
Chapter 5

Entropy, Working Sets and

Doubly-Exponential Series

Until now, we have studied data strutures that had good worst-ase behaviour. That is, for anysequenes of queries the data strutures o�er good query times, usually O(logn), where n is the numberof elements stored in the data struture. In the usually aepted omparison-tree model of omputation,
O(logn) is optimal if the distribution of queries is uniform, that is eah query is equally likely. However,when the distribution of queries is not uniform data strutures may take advantage of this to performoperations in o(logn) time. This hapter is about suh data strutures.
5.1 EntropyLet S = {k1, . . . , kn} be a set of objets let D = p1, . . . , pn be a probability distribution, so that pi > 0is the probability assoiated with ki. The entropy of D is de�ned as

H(D) = −

n∑

i=1

pi logpi =

n∑

i=1

pi log(1/pi) . (5.1)Entropy is used in the ontext of oding theory. Imagine we have a sender and a reeiver and thesender wants to sent a sequene s1, . . . , sm where eah element sj is hosen randomly and independentlyaording to D, so that sj = ki with probability pi. The main result of oding theory is Shannon'sTheorem, whih states that for any protool the sender and reeiver might use, the expeted number ofbits required to transmit s1, . . . , sm using that protool is at least mH(D).As an example, onsider the uniform distribution pi = 1/n for all 1 � i � n. Then (5.1)beomes H(D) =
∑n

i=1(1/n) logn = logn. In this ase, Shannon's theorem says that, on average, werequire logn bits to enode eah symbol, whih an be ahieved using a standard binary enoding. Atthe other extreme, we ould onsider the geometri distribution pi = 1/2i for all 1 � i < n and
pn = 1/2n−1. In this ase, (5.1) beomes H(D) =

∑n

i=1(i/2i) � 2. Shannon's theorem only gives alower bound of 2 bits per symbol. In this ase a lot of bits an be saved by an enoding sheme thatahieves H(D) bits per symbol. 24



CHAPTER 5. ENTROPY, WORKING SETS AND DOUBLY-EXPONENTIAL SERIES 25Shannon's Theorem has had a profound impat in many areas, inluding data strutures. Imag-ine k1, . . . , kn are taken from some total order, so that we an ompare any two values ki and kj. Thenthe sender and reeiver use the following protool: Initially, the sender and reeiver both store theelements k1, . . . , kn in some omparison-based data struture that is agreed on before hand.When the sender wants to transmit s1, he performs a searh for s1 in the data struture. Thisresults in a sequene of omparisons of the form a opb, where op 2 {<, >,�,�, =} whih are either trueor false. This gives a sequene of 1s (for true) and 0s (for false) that the sender sends to the reeiver.On the reeiving end, the reeiver runs the searh algorithm without knowing the value of s1. Thereeiver an do this, beause she is doing exatly the same omparisons that the sender did, and knowsthe results of those omparison beause the sender has sent them. After doing this, the reeiver deduesthat the element sent is s1 sine it has just ompleted a searh for s1. The sender and reeiver thenontinue in this manner to transmit s2, . . . , sm.Note that the sender and reeiver an use any data struture they like, and an modify thedata struture as they are transmitting. However, Shannon's Theorem says that no matter whih datastruture they use, and no matter whih rules they use to reorganize this data struture, the expetednumber of bits sent is still at least mH(D). However, the number of bits sent when sending si isexatly the same as the number of omparisons performed while searhing for si. Therefore, Shannon'sTheorem implies that the expeted number of omparisons while searhing for si is Ω(H(D)) and theexpeted number of omparisons required to handle the request sequene s1, . . . , sm is Ω(mH(D)), forany omparison-based data struture.In the remainder of this hapter, we study data strutures that an aess the sequene s1, . . . , smin lose to O(mH(D)) expeted time, and are thus optimal by Shannon's Theorem. In fat, some ofthese data strutures work without even knowing the probability distribution D. In studying these datastrutures, it sometimes helps to �x a spei� sequene s1, . . . , sm. Let mi be the number of times thesymbol i ours in s1, . . . , sm. Then, the empirial entropy of s1, . . . , sm is given by
H(s1, . . . , sm) = −

n∑

i=1

(mi/m) log(mi/m) =
1

m

n∑

i=1

mi/ log(m/mi) .Some of the data strutures desribed in this setion will be able to aess the sequene s1, . . . , smin lose to O(mH(s1, . . . , sm)) time. If eah of the si are hosen independently aording to distribution
D, then

H(s1, . . . , sm)
L
= H(D)as m goes to in�nity. Thus, for suÆiently large m (ompared to n), the expeted time of the datastruture to aess s1, . . . , sm is O(mH(D)).

5.2 Nearly-Optimal Search TreesSuppose we are given they keys k1, . . . , kn, with ki < ki+1 for eah i 2 {1, . . . , n − 1} and with eah key
ki we are also given its aess probability pi. A ommon tool in the design of entropy-sensitive datastrutures is probability splitting. One way to implement this idea is to �nd a key ki suh that

i−1∑

j=1

pj � (1/2)

n∑

j=1

pj (5.2)



CHAPTER 5. ENTROPY, WORKING SETS AND DOUBLY-EXPONENTIAL SERIES 26and
n∑

j=i+1

pj � (1/2)

n∑

j=1

pj . (5.3)Note that at least one and at most 2 values of i satisfy this property.The key ki beomes the root of a binary searh tree, and the left and right hild are onstrutedreursively from (k1, . . . , ki−1, p1, . . . , pi−1) and (ki+1, . . . , kn, pi+1, . . . , pn). Let T denote the resultingtree. Observe that, in T , if a node ki has depth depthT (ki), then
∑

kj2T(ki)

pj � 1/2depthT (ki) ,where T(ki) is the set of all nodes in the subtree rooted at ki. In partiular pi � 1/2depthT (ki), sodepthT (ki) � log(1/pi). The expeted depth (distane from the root) of a key hosen aording to thedistribution D is
n∑

i=1

pi � depthT (ki) � n∑

i=1

pi log(1/pi) = H(D) .where d(ki) is the depth of ki. Therefore, the searh tree T is a data struture that an answer queriesusing O(1 + H(D)) omparisons in O(1 + H(D)) time, so is optimal by Shannon's Theorem.How long does it take to onstrut T? Finding the key ki that satis�es (5.2) and (5.3) an easilybe done in Θ(n) time. Unfortunately, for some distributions, this an lead to an overall onstrutiontime of Θ(n2). (Exerise: desribe suh a distribution). By searhing simultaneously starting and k1and working forward and starting at kn and working bakwards, the time to �nd ki an be redued to
O(min{i, n − i + 1}). This leads to the reurrene

T(n) = O(min{i, n − i + 1}) + T(i − 1) + T(n − i − 1) ,for some i 2 {1, . . . , n}, whih resolves to O(n logn).An even better solution starts searhing simultaneously from 1 and n using an exponentialsearh. That is, we hek k1, k2, k4, k8 and so on until �nding the �rst k2j with 2j � i and then performbinary searh on k2j−1 , . . . , k2j . This allows us to �nd ki in O(log i) time. Simultaneously doing thesearh working bakwards from n allows us to �nd ki in O(logmin{i, n − i + 1}) time. This gives anoverall running time that is de�ned by the reurrene
T(n) = O(logmin{i, n − i + 1}) + T(i − 1) + T(n − i − 1) ,whose solution is O(n), as an be veri�ed using indution.

Theorem 10. If k1, . . . , kn are given in sorted order then the above data struture an be on-struted in O(n) time, uses O(n) spae and the expeted ost of searhing for a random key hosenaording to probability distribution D is O(1 + H(D)).
5.3 Optimal In-Place Static SearchingSuppose again that we are given n keys k1, . . . , kn with orresponding distribution D = p1, . . . , pnwhere pi represents the probability of aessing ki. Without loss of generality, assume pi � pi+1 for



CHAPTER 5. ENTROPY, WORKING SETS AND DOUBLY-EXPONENTIAL SERIES 27all 1 � i < n, sine we an always relabel the keys to ahieve this. Our goal is to �nd a stati datastruture that allows us to perform searhes, so that the ost of searhing for ki is O(log(1/pi)).To ahieve this goal we store k1, . . . , kn in an array of size n that is partitioned into Θ(log logn)groups. Group 0 ontains the keys k1 and k2. Group 1 ontains the keys k3, . . . , k6. Group 2 ontainsthe keys k7, . . . , k22. In general, group i ontains 22i keys. The data struture maintains eah group insorted order, so that searhing within group i takes O(log 22i

) = O(2i) time using binary searh.To searh for a key kj in this data struture, we searh �rst in group 0, then in group 1, andso on until we �nd kj, or we have searhed in all groups. If we �nd kj in group i, then the ost of thesearh is
i∑

g=0

O(2g) = O(2i) .We laim that, if the we �nd kj in group i, then pj < 1/22i−1 . To see this, observe that j >
∑i−1

g=0 22g

>

22i−1 . In other words, there are more than 22i−1 keys with aess probability larger than pj. Therefore
pj < 1/22i−1 , sine all the aess probabilities sum to 1.We �nish by observing thatlog(1/pj) � log�22i−1

�
= 2i−1 = Θ(2i) ,so that the time to aess key kj is O(log(1/pj)), as required. Therefore, if we searh for a random keyhosen aording to distribution D then the expeted ost of the searh is

n∑

i=1

piO(1 + log(1/pi)) = O(1 + H(D)) .

Theorem 11. The above data struture an be onstruted in O(n logn) time (by sorting), uses
O(n) spae and the expeted ost of searhing for a random key hosen aording to probabilitydistribution D is O(1 + H(D)).
5.4 Optimal Dynamic SearchingIn the previous setion, we assumed that the distribution D was known to the data struture. In thissetion we show that the data struture does not need to know D to ahieve good performane. Thesetup is the same, we have a data struture that stores keys k1, . . . , kn, but we know nothing about theaess probabilies of these keys.The data struture is based on the same doubly-exponential (22i) sequene as the previousdata struture, but it is self-organizing. That is, after every aess it modi�es itself, in the hopes ofspeeding up subsequent aesses. The data struture onsists of O(log logn) balaned searh trees thatsupport insertion, deletion and searhing in logarithmi time. The tree Ti ontains exatly 22i elements.Additionally, the data struture maintains, for eah tree Ti, a linked-list Li of the elements ontained in
Ti. Initially, the elements k1, . . . , kn are assigned to trees arbitrarily.When searhing for the key kj, we start by searhing T0, T1, and so on until we �nd kj in sometree, say Ti. We then remove the key kj from Ti and Li and insert kj into T0 and put it at the front of



CHAPTER 5. ENTROPY, WORKING SETS AND DOUBLY-EXPONENTIAL SERIES 28the list L0. Now T0 ontains one element too many, so we take the last element in L0, remove it from T0and L0 and insert it into T1 and put it at the front of L1. Now T1 ontains one element too many, so wetake the last element from L1, remove it from L1 and T1 and insert it into T2 and put it at the front of
L2. We proeed in this manner until reahing Ti, at whih point the proess stops beause Ti ontainedone element too few, due to the removal of kj.In eah tree Tg, 0 � g � i we perform one insertion, one deletion and one searh operation, ata ost of O(log(22g

)) = O(2g). Therefore, the ost of aessing kj is
i∑

g=0

O(log(22g

) =

i∑

g=0

O(2g) = O(2i) .Unfortunately, it's not lear that the value of i has anything to do with the probability ofaessing kj. However, one thing we do know is the following working set property. Suppose we haveaessed kj at some point in the past, say t aesses previously. Immediately after we aessed kj it wasput into T0. During eah subsequent aess, it moved down at most one unit in the list it was ontainedin or, if it was the last element in some list Lg, it moved into Lg+1. Therefore, kj is ontained in Ti forsome i suh that ∑i−1
g=0 22g

< t. It follows that the time to aess kj is O(log t).Thus, if we aessed kj reently, it won't ost muh to aess it again. Next, we formalizethe following intuition: If we aess kj frequently, then the average amount of time between suessiveaesses is small and the overall ost of aessing kj is small. Before we begin, we require an inequalitydue to Jensen:
Lemma 2 (Jensen's Inequality). Let f : R → R be a stritly inreasing onave funtion. Then, thesum ∑n

i=1 f(ti) subjet to the onstraint ∑n

i=1 ti < m is maximized when t1 = t2 = � � � = tn = m/n.A nie way to visualize Jensen's inequality is to imagine plaing n − 1 points on an interval oflength m, so that the interval is split into n intervals of length t1, . . . , tn. Jensen's inequality says thatif we want to maximize ∑n

i=1 f(ti) then the best thing we an do is to make all the intervals of equallength. Returning to our data struturing problem, suppose s1, . . . , sm is a sequene of keys representingaesses, and suppose that the key kj appears mj times in this sequene. Then the total ost of allaesses to kj using the above data struture is
O(n logn) +

mj∑

i=1

O(log(1 + ti)) ,where ti is the number of aesses to keys other than kj between the ith and the (i + 1)th aess to
kj. (The extra O(n logn) term omes from the fat that the �rst aess to eah element takes O(logn)time.) Of ourse, the ti obey the inequality ∑mj

i=1 ti < m and log is a onave funtion so, by Jensen'sinequality, ost of aesses to kj = O(logn) +

mj∑

i=1

O(log(ti)) = O(logn + mj log(m/mj)This is true for all 1 � j � n, so the total ost of handling the sequene s1, . . . , sm isost of s1, . . . , sm =

n∑

j=1

(ost of aesses to kj)



CHAPTER 5. ENTROPY, WORKING SETS AND DOUBLY-EXPONENTIAL SERIES 29
=

n∑

j=1

O(logn + mj(1 + log(m/mj)))

= O(n logn + m(1 + H(s1, . . . , sn))) .

Theorem 12. The above data struture an be onstruted in O(n logn) time and an aess thesequene s1, . . . , sm in O(n logn + m(1 + H(s1, . . . , sm))) time.
5.5 MTF CompressionThe optimal dynami searh data struture from Setion 5.4 an be used as a ompression sheme, asdesribed in the introdution. This will give a ompression sheme that uses O(H(D)) bits per symbolon average. In the remainder of this setion we desribe a ompression algorithm that is basially astripped down version of this idea. The algorithm is alled move-to-front for reasons that will beomeapparent soon enough.Consider the following enoding sheme for positive integers. The integer i is enoded as dlog ie−
1 zeros followed by the binary representation of i (whih starts with a 1). To deode an integer, a reeiverounts the number of leading zeros, reads the same number of bits from the remainder and deodes thisas a binary number. This sheme uses 2dlog ie − 1 � 1 + 2blogi bits to enode the integer i, and the�rst dlog ie bits are always a sequene of zeroes followed by exatly one one. To get a sheme thatuses blog i+ O(log log i) bits we just observe that the leading dlog ie bits represent the positive integerdlog ie � 1 + log i and an therefore be enoded using 1 + 2blog(1 + log i) bits, using the same shemereursively.In MTF (move-to-front) ompression, the sender and reeiver eah maintain idential lists thatontain integers 1, . . . , n. To send the symbol j, the sender looks for j in his list and �nds it at position i(say). The sender then enodes i using log i +O(log log i) bits and sends it to the reeiver. The reeiverdeodes i, looks at the ith element in his list and �nds j. The sender and reeiver then both move theelement j to the front of their lists and ontinue.To analyze the ost of sending the sequene s1, . . . , sm, we �rst observe that MTF also has theworking set property. If the number of distint symbols between two onseutive ourenes of theinteger j is t − 1 then the ost of enoding the seond j is log t + O(log log t). Therefore, by the sameargument used in previous setion, the total ost of enoding all ourenes of j is at most

Cj = logn + O(log logn) +

mj∑

i=1

(log ti + O(log log ti))� logn + O(log logn) + mj (log(m/mj) + O(log logm/mj)) ,where ti − 1 is the number of symbols between the i − 1th and the ith ourene of j. Summing thisover all j, we see that the number of bits required to ompress the sequene s1, . . . , sm is
B(s1, . . . , sm) � Cj� n logn + O(n log logn) + mH(s1, . . . , sm) +

n∑

j=1

O(mj log logm/mj)� n logn + mH(s1, . . . , sm) + O(n log logn + m logH(s1, . . . , sm))



BIBLIOGRAPHY 30Although this equation looks quite ompliated, it really onsists of a a n logn startup ost plus theempirial entropy of s1, . . . , sm plus some lower order terms. If m is muh larger than n, the n lognterms beome negligible and the overall ost is very lose to the empirial entropy of s1, . . . , sm.
Theorem 13. The MTF ompression algorithm ompresses the sequene s1, . . . , sm into

n logn + mH(s1, . . . , sm) + O(n log logn + m logH(s1, . . . , sm))bits.
5.6 Discussion and ReferencesThe notion of entropy was introdued by Shannon in his groundbreaking work on information theory[6℄. The onstrution of nearly optimal binary searh trees in linear time is due to Mehlhorn [5℄. Theoptimal dynami searh struture is due to Iaono [4℄. The variable length integer enoding sheme isdue to Elias [3℄. The MTF ompression algorithm is due to Bentley et al [1℄. MTF is a nie simple ideathat is easy to implement and gives good ompression. Unfortunately, it's patented [2℄, but at least thepatent expires soon.
Bibliography[1℄ J. L. Bentley, D. D. Sleator, R. E. Tarjan, and V. K. Wei. A loally adaptive data ompressionsheme. Communiations of the ACM, 29(4), 1986.[2℄ J. L. Bentley, D. D. K. Sleator, and R. E. Tarjan. Data ompation. US Patent 4,796,003, January1989.[3℄ P. Elias. Universal odeword sets and the representation of the integers. IEEE Transations onInformation Theory, 21:194{203, 1975.[4℄ J. Iaono. Alternatives to splay trees with O(logn) worst-ase aess times. In Proeedings of theTwelfth Annual ACM-SIAM Symposium on Disrete Algorithms (SODA-01), pages 516{522,2001.[5℄ K. Mehlhorn. Nearly optimal binary searh trees. Ata Informatia, 5:287{295, 1975.[6℄ C. E. Shannon. A mathematial theory of ommuniation. Bell System Tehnial Journal, 27:379{423, 623{656, 1948.


