
The Level Ancestor Problem Simplified

Michael A. Bender1� and Mart́ın Farach-Colton2��

1 Department of Computer Science, State University of New York at Stony Brook,
Stony Brook, NY 11794-4400, USA.

bender@cs.sunysb.edu
2 Google Inc, 2400 Bayshore Parkway, Mountain View, California 94043, USA,

& Department of Computer Science, Rutgers University.
martin@farach-colton.com

Abstract. We present a very simple algorithm for the Level Ancestor
Problem. A Level Ancestor Query LA(v, d) requests the depth d ancestor
of node v. The Level Ancestor Problem is thus: preprocess a given rooted
tree T to answer level ancestor queries. While optimal solutions to this
problem already exist, our new optimal solution is simple enough to be
taught and implemented.

1 Introduction

A fundamental algorithmic problem on trees is how to find Level Ancestors of
nodes. A Level Ancestor Query LA(u, d) requests the depth d ancestor of node
u. The Level Ancestor Problem is thus: preprocess a given n-node rooted tree T
to answer level ancestor queries. Thus, one must optimize both the preprocessing
time and the query time.

The natural solution of simply climbing up the tree from u is O(n) at query
time, and the other solution of precomputing all possible queries has O(n2)
preprocessing.

Solutions with O(n) preprocessing and O(1) query time were given by Di-
etz [8] and by Berkman and Vishkin [6], though this latter algorithm has a
unwieldy constant factor1, and the former algorithm requires fancy word tricks.
A substantially simplified algorithm was given by Alstrup and Holm [1], though
their main focus was on dynamic trees, rather than on simplifying LA compu-
tations.

We present an algorithm that requires no “heavy” machinery. This algorithm
is suitable for teaching data structures to (advanced) undergraduates, unlike
previous algorithms. It is perhaps surprising that a problem that heretofore
required heavy lifting can be simplified to such an extent, and the algorithm we
present is made up of such simple pieces. This last point makes this algorithm
particularly suitable for teaching.
� Supported in part by HRL Laboratories, Sandia National Laboratories, and NSF

ITR grant EIA–0112849.
�� Partially supported by NSF CCR 9820879.
1 In fact, 2228

.

S. Rajsbaum (Ed.): LATIN 2002, LNCS 2286, pp. 508–515, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



The Level Ancestor Problem Simplified 509

The remainder of the paper is organized as follows. In Section 2, we pro-
vide some definitions and initial lemmas. In Section 3, we present an algorithm
for Level Ancestors that takes O(n log n) for preprocessing, and O(1) time for
queries. In Section 4, we show how to speed up the preprocessing to an optimal
O(n).

2 Definitions

We begin with some basic definitions. The depth of a node u in tree T , denoted
depth(u), is the shortest distance from u to the root. Thus, the root has depth
0. The height of a node u in tree T , denoted height(u), is the number of nodes
on the path from u to its deepest descendant. Thus, the leaves have height 1.

Let LAT (u, d) = v where v is an ancestor of u and depth(v) = d, if such a
node exists, and undefined otherwise. Now we define the Level Ancestor Problem
formally.

Problem 1. The Level Ancestor Problem:

Structure to Preprocess: A rooted tree T having n nodes.
Query: For node u in rooted tree T , query LevelAncestorT (u, d) returns

LAT (u, d), if it exists and false otherwise. Thus, LevelAncestorT (u, 0)
returns the root, and LevelAncestorT (u, depth(u)) returns u. (When the
context is clear, we drop the subscript T .)

In order to simplify the description of algorithms that have both preprocess-
ing and query complexity, we introduce the following notation. If an algorithm
has preprocessing time f(n) and query time g(n), we will say that the algorithm
has complexity 〈f(n), g(n)〉.

One of our notational conventions, which we introduced in [2], is of indepen-
dent interest.2 We define the hyperfloor of x, denoted ��x��, to be 2�log x�, i.e.,
the largest power of two no greater than x. Thus, x/2 < ��x�� ≤ x. Similarly, the
hyperceiling ��x�� is defined to be 2�log x�.

3 An 〈O(n log n), O(1)〉 Solution to the Level Ancestor
Problem

We now present three simple algorithms for solving the Level Ancestor Problem,
which we call the Table Algorithm, the Jump-Pointers Algorithm, and the Lad-
der Algorithm. At the end of this section we combine the two latter algorithms
to obtain a solution with complexity 〈O(n log n), O(1)〉. The Table Algorithm
will be used in the faster algorithms in the next section.

2 All logarithms are base 2 if not otherwise specified.



510 Michael A. Bender and Mart́ın Farach-Colton

3.1 The Table Algorithm: An 〈O(n2), O(1)〉 Solution

We first observe that the Level Ancestor Problem has a solution with complexity
〈O(n2), O(1)〉: build a table storing answers to all of the at most n2 possible
queries. Answering a Level-Ancestor query requires just one table lookup.

Lemma 1. The Table Algorithm solves the Level Ancestor Problem in time
〈O(n2), O(1)〉.

Proof. The lookup table can be filled in O(n2) by a simple dynamic program.

We make one more note here, which we use in the next section. In the table
as described, we store the id of a node as the answer to a query. Instead, we
introduce one level of indirection. We assign a depth first search (DFS) number
to each node, and store these in the table. Then when we retrieve the DFS
number of the answer, we look up the corresponding node in the tree. This extra
level of indirection clearly does not increase the asymptotic bounds, but allows
us to share preprocessing amongst different subtrees.

3.2 The Jump-Pointers Algorithm: An 〈O(n log n), O(log n)〉
Solution

In the Jump-Pointers Algorithm, we associate logn pointers with each ver-
tex, which we call jump pointers . Jump pointers “jump” up the tree by
powers of 2. Thus, there is a pointer from u to u’s �-th ancestor, for
� = 1, 2, 4, 8, . . . , ��depth(u)��. We refer to these pointers as Jumpu[i], where
Jumpu[i] = LA(u, depth(u)− 2i).

We emphasize the following point:

Observation 2 In a single pointer dereference we can travel at least halfway
from u to LA(u, d), for any d. Finding the appropriate pointer takes O(1) time.

Proof. We let δ = depth(u)− d. We can travel up by ��δ��, which is at least δ/2.
The pointer to follow is simply Jumpu[�log δ�].

(Note that since the floor and log operations are word computations, the
algorithm is a RAM algorithm.)

As a consequence of Observation 2, we obtain the following lemma:

Lemma 3. The Jump-Pointers Algorithm solves the Level Ancestor Problem in
time 〈O(n log n), O(log n)〉.

Proof. To achieve O(n logn) preprocessing, we apply a trivial dynamic program.
To answer query LevelAncestorT (u, d) in O(log n) time, we repeatedly follow
the pointers that will get us halfway to LAT (u, d). Therefore after at most logn
jumps, we locate LAT (u, d).



The Level Ancestor Problem Simplified 511

3.3 The Ladder Algorithm: An 〈O(n), O(log n)〉 Solution

In the Ladder Algorithm, we decompose the tree T into (nondisjoint) paths,
which we call ladders because they help us climb up the tree. Our choice of how
we do the decomposition may seem peculiar at first, but it is an integral part of
the fast algorithms.

To understand why it is advantageous to break the tree into paths, observe
that solving the level ancestor problem on a single path of length n is trivial.

Observation 4 On a path of length n, the Level-Ancestor Problem can trivially
be solved with (optimal) complexity 〈O(n), O(1)〉.
Proof. We maintain a Ladder array Ladder[0 . . . n − 1], where the i-th
array position corresponds to the depth-i node on the path. To answer
LevelAncestorT (u, d), we return Ladder[d], which takes O(1) time.

We now describe the ladder decomposition of the tree T , which proceeds in
two stages: The first stage requires us to find a long-path decomposition of the
tree T , which greedily decomposes the tree into disjoint paths.

Stage 1: Long-Path Decomposition. We greedily break T into long disjoint paths
as follows. We find a longest root-leaf path in T , breaking ties arbitrarily, and
remove it from the tree. This removal breaks the remaining tree into subtrees
T1, T2, . . .. We recursively split these subtrees by removing their longest paths.
The base case is when the tree is a single path, because the removal yields the
empty tree. Note that if a node has height h, it is on a long-path with at least
h nodes.

If we now apply the above ladder algorithm to each long-path, we may still
have a slow algorithm. In particular, we can only jump up to the top of our
long-path. Then we must step to its parent, and jump up its long path, and so
forth. The time taken to reach LA(u, d) is the number of long-paths we must
traverse. There can be as many as Θ(

√
n) paths on one leaf-to-root walk.3

Stage 2: Extending the Long Paths into Ladders. The problem with the long-
path climbing algorithm sketched above is that jumping to the ancestor at the
top of a long-path may not help much. Since we have already allocated an array
of length h′ to a path of length h′, we might as well allocate 2h′. We do this by
adding the h′ immediate ancestors of the top of the path to the array.

We call these doubled long-paths ladders, and note that while ladders overlap,
they still have total size at most 2n. We say that vertex v’s ladder is the ladder
derived from the long path containing v, and note that since long-paths partition
the tree, each node v has a unique ladder, but may be listed in many ladders.

Now, if a node has height h, we know that its ladder includes a node of height
at least 2h, or the root, which we can reach in constant time.

This observation will collapse the running time of queries, as the following
lemma and corollaries shows:
3 A heavy path decomposition can reduce this number to O(log n), but will not ulti-

mately help us for future optimizations.



512 Michael A. Bender and Mart́ın Farach-Colton

Lemma 5. Consider any vertex v of height h. The top of v’s ladder is at least
distance h above, that is, vertex v has at least h ancestors in its ladder.

Proof. The top of v’s long-path has height h′ ≥ h. Thus, it has h′ ancestors in
its ladder. Node v has 2h′ − h ≥ h ancestors in its ladder.

Lemma 6. The Ladder Algorithm solves the Level Ancestor Problem in time
〈O(n), O(log n)〉.
Proof. We find the long-path decomposition of tree T in O(n) time as follows.
In linear time, we preprocess the tree to compute the height of every node. Each
node picks one of its maximal-height children to be its child on the long-path
decomposition. Extending the paths into ladders requires another O(n) time.

We now show how to answer queries. Consider any vertex u of height h. If
we travel to the top of u’s ladder, we reach a vertex v of height at least 2h. Since
all nodes have height at least 1, after i ladders we reach a node of height at least
2i, and therefore we find our level ancestor after at most logn ladders and time.

3.4 Putting It Together: An 〈O(n log n), O(1)〉 Solution

The Jump-Pointer Algorithm and the Ladder Algorithm complement each other,
since the Jump-Pointer Algorithm makes exponentially decreasing hops up the
tree, whereas the Ladder Algorithm makes exponentially increasing hops up the
tree.

We combine these approaches into an algorithm that follows a single jump-
pointer and climbs only one ladder. Since the jump-pointer transports us halfway
there, the ladder climb carries us the rest of the way. Thus, we obtain the fol-
lowing theorem.

Theorem 1. The Level Ancestor Problem can be solved with complexity
〈O(n log n), O(1)〉.
Proof. We perform the preprocessing of both the Jump-Pointer Algorithm and
the Ladder Algorithm in time O(n log n).

We show that queries can be answered by following a single jump pointer
and climbing a single ladder. Consider query LevelAncestorT (u, d). Let δ =
��depth(u)−d��. The jump pointer leads to vertex v that has depth depth(u)− δ
and height at least δ. The distance from v to LAT (u, d) is at most δ, so by
Lemma 5, v’s ladder includes LAT (u, d).

4 The Macro-Micro-Tree Algorithm: An 〈O(n), O(1)〉
Solution

Since ladders only take linear time to precompute, we can afford to use them in
the fast solution. The bottleneck is computing jump pointers. Our first step in
improving the 〈O(n log n), O(1)〉 is to exploit the following observation.



The Level Ancestor Problem Simplified 513

Observation 7 We need not assign jump pointers to a vertex if a descendant
of the vertex has jump pointers. That is, if vertex w is a descendant of vertex
v, then LAT (v, d) = LAT (w, d), for all d ≤ depth(v), so w’s jump pointers are
good enough.

Since we do not need jump pointers on all vertices, we call vertices having
jump pointers assigned to them jump nodes . An immediate suggestion based
on Observation 7 is to designate only the leaves as jump nodes. Unfortunately,
this approach only speeds things up enough in the special case when the tree
contains O(n/ logn) leaves.

Our immediate goal is to designate O(n/ logn) jump nodes that “cover”
as much of the tree as possible. We define any ancestor of a jump node to be a
macro node and all others to be micro nodes. The macro nodes form a connected
subtree of T , which we refer to as the macrotree, and we define microtrees to be
the connected components obtained by deleting all macro nodes.

We can deal with all macro nodes by slightly extending the algorithm from
Theorem 1 as noted in Observation 7. We will use a different technique for
microtrees.

We pick as jump nodes the maximally deep vertices having at least logn/4
descendants. By maximally deep, we mean that the children of these vertices
have fewer than logn/4 descendants. The 1/4 is carefully chosen and will come
into play when we take care of microtrees.

Lemma 8. There are at most O(n/ logn) jump nodes. We can compute all jump
node pointers in linear time.

Proof. In the proof of Lemma 3, we used a simple dynamic program to compute
jump pointers at every node. Here, we are only computing jump pointers at a
few nodes so do not have all the intermediate values needed for the dynamic
program. However, notice that for every jump node we can compute its parent
in constant time. The parent has height at least 2, so its ladder will carry us
another 2 nodes. We can keep jumping up ladders, and so we can compute the
jump pointers for any node in O(log n) time.

4.1 Dealing with Macro Nodes

Lemma 9. We can solve the level ancestor problem for all macro nodes in
〈O(n), O(1)〉.

Proof. We perform a ladder decomposition and compute the jump pointers of all
jump nodes in O(n) time. Then, with one depth first search, we find a jump node
descendant JumpDesc(u) for each macro node u. Finally, as noted above, com-
pute LevelAncestor(u, d) by computing LevelAncestor(JumpDesc(u), d)
using Theorem 1.



514 Michael A. Bender and Mart́ın Farach-Colton

4.2 Dealing with Microtrees

In short, we deal with microtrees by noting that they do not come in too many
shapes, O(

√
n) in fact. Therefore we can make an exhaustive list of all microtree

shapes and preprocess them via the Table algorithm. We show how to use the
preprocessing on these canonical trees to compute level ancestors on micro nodes
in T . All that remains are a few details.

Lemma 10. Microtrees come in at most
√

n shapes.

Proof. First, recall that each microtree has fewer than logn/4 vertices. For a
DFS, call a down edge an edge being traversed from parent to child, and an
up edge those from child to parent. The shape of a tree is characterized by the
pattern of up and down edges. A microtree has fewer than logn/4 edges, each
of which is traversed twice. While not every pattern of up and down edges is
a valid tree, every valid tree forms some such pattern, and so we have at most
2log n/2 =

√
n possible trees. This bound is not tight, but a tighter bound is not

necessary. Also, we now see why we selected logn/4 as the jump node threshold,
rather than, e.g., logn.

We conclude with the following.

Theorem 2. The Level Ancestor problem can be solved in 〈O(n), O(1)〉 time.

Proof. The only thing that remains is a few details about how to handle mi-
crotrees. First, we enumerate all microtree shapes and apply the Table algorithm
to these. This takes O(

√
n log2 n) time. Furthermore, we address the tables so

produced by the bit pattern of ups and downs of the DFS of the trees. Thus, we
do all precomputation for all microtrees in T in O(n) time.

Finally, note that in the Table Algorithm, we added one level of indirection
based on DFS numbers. This means that we need only assign DFS numbers to
the nodes in each microtree in T . Then, when we lookup a level ancestor in the
tables, we can use the local DFS numbering to decode which actual node is the
desired ancestor.

This finishes the problem of finding a level ancestor within a microtree. The
other case is when a micro node wants an ancestor outside of its microtree. In
this case, we can jump to the root of the microtree in constant time, and then
to its parent. This will be a macro node, and so we revert to the macro node
algorithm.

Summing up, the preprocessing time for micro nodes is O(n), as for macro
nodes, and in either case the query time is O(1).

References

[1] S. Alstrup and J. Holm. Improved algorithms for finding level-ancestors in dy-
namic trees. In 27th International Colloquium on Automata, Languages and Pro-
gramming (ICALP ’00), LNCS. 1853, pages 73–84, 2000.



The Level Ancestor Problem Simplified 515

[2] M. A. Bender, E. Demaine, and M. Farach-Colton. Cache-oblivious B-trees. In
41st Annual Symposium on Foundations of Computer Science (FOCS), pages 399–
409, 2000.

[3] M. A. Bender and M. Farach-Colton. The LCA problem revisited. In LATIN,
pages 88–94, 2000.

[4] O. Berkman and U. Vishkin. Recursive *-tree parallel data-structure. In Proc. of
the 30th IEEE Annual Symp. on Foundation of Computer Science, pages 196–202,
1989.

[5] O. Berkman and U. Vishkin. Recursive star-tree parallel data structure. SIAM
J. Comput., 22(2):221–242, Apr. 1993.

[6] O. Berkman and U. Vishkin. Finding level-ancestors in trees. J. Comput. Syst.
Sci., 48(2):214–230, Apr. 1994.

[7] R. Cole and R. Hariharan. Dynamic LCA queries on trees. In Proc. of the 10th
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 235–244, 1999.

[8] P. F. Dietz. Finding level-ancestors in dynamic trees. In Workshop on Algorithms
and Data Structures, pages 32–40, 1991.

[9] H. N. Gabow, J. L. Bentley, and R. E. Tarjan. Scaling and related techniques
for geometry problems. In Proc. of the 16th Ann. ACM Symp. on Theory of
Computing, pages 135–143, 1984.

[10] D. Harel and R. E. Tarjan. Fast algorithms for finding nearest common ancestors.
SIAM J. Comput., 13(2):338–355, 1984.

[11] B. Schieber and U. Vishkin. On finding lowest common ancestors: Simplification
and parallelization. SIAM J. Comput., 17:1253–1262, 1988.

[12] R. E. Tarjan. Applications of path compression on balanced trees. Journal of the
ACM, 26(4):690–715, Oct. 1979.

[13] B. Wang, J. Tsai, and Y. Chuang. The lowest common ancestor problem on a
tree with unfixed root. Information Sciences, 119:125–130, 1999.

[14] Z. Wen. New algorithms for the LCA problem and the binary tree reconstruction
problem. Inf. Process. Lett., 51(1):11–16, 1994.


	The Level Ancestor Problem Simplified
	Introduction
	Definitions
	An <O(n log n), O(1)> Solution to the Level Ancestor Problem
	The Table Algorithm: An <O(n ^2), O(1)> Solution
	The Jump-Pointers Algorithm: An <O(n), (log n)> Solution
	The Ladder Algorithm: An <O(n), O(log n) Solution
	Putting It Together: An <O(n log n), O(1)> Solution

	The Macro-Micro-Tree Algorithm: An <O(n) ,O(1)> Solution
	Dealing with Macro Nodes
	Dealing with Microtrees

	References


