Name	e: Student Number:
СОМ	P4804 ASSIGNMENT 1: DUE WEDNESDAY JANUARY 25, 23:59EDT
	this assignment and answer all questions in the boxes provided. Any text outside of the will not be considered when marking your assignment.
1 Fi	requency Assignment in Wireless Networks
$v \in V$	ave a graph $G = (V, E)$ in which every vertex has degree 6, $ V = n$ and $ E = m$. For each vertex f , we color f 0 uniformly (and independently from all other vertices) at random with a color red from the set $\{1, \ldots, k\}$.
1.	We say that an edge $e = (u, v)$ is <i>good</i> if u and v are assigned different colors in the above experiment and <i>bad</i> otherwise. What is the probability that an edge e is bad?
2.	What are the expected numbers of bad edges and good edges?
3.	We say that a vertex v is <i>dead</i> if all 6 of v 's incident edges are bad. What is the probability that a particular vertex v is dead? What is the expected number of dead vertices?
4.	How many colors k do we need if we want the expected number of dead vertices to be at most: (a) $n/10$, (b) $n/100$, and (c) $n/1000$

Na	Name: Student Number:		
2	Approximating Max-2-Sat		
	2-CNF formula is the conjunction of a set clauses, where each clause is the disjunction of two ossibly negated, but distinct) variables. For example, the boolean formula		
	$(a \lor b) \land (b \lor \neg d) \land (\neg a \lor c)$		
abo	a 2-CNF formula with 3 clauses. When we assign truth values to the variables (a, b, c) and (a, b, c) are (a, b, c) and (a, b, c) are (a, b, c) are (a, b, c) and (a, b, c) are (a, b, c) and (a, b, c) are (a, b, c) and (a, b, c) are (a, b, c) are (a, b, c) and (a, b, c) are (a, b, c) are (a, b, c) and (a, b, c) are (a, b, c) and (a, b, c) are (a, b, c) are (a, b, c) are (a, b, c) are (a, b, c) and (a, b, c) are (a, b, c) and (a, b, c) are (a, b, c) and (a, b, c) are (a, b, c) are (a, b, c) and (a, b, c) are (a, b, c) and (a, b, c) are (a, b, c) are (a, b, c) and (a, b, c) are (a, b, c) are (a, b, c) and (a, b, c) are (a, b, c) are (a, b, c) and (a, b, c) are (a, b, c) are (a, b, c) and (a, b, c) are (a, b, c) are (a, b, c) are (a, b, c) and (a, b, c) are (a, b, c) and (a, b, c) are (a, b, c) and (a, b, c) are		
	1. Describe and analyze a very simple randomized algorithm that takes as input a 2-CNF formula with n clauses and ouputs a truth-assignment such that the expected number of clauses satisfied by the assignment is at least $3n/4$. (Prove that the running time of your algorithm is small and that the expected number of clauses it satisfies is at least $3n/4$. You may assume that the variables are named $a_1, \ldots, a_m, m \le n$, so that you can associate truth values with variables by using an array of length m .)		
	2. Your algorithm implies something about all 2-CNF formulas having at most 3 clauses. What does it imply?		
;	3. What does your algorithm guarantee for <i>d</i> -CNF formulas? (Where each clause contains <i>d</i> distinct variables.)		

Name:	Student Number:

3 Computing the OR of a Bit String

We are given a bit-string $B_1, ..., B_n$ and we want to compute the or of its bits, i.e., we want to compute $B_1 \lor B_2 \lor \cdots \lor B_n$. Suppose we use the following algorithm to do this:

```
    for i ← 1,...,n do
    if B<sub>i</sub> = 1 then
    return 1
    return 0
```

1. In the worst case, what is the number of times line 2 executes, i.e., how many bits must be inspected by the algorithm? Describe an input B_1, \ldots, B_n that achieve the worst case when the output is 0 and when the output is 1.

2. Consider the following modified algorithm:

```
Toss a coin c

if c comes up heads then

for i \leftarrow 1,...,n do

if B_i = 1 then

return 1

else

for i \leftarrow n,...,1 do

if B_i = 1 then

return 1

return 0
```

Assume that exactly one input bit $B_k = 1$. Then what is the expected number of input bits that the algorithm examines.

Name:		Student Number:
4	3-Way Partitioning	
tor. a va 3-W 1: 2: 3: 4: 5: 6: 7:	(Sorting in Python is an example.) He alue x classifies the elements of A as eit A as eit A and A as eit A as eit A as eit A as eit A and A as eit A as eit A and A as eit A as eit A and A as eit A and A as eit A and A as eit A as eit A as eit A as eit A and A as eit A as	ere two values can only be compared using the $<$ operate is an algorithm that, given an array $A[1],, A[n]$ and ther less than, greater than or equal to x . er of elements of A that less than, greater than or equal number of comparisons performed by 3-Way-Partition.
2	2. Show that there exists a randomized performs an expected number of con	d algorithm that uses only 1 random bit (coin toss) and mparisons that is $2n_{=} + \frac{3}{2}(n_{<} + n_{>})$.

Name:	Student Number:
Matchings	
•	which are lemon and $n/2$ of which are lime. Consider the the bag and pull out two candies. If they're different flavours them both back in the bag.
1. What is the probability that we	eat the candies? (Warning: It's not exactly 1/2)
2. What is the expected number of some candy?	f times we have to repeat this experiment until we get to eat
3. Suppose the number of candies what is the probability that we	s are not the same: There are n_1 limes and n_2 lemons. Then eat the candies.
	Ig $n/2$ lime candies and $n/2$ lemon candies, then what is the ave to repeat this experiment before the bag is empty?

Name	: Student Number:
	Show that, if we start with a bag containing $n/3$ lime candies and $2n/3$ lemon candies then the expected number of times we repeat this experiment before running out of lime candie is $\Omega(n \log n)$. Hint: Harmonic numbers, from Lecture 1, should come up.