COMP4804 Assignment 3: Due Wednesday March 22nd, 23:59EDT

Print this assignment and answer all questions in the boxes provided. Any text outside of the boxes will not be considered when marking your assignment.

1 Lazy Deletion

Suppose a student has implemented a balanced binary search tree (e.g., AVL-tree, red-black tree, etc.) that performs insertion and search operations in $O(\log n)$ time, but was too lazy to implement deletion. Instead, they have implemented a *lazy* deletion mechanism: To delete an item, we search for the node that contains it (in $O(\log n)$ time) and then *mark* that node as deleted. When the number of marked nodes exceeds the number of unmarked nodes (during a deletion) the entire tree is rebuilt (in O(n) time) so that it contains only unmarked (i.e., undeleted) nodes.

1. Define a non-negative potential function and use it to show that the amortized cost of deletion is $O(\log n)$.

2. How does your potential function affect the amortized cost of insertion?

2 Lazy Insertion Data Structures

Suppose we have a static data structure for some search problem. Given *n* elements, we can build a data structure in $O(n \log n)$ time that answers queries in $O(\log n)$ time. We convert this into an insertion-only data structure as follows: We maintain two static data structures, D_1 has size at most \sqrt{n} and D_2 has size at most *n*. To insert a new element we first check if the number of elements in D_1 is less than \sqrt{n} . If so, we add the newly inserted element to D_1 and rebuild D_1 at a cost of $O(\sqrt{n}\log n)$. Otherwise (there are too many elements in D_1) we take all the elements of D_1 , move them to D_2 and rebuild D_2 at a cost of $O(n \log n)$. To search for an element, we search for it in both D_1 and D_2 at a cost of $O(\log n + \log \sqrt{n}) = O(\log n)$.

1. Define a potential function on D_1 and D_2 to show that the amortized cost of insertion is $O(\sqrt{n}\log n)$.

2. Show that during the second case of the insertion procedure, even if we only insert half the elements of D_1 into D_2 , the amortized cost of insertion is still only $O(\sqrt{n}\log n)$.

2 LAZY INSERTION DATA STRUCTURES

3. Suppose we generalize this data structure so that we maintain *d* static data structures D_1, \ldots, D_d where D_i has maximum size $n^{i/d}$. Whenever D_i becomes full we empty it and put all its elements in D_{i+1} .

Define a potential function on D_1, \ldots, D_d to show that the amortized cost of insertion is $O(n^{1/d} \log n)$.

3 Array-Based Priority Queues

In this question, we investigate an implementation of priority queues based on a collection of sorted lists. In this implementation we store $O(\log n)$ sorted lists L_0, \ldots, L_k , where the list L_i has size at most 2^i . To find the minimum element, we simply look at the first element of each list (remember, they are sorted) and report the minimum, so the operation FINDMIN takes $O(\log n)$ time.

1. To do an insertion, we find the smallest value of *i* such that L_i is empty, merge the new element as well as L_0, \ldots, L_{i-1} into a single list and make that list be L_i . At the same time, we make L_0, \ldots, L_{i-1} be empty.

Prove, by induction on *i*, that the list L_i has size at most 2^i .

2. Show how to merge L_0, \ldots, L_{i-1} so that the cost of this merging (and hence the insertion) is $O(2^i)$.

3. Starting with an empty priority queue and then performing a sequence of n insertions, how many times does list L_i go from being empty to being non-empty.

4. Using your answer from the previous question, what is the total running time of a sequence of *n* insertions beginning with an empty priority queue?

5. As this data structure evolves, the elements move to lists with larger and larger indices. Define a non-negative potential on the element x so that when x is in L_0 its potential is $\log n$ and when x is in $L_{\log n}$, its potential is 0.

3 ARRAY-BASED PRIORITY QUEUES

6. Define a non-negative potential function on this data structure so that, when we build the list L_i , the potential decreases by at least $c2^i$, for some constant c.

7. Show that the amortized cost of insertion (using your potential function from the previous question) is $O(\log n)$.