C)
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Parse DAGs
• The output of a parser is usually a parse 

tree

• Often, this can be improved into a more 
concise and meaningful directed acyclic 
graph (DAG)
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Parse DAGs

a

a

b c

-

b c

- d

**

+

+

a

b c

- d

**

+

+
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Constructing a Parse Dag
• From a parse tree we can construct a parse 

DAG using a hash table

• Do a post-order traversal of the parse tree:
– When encountering a new identifier (leaf node) add it 

to the hash table, keyed by its name
– When encountering a new subexpression (internal 

node) add a new key to the hash table that contains 
the key of the left child, the operator name, and the 
key of the right child.

– Never add the same key to the hash table twice (just 
point to the existing nodes instead)

• This is most commonly done for simple 
expressions
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Parse DAG Exercises
• Construct the parse DAG for

– (x+y)-((x+y)*(x-y))
– ((x1-x2)*(x1-x2))+((y1-y2)*(y1-y2))

• Construct a parse DAG of size n that 
represents a parse tree of size 2n

• How do parse DAGs interact with operators 
like ++ and --?



27

CarletonWide_Tag_K_186

Directed Acyclic Graphs
• DAG - directed graph with no cycles

• DAGs can represent dependencies between 
items

• Reversing all the edges of a DAG gives 
another DAG
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Topological Sort
• Processes the nodes of a DAG in order

– Node i is not processed until all nodes j with edges 
from j to i have been processed

For each i indeg(i) <- in-degree(i)

Q <- all nodes with no outgoing edges

while Q is not empty
i = Q.dequeue()
process(i)
for each edge i->j

indeg(j) <- indeg(j) - 1
if (indeg(j) = 0)
  Q.enqueue(j)           
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Topological Sort Example
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Two Types of Intermediate 
Representations
• 3-address codes:

– Each instruction operates on up to 3 addresses
– An address can be a name, a constant, a label, or a 

compiler generated temporary variable

• Virtual stack machine
– We can push and pop items from a stack
– Various operators operate on the top few items of 

the stack and leave the result of the operation on the 
top of the stack

• These may be local to individual function 
definitions
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3-Address Codes for Simple 
Expressions
• Traverse the parse tree (or DAG) and assign 

temporary names to the internal nodes

• Traverse the tree in post-order generating 
the instructions

a

b c

- (t1) d

* (t4)* (t2)

+ (t5)

+ (t3)

t1 = b – c
t2 = a * t1
t3 = a * t2
t4 = t1 * d
t5 = t3 * t4
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3-Address Code Examples
• Generate the 3-address codes for this parse 

tree:

a

a

b c

-

b c

- d

**

+

+
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Virtual Stack Machine for Simple 
Expressions
• Traverse the parse tree in post-order, 

making sure that each node leaves its 
return value on the stack

push a    [a]
push a    [a,a]
push b    [a,a,b]
push c    [a,a,b,c]
subtract  [a,a,b-c]
multiply  [a,a*(b-c)]
add       [a+a*(b-c)]
push b    [a+a*(b-c),b]
push c    [a+a*(b-c),b,c]
subtract  [a+a*(b-c),b-c]
push d    [a+a*(b-c),b-c,d]
multiply  [a+a*(b-c),(b-c)*d]
add       [a+a*(b-c)+(b-c)*d]

a

a

b c

-

b c

- d

**

+

+
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Conditional Statements
• Conditional statements use conditional and 

unconditional jump instructions

a x b

=

x a

=

b

if

<
cond then else

3AI
    t1 = a < b
    if t1 then L1 else L2
L1: x = a
    jump L3
L2: x = b
L3:

VSM
    push a
    push b
    lessthan
    push L2
    jumpif
L1: push a
    pop x
    push L3
    jump
L2: push b
    pop x
L3:
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If-then-elsif-else statements
• Generate 3AI and VSM code for the 

following parse tree

a x 0

=

x -1

=

b

if

<

cond then else

a b

>

elsif

x +1

=

then
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Looping
• Looping can be done using conditional and 

unconditional jumps

• Exercise:  Write the 3AI and VSM code for 
the following parse tree:

a

a 1

+a

=

b

while

<
cond block
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Switch Statements
• Switch statements, like those in C, C++, 

and Java

• For this, we introduce new 3-address 
instruction
– 3AI: case A B : “if A is true then goto label b”
– VSM: case (A and B are the top two stack items)

• This instruction is treated as a candidate for 
special treatment during the code 
generation phase
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Function Calls
• In 3-address codes

– Function arguments are passed using the param 
instruction

– Functions  are called using the call instruction
– Return values are returned using the return 

instruction

• In a virtual stack machine
– Function arguments are just pushed onto a stack
– Functions are called using the call instruction
– Return values are left on the stack
– A function should leave only its parameters and 

return value on the stack when it returns
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Function Calls Example

int ack(n,m) {
  int x;
  ...
  return x;
}

{
  ...
  r = ack(d, d+4)
  ...
}

ack:
   ...
   return x

... 
  param d
  t1 = d + 4
  param t1
  t2 = call ack
  r = t2

ack:
   ...
   push x
   return

... 
  push d
  push d
  push 4
  add
  call ack
  pop r
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Where Do We Go From Here?
• After generating intermediate code there 

are a few options
– We can optimize the intermediate code
– We can generate machine code

• Challenges
– To optimize intermediate representation code we 

need to reason about it
• But this leads to undecidable problems

– To generate code we need to manage storage
• VSM hides this by giving us an infinite stack
• 3AI hides this by giving us an infinite number of 

temporary variables
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