
ssCC
a Parser Code Generator

SiCC
Simple Compiler Compiler

ssCC

The Goal of a Compiler Compiler

To create a compiler for a specific language based on the
language's token and grammar definition.

Takes care of the dirty work of having to analyze input.

No need to implement tedious tokenizing and parsing of input
every time you need to create a language, simply define what
the desired language "looks like".

How SiCC Works

The user creates token and grammar definitions for
MyUberLang and feeds them to SiCC
SiCC uses the definitions to build a tokenizer and a parser,
and outputs them as Java classes
Along with SiCC's output, the user provides extra Java
classes which traverses the parse tree in order to implement
MyUberLang's "logic"
The total of generated and user-supplied classes can now
be used to compile or interpret code written MyUberLang

Let's create a new language: MyUberLang

How SiCC Works
now with diagrams!

Strictly Speaking...

...SiCC is not a "compiler compiler" but rather a "tokenizer and
parser code generator".

The code that SiCC generates will tokenize and build a parse
tree, but it does not know what to do next, it cannot compile.

It's up to you to create classes that use the generated parse
tree to meet your needs, such as interpreting or compiling.

(you might have noticed)

Overview

SiCC - Takes care of dirty work, creates tokenizer and parser

Token Definition File (txt) - Food for SiCC, makes tokenizer

Grammar Definition File (txt) - Food for SiCC, makes parser

Visitor implementation (Java) - Traverse parse tree, gives
meaning

Main class (Java) - Connect everything together

checklist...

The SiCC Command

SiCC [options] definitions

options (combination of the following)

 --package pakagename
 includes all generated files in the given Java package

 --prefix prefix
 adds the given prefix to all generated classes

definitions (one of the following)

 token.def grammar.def

 --tokenizer-only tokens.def

 --parser-only grammar.def

The SiCC Command
examples...

 sicc myuberlang.tokens.txt myuberlang.grammar.txt

 sicc --package uberpack myuberlang.tokens.txt myuberlang.grammar.txt

 sicc --package ubertok --tokenizer-only myuberlang.tokens.txt

The basic command

Include all generated classes in the Java package "uberpack"

 sicc --prefix uber myuberlang.tokens.txt myuberlang.grammar.txt

Prefix all generated classes with Uber (such as UberTokenizer.java)

Generate only a tokenizer, which will belong to the "ubertok" package

Token Definition File
A simple text file containing regular definitions.

One definition per line in the format tokenname: definition

Token names must be of only alphanumeric characters ('a' to 'b' and
'0' to '9') and must start with a letter.

Definitions are written as regular expressions.

Internal token definitions are written :tokenname: definition
and will not be turned into tokens by the generated tokenizer, but can
be embedded in other token definitions.

Embedding a token is only allowed if the token to be embedded has
been defined above the current definition.

Comments may be written by starting with a pound sign: #

Token Definition File
* Match zero or more

+ Match one or more

? Match one or none

| Match the pattern on either side, much like an OR

\ Escape, matches the next character (used to match operators, such as \+ or \[or \:)

\n Matches a newline characters

\r Matches a carriage return character

\t Matches a tab character

\s Matches a space character

() Group patterns

[abc] Character class, matches any character within the brackets

[^abc] Negative character class, matches any character that is not within the brackets

:tok: Uses the pattern of the named token to match

operators and special characters...

Token Definition File

matching "khan", "khaan", "khaaan", "khaaaan"...
tok1: kha+n

matching "fun" or "sun"
tok2: [fs]un

matching "wild cats" or "wild dogs", note the use of \s
tok3: wild \s (cats | dogs)

matches a quoted string
tok5: " [^"]* "

matching a variable name
(alphanumeric, starting with a letter)
:alpha: [ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz]
:digit: [0123456789]
tok4: :alpha: (:alpha: | :digit:)*

examples...

Token Definition File

SKIP

 definition of what the generated tokenizer may ignore,
 usually used for ignoring whitespace and comments

EOF

 not defined in the token definition file, but is automatically
 returned by the generated tokenizer when the end of the
 input has been reached, which is used by the parser

special SiCC token definitions...

Grammar Definition File

A simple text file containing a context-free grammar.

One definition per line in the format Rule -> definition

Rule names must be of only alphanumeric characters ('a' to 'b' and '0'
to '9') and must start with a letter.

Definitions are written as (simpler) regular expressions.

Only token and rule names may be used in the definition.

The first rule is considered the starting rule and becomes the root of
the parse tree.

Comments may be written by starting with a pound sign: #

Grammar Definition File

* Match zero or more

? Match one or none

| Match the pattern on either side, much like an OR

() Group patterns

\0 Epsilon, an 'empty' match

[>1] Multiple child flag, must be places at the end of the definition,
 signals that the rule should be included in the parse tree only
 if the node has more than one child

operators and special tokens...

note: A much smaller set of operations compared
to token defintions.

Grammar Definition File

matching a phone number of the form "(613) 555-1234"

PhoneNumber -> AreaCode space FirstPart dash

SecondPart AreaCode -> leftparen threedigits rightparen

FirstPart -> threedigits

SecondPart -> fourdigits

matching a person's name, optional title and middle names

FullName -> Title FirstName MiddleNames LastName

Title -> profession | maritalstatus | \0

FirstName -> name

MiddleNames -> name*

LastName -> name

examples...

Grammar Definition File

 # using the [>1] indicator

 Assignment -> var eq Sum

 Sum -> Term (plus Term)* [>1]

 Term -> number (multiply number)* [>1]

examples (continued)...

myvar = 5 + 6 * 4 myvar2 = 6 * 4

SiCC Generated Classes
ASTNode Base parse tree node class

ASTToken A superclass of ASTNode, represents a token in the parse
tree

AST___Node A superclass of ASTNode, one created for each grammar rule

iTokenizer An interface implemented by Tokenizer

Parser The main parsing class, takes a Tokenizer and outputs a
parse tree

Token A token outputed from Tokenizer

Tokenizer The main tokenizing class, reads in a character stream and
outputs a stream of Tokens

Visitor<X,Y> An interface that uses the visitor pattern, used to traverse the
parse tree

Traversing the Parse Tree

A class named AST___Node is created for every rule defined.

 ex: ASTBlockNode, ASTStatementNode, ASTSumNode

An ASTToken class is also created to represent tokens.

All of these classes are superclasses of the base ASTNode and
make up the generated parse tree.

parse tree nodes...

Traversing the Parse Tree
public class ASTNode {

 private ASTNode parent;

 private Vector<ASTNode> children = new Vector<ASTNode>();

 private String name, value;

 public Vector<ASTNode> getChildren() { return children; }

 public ASTNode getChild(int i) { return children.get(i); }

 public int numChildren() { return children.size(); }

 public String getName() { return name; } // rule or token name

 public String getValue() { return value; } // only used for ASTTokens

 public ASTNode getParent() { return parent; }

 public <X,Y> X accept(Visitor<X,Y> visitor, Y data) {
 return visitor.visit(this, data);
 }
}

selected variables and methods of ASTNode...

Traversing the Parse Tree

A generic Java interface called Visitor is also created:

 public interface Visitor<X,Y>

The interface defines the following method for ASTNode and
each of its AST___Node superclasses:

 public X visit(AST___Node node, Y data);

In your implementation of the Visitor interface, the class types
and uses of X and Y are of your choosing, they are meant
as helpers.

the Visitor interface...

Traversing the Parse Tree

As you might have noticed, ASTNode defines an accept(Visitor
v) method, which calls the Visitor's visit(ASTNode n) function
with itself as the argument.

The parse tree is visited in this way.

In your implementation of Visitor, each call to visit(AST___Node
n) will usually include recursive accept(this) to each of the node's
children, along with the "logic" needed to handle the node.

visiting the tree...

Putting It All Together

class SuperApp {

 public static void main(String args[]) {

 // Create a tokenizer from where the input is coming
 Tokenizer tokenizer = new Tokenizer(new InputStreamReader(System.in));

 // The parser needs a tokenizer, so pass it in
 Parser parser = new Parser(tokenizer);

 // Simply call the parser's parse() method, which returns the root node
 ASTEquationNode rootnode = parser.parse();

 // Create a visitor
 InterpretorVisitor() interpretor = new InterpretorVisitor();

 // Start the traversal by visiting the root node, the output type and
meaning // depends on your Visitor implementation
 String output = interpretor.visit(rootnode, null);

 }

}

creating a Main class...

Basically:

That's All There Is To It!

.....yeah ok, it's best to learn by examples

