
Chapter 3

Persistence

This hapter introdues the topi of persistene in data strutures. A dynami data struture evolvesthrough time as elements are inserted and deleted. Usually, operations on the data struture are alwaysperformed on the most reent version. In ontrast, a persistent data struture is one that allows aessto all previous versions of the data struture.Sine it may not immediately be obvious that persistene is useful, we begin this hapter with amotivating example from the �eld of omputational geometry. As it happens, persistene plays a entralrole in many algorithms for omputational geometry problems.
3.1 Next Element SearchLet S = {s1, . . . , sn} be a set of horizontal line segments in the plane. The next element searh problemasks us to proproess S so that, given query point q we an return the element of S that is diretlyabove q (see Figure 3.1), or nil if no suh element exists.The next element searh problem an be solved in the following way (see Figure 3.2): Sortthe endpoints of S by x-oordinate. Create a ditionary D that will store intervals sorted by their y-oordinates. We use the sorted list of endpoints to sweep the plane with a line from left to right. When

qFigure 3.1: The orret answer for query point q is the line segment diretly above q.11



CHAPTER 3. PERSISTENCE 12

Figure 3.2: The next element searh problem an be solved by partitioning the plane into vertial stripsand building a ditionary for eah strip.the line passes over the left endpoint of a segment we insert that segment into D. When the line passesover the right endpoint of a segment we delete that segment from D. In both ases, we save a opy of
D and store all these opies sorted by the x-oordinate of the endpoint that reated them.To perform next element searh for a query point q, we perform a binary searh on the x-oordinate of q to �nd the opy D 0 of D that ontains exatly the segments that are above and below q.We then searh D 0 to �nd the segment that is diretly above q. The �rst binary searh takes O(logn)time and the seond searh takes O(logn) time if we implement D using an eÆient ditionary datastruture. Therefore, the ost of performing next element searh with this data struture is O(logn).What is the ost of onstruting the data struture? Clearly the ditionary D never ontainsmore than n elements, so it an be opied in O(n) time. Sine we have to do this 2n times, the overallost of opying is O(n2). The osts of other operations (sorting endpoints and insertions and deletionsinto D) is O(n logn), so the total ost of building the data struture is O(n2).Plane sweep provides a nie simple, intuitive solution to the next element searh problem.However, if we want to do better with the plane sweep approah we need a faster way to opy theditionary D. But if D has size Ω(n) how an we opy it any faster? The trik is that eah opy of Ddi�ers only from the previous one by one insertion or deletion, so we only need to opy the parts thathange.
3.2 Path CopyingSuppose we have a ditionary implemented as a balaned binary searh tree T . Reall from Chapter 2that when we insert a key k into a balaned binary searh tree we reate a new leaf ontaining k andthen rebalane T by performing rotations on some of the nodes on the path, path(k, T), from the newlyreated leaf to the root of T . These rotations only modify the nodes of path(k, T), so the entire insertionproess only modi�es the nodes of path(k, T).Suppose that, before we perform insertion of the key k into the tree T , we �rst opy all nodeson path(k, T) (see Figure 3.3). We now have two searh trees; the original tree T is still valid, and thea new tree T 0 whose root is a opy of the root of T (see Figure 3.3). Now, if we do an insertion on T 0



CHAPTER 3. PERSISTENCE 13
k

T T
′

Figure 3.3: Before inserting k into T we opy all nodes on path(k, T).we know that the insertion only modi�es nodes on path(k, T 0), whih are not nodes of T . Therefore,after the insertion, T 0 is balaned binary searh tree that ontains k and T is a balaned binary searhtree that does not ontain k. Copying path(k, T) before insertion does not inrease the insertion timeby more than a onstant fator, and requires O(logn) additional spae.1Next we turn to the problem of deletions. To delete key k, we �rst simulate the deletion of key
k to determine whih nodes of T will be modi�ed by the deletion. Now, for eah node v that is modi�ed,we opy v and all the nodes on the path from v to the root of T , doing this in suh a way as to avoidopying any node more than one. This gives us a new tree T 0 whose root is a opy of root(T). We thenperform the deletion on T 0. Sine this deletion does not modify any nodes of T , we are left with a tree Tthat ontains k and a tree T 0 that does not ontain k. Furthermore, any reasonable deletion algorithmruns in O(logn) time, and only modi�es node v if it reahes v by following a path from root(T) to v.Therefore, the number of nodes opied by this sheme, and hene the overall running time and spaerequirement is O(logn).For onrete examples of insertions and deletions, onsider a treap T as desribed in Setion 2.2.To insert the key k we opy path(k, T), append a new node (with key k) and then use rotations tomove k upwards in the tree. It is easy to verify that the only nodes modi�ed by these rotations arethose on path(k, T).2 To delete a key k, we make a opy of path(k, T) and then use rotations to move kdownwards in T until it beomes a leaf. Eah rotation modi�es two nodes: One node is a opy of thenode with key k. Therefore, before performing the rotation, we make a opy of the seond node and dothe rotation with the opy rather than the original.None of the work of opying inreases the running time of treap operations by more than aonstant fator, so the expeted running times for insertion and deletion are still O(logn). Furthermore,the number of nodes opied during an insertion or deletion does not exeed the running time, so theexpeted number of nodes opied during eah insertion and deletion is O(logn).We have just shown how to implement a ditionary so that a sequene of insertions and deletions
o1, . . . on results in a sequene of ditionariesD0, . . . , Dn where Di is the result of operationsD1, . . . , Di.Eah Di an be searhed in O(logmi) time where mi is the number of keys stored in Di. We all suha ditionary a persistent ditionary. The following theorem states the performane of this ditionary
Theorem 5. There exists a persistent ditionary data struture that supports Insert, Deleteand Searh in O(logn) time and requires O(n logn) storage for a sequene of n operations.1In the ase of randomized searh trees the spae bound is in the expeted sense.2This is true if nodes only ontain pointers to their left and right hildren. If they also ontain pointers to their parentsthen the nodes adjaent to this path must also be opied.



CHAPTER 3. PERSISTENCE 14Using this data struture for the next element searh problem we obtain the following orollary.
Theorem 6. There exists a data struture that takes as input a set S of n horizontal line seg-ments and after O(n logn) preproessing requiring O(n logn) storage, answers next element searhqueries on S in O(logn) time.
3.3 Generalized PersistencePath opying is a nie simple method for implementing persistene in binary searh trees, but it is adho. It's not obvious how to extend it for data strutures other than binary searh trees. Next we givea more general strategy for implementing persistene.Suppose we have a pointer-based data struture whih we model as a direted graph G. Eahvertex of G has some onstant number c � 2 of outgoing edges (representing pointers) and a label(representing data). The restrition to a onstant number of outgoing edges is, in many ases, not reallya restrition sine we an simulate one node with many outgoing edges by many nodes that we linktogether as a linked list. Another possibility is to simulate a node with many outgoing edges as a binarytree whose leaves represent the edges.The real restrition we plae on G is that it have bounded in-degree. That is, no vertex of Ghas more than d edges leading into it, for some onstant d > 1.The operations we allow onG areCreate-Node(G)whih reates a new vertex with no outgoingor inoming edges, Change-Label(v, x) whih hanges the value of the data stored at vertex v to be
x, and Change-Edge(v, i, u) whih hanges the ith outgoing edge of node v so that it points to node
u, where u may be nil. After eah update operation, the global time t advanes by 1 unit. This givesus a sequene of graphs G0, . . . , Gt where Gt 0 denotes the graph G at time t 0.For a persistent graph representation we would like an appliation to have aess to Gt 0 for any
0 � t 0 � t. Of ourse, to aess Gt 0 an appliation needs to have a pointer to some node v that existsat time t 0. How this is done depends on the appliation, but in most ases it is obvious (e.g., for searhtrees it is usually the root of the tree). The aess operations we allow are Label(v, t 0) whih returnsthe label of the node v at time t 0 and Edge(v, i, t 0) whih returns the ith outgoing edge of v at time t 0.In order to implement this, we represent eah vertex v of G as a table (array of strutures).Eah table ontains d + 1 rows and has one olumn for a label (data), c olumns for outgoing edges(pointers), and one olumn whih indiates the time at whih the orresponding row was �lled in. Inaddition to this, v maintains an array inedges(v) of d pointers that keep trak of the (at most d) otherverties of G that have edges leading to v.
Creating a vertex. A all to Create-Node simply reates (and returns a pointer to) a new tablein whih all rows are empty and whose inedges values are all set to nil.
Changing an edge. In a all to Change-Edge(v, i, u), two ases an our:



CHAPTER 3. PERSISTENCE 15
Case 1: The table for node v has an empty row. In this ase, we modify the table for node v by opingthe last non-empty row into the �rst empty row and then modifying the entry for edge i in the new rowso that it ontains u. At the same time, we update the time olumn for the newly added row so that itontains the urrent global time t.We then update inedges arrays for u and for the vertex w that was previously ontained in theolumn for the ith outgoing edge of v. We add an entry to inedges(u) ontaining a pointer to the tablefor v (if no suh entry existed previously), and we delete an entry that points to the table for v frominedges(w).
Case 2: The table for node v has no empty row. In this ase, we make a new table for node v witha all to Create-Node. We then opy the last row out of the old table into the �rst row of the newtable. As before, we modify the entry for edge i in the �rst row of the new table so that it points to uand we modify the time so that it ontains the urrent time t.Next we modify the inedges arrays for every vertex w suh that the edge (v, w) exists in G.For every edge (v, w) in the �rst row of the new table, we hange the entry for v in inedges(w) (whihpointed to the old table) so that it points to the new table.At this point, there still exist up to d referenes to the old table for node v. To get rid of these,we reursively modify every node in inedges(v) so that it points to the new table for v. More preisely,if w ontains the edge (w, v) as it's ith edge, then we all Change-Edge(w, i, v), where v is a pointerto the new table for v.At this point we note that if there is some external referene to node v, then this refereneshould be updated to point to the new table for v. For example, if v is the root of a binary searh treethen any aesses to the tree at time t 0 � t will have to start at the new table for v (until the time thenew table is opied).
Changing a label. The implementation of Change-Label(v, x) is exatly the same as a all toChange-Edge(v, i, u) exept that, instead of updating the olumn for edge i, we update the labelolumn. Beause of this, there is no need to update the inedges array for u.
Accessing label and edge data. We say that a table for node v in this implementation is ativeduring the time interval [t1, t2), where t1 is the time at whih the table was �rst reated with a all toCreate-Node and t2 is the time at whih the table was �rst opied as part of Case 2 of the proedurefor hanging an edge or label. It follows that for any time t suh that t1 � t 0 � t, there is exatly onetable for node v that is ative.To aess an outgoing edge of v or a label of v at time t 0 � t, we use the table for v that wasative at time t 0. To determine the value of the edge or label, we look in the last row whose time valueis less than or equal to t 0. If the vertex v had label x at time t 0, then it is lear that the label in thisrow is x.Similarly, if the vertex v had edge (v, w) as its ith outgoing edge at time t 0 then the entry foredge i in this row points to a table for w. We laim that this table for w is ative at time t 0. Clearly,the table must be ative at some time t 00 � t 0, otherwise a pointer to this table ould not have existed



CHAPTER 3. PERSISTENCE 16at time t 0. Therefore, the only way the table for w ould not be ative at time t 0 is if the table wereopied (as part of Case 2 above) at some time t 00 � t 0. But in this ase, the table for v would have beenupdated at time t 00 to point to the new table for w.Thus, if we start at the table for node v that is ative at time t 0 and only follow edges asdesribed above then we an reah only tables that were ative at time t 0. Any suh table orrespondsto a vertex w suh that there is a path from v to w in Gt. In other words, this sheme is orret.
Analysis. How eÆient is this sheme? To determine this, we use an aounting argument, also alleda redit sheme. A redit an be thought of as a unit of urreny that an pay for the ost of reatinga new table. In fat, every newly reated table will be paid for with 1 redit.In addition to this, tables an aumulate redits whih they an pay for later. The aumulationof redits at a table satis�es the following redit invariant : If the table is ative, it has exatly the samenumber of redits as rows that have been �lled in. Otherwise (the table is non-ative) it has no redits.We laim that the above redit sheme an be maintained if we insert two redits every timethe user alls Create-Vertex and one redit every time the user alls Change-Edge or Change-Label. Note that we only insert a redit when a user alls one of these funtions. As part of theirimplementation, they may all eah other or themselves reursively, but we do not reate new reditsfor these internal alls.Create-Vertex reates a new ative table with exatly one row. If we insert two redit duringa all to Create-Vertex then we an use one redit to pay for the ost of reating the table and giveone redit to the table so that the redit invariant is maintained.Change-Edge has two ases. In Case 1, we add one row to an existing table. In this ase wegive our newly inserted redit to this table so that the redit sheme is maintained. Case 2 is moreompliated. In this ase, one (full) table beomes inative, a new ative table with one full row isreated and up to d reursive alls are made.Before the all to Change-Edge, the old (full) table stores d+1 redits and it beomes inative,so we have d + 2 redits at our disposal. We use one redit to pay for reating the new table and wegive one more redit to this new table to satisfy the redit invariant. We are left with the ost of payingfor d reursive alls, eah of whih requires one input redit. Lukily we have d redits left and we useeah of these as input to one reursive all.The aounting for Change-Label is exatly the same as for Change-Edge.We have just shown the following result.
Lemma 1. n1 alls to Create-Node, and n2 alls to Change-Edge and Change-Label resultsin the reation of at most 2n1 + n2 tables.Eah table has size O(d) and, exluding reursive alls, �lling in a table requires O(d2) work(the extra d fator omes from updating inedges arrays at other nodes). Therefore, the amount of workdone during a sequene of operations is bounded by O(d2) times the number of tables reated. Eahaess operation (Edge and Label) an be done in O(d) time, or in O(logd) time if we use binary



BIBLIOGRAPHY 17searh on the rows.
Theorem 7. There exists a data struture that an omplete any sequene of n Create-Node,Change-Edge and Change-Label operations and m Edge and Label operations in O(nd2 +

m logd) time.
3.4 Discussion and ReferencesBy now, the use of persistene is standard in data struture papers, so muh so that most authors,after de�nining a dynami data struture simply ite Drisoll et al [1℄ to give a persistent version. Pathopying was disovered independently by many authors, inluding Myers [3, 4℄, Krijnen and Meertens[2℄, Reps, Teitelbaum and Demers [5℄, and Swart [7℄.Sarnak and Tarjan [6℄ �rst used a version of the generalized persistene sheme with red-blaktrees to give a data struture for the next-element searh problem requiring O(n) spae. The generalizedpersistene mehanism of Setion 3.3 is due to Drisoll et al [1℄.In omputational geometry, a dynami data struture for a problem in d-dimensions an oftenbe ombined with persistene and plane-sweep to yields a stati data struture in d+1 dimensions. Ournext-element searh data struture is an example of this, sine a binary searh tree an be thought ofas a next-element searh struture for 1-dimensional data. Unfortunately, this trik only works one.
Bibliography[1℄ J. R. Drisoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan. Making data strutures persistent. Journalof Computer and System Sienes, 38(1):86{124, February 1989.[2℄ T. Krijnen and L. G. L. T. Meertens. Making B-trees work for B. Tehnial Report 219/83, TheMathematial Center, Amsterdam, 1983.[3℄ E. W. Myers. AVL dags. Tehnial Report 82-9, Department of Computer Siene, University ofArizona, 1982.[4℄ E. W. Myers. EÆient appliative data strutures. In Conferene Reord eleventh Annual ACMSymposium on Priniples of Programming Languages, pages 66{75, 1984.[5℄ T. Reps, T. Teitelbaum, and A. Demers. Inremental ontext-dependent analysis for language-basededitors. ACM Transations on Programming Languages and Systems, 5:449{477, 1983.[6℄ N. Sarnak and R. E. Tarjan. Planar point loation using persistent searh trees. Communiationsof the ACM, 29(7):669{679, July 1986.[7℄ G. Swart. EÆient algorithms for omputing geometri intersetions. Tehnial Report #85-01-02,Department of Computer Siene, University of Washington, Seattle, 1985.


