
Chapter 8

Bounded Universes

Until so far, most of the data strutures desribed in this book have been omparison based. Althoughthey've been desribed as storing real-valued keys, the only operations performed on keys have beenomparisons, so they ould just as easily store keys from any total order. In this hapter we study theissue of what happens when the keys are integers and we an do operations other than omparisons, likeaddition, subtration, integer division, and using the number to index arrays.More spei�ally, our keys ome from the universe U = {0, . . . , N − 1} and we assume a modelthat allows us to do most ommon mathematial operations on integers and gives integer results bytrunating (taking the oor of) the results of operations when neessary. The results of operations analso be used as indies into arrays.We are interested in data strutures that support insertion, deletion, membership queries andnext element queries on keys from U. The meanings of insertion and deletion are obvious. A membershipquery takes as input a key k and determines whether k is urrently stored in the data struture. Annext element query takes a key k and returns the smallest value k 0 stored in the data struture suhthat k 0 � k.As a �rst attempt, we might onsider using an array A1, . . . , AN of boolean values. On reation,every array entry is initialized to false. When an element k is inserted, we simply set Ak to true.Similarly, when an element k is deleted we set Ak to false. To do a membership query on the key kwe just hek the value of Ak. Unfortunately, this is where this approah breaks down. The only wayto do a next element query on key k is to hek the values of Ak, Ak+1, Ak+2, and so on until we �ndthe �rst value Ak 0 that is set to true. Thus, with this approah the �rst three operations an be donein onstant time, but the fourth (next element searh) operation takes Ω(N) time in the worst ase.
50

CHAPTER 8. BOUNDED UNIVERSES 51
8.1 Van Emde Boas TreesAn interesting (and old) method of doing searhes on bounded universes was proposed by Peter Van Emde Boas.It is based on the reurrene

TN =

{
O(1) + TpN if N � 2

O(1) otherwise (8.1)whih solves to O(log logN) (beause N1/ logn = 2). Essentially, the above reurrene says that if wean, in onstant time, redue the searh spae to the square root of its original size and then reurse wewill get a running time of O(log logN).The data struture we use to ahieve this is alled a VEB-tree. Assume N = 22m for some integer
m.1 The root of the VEB-tree for U has pN hildren that are stored in an array. Eah hild of the rootis also a VEB-tree, and the ith hild orresponds to a VEB-tree for elements i

p
N, . . . , (i + 1)

p
N − 1.The root of the VEB-tree also stores two integer values alled min and max, whih ontain the smallestand largest element urrently ontained in the tree. If no values are stored in the tree then min and maxare set to some value not in U, say −1. A ruial point to remember about a VEB-tree is that the minand max values at the root are only stored at the root. Beause of this, we an insert into an initiallyempty tree or delete the last element from a tree in onstant time.The root of the VEB-tree also ontains another VEB-tree|and this is the truly lever part|forthe universe {0, . . . ,

p
N − 1}. This auxilliary tree is used to keep trak of whih hildren of the rootontain data. That is, the tree ontains the element i if the ith hild of the root ontains some key.From this de�nition, it follows that the storage used by a VEB-tree is given by the reurrene

SN = (
p

N + 1)SpN +
p

Nwhih solves to O(N). (The extra +1 omes from the auxilliary VEB-tree.)Although VEB-trees are not extremely ompliated, their implementation requires some are.In the following three setions we sketh the implementations of the algorithms for searhing, insertingand deleting in VEB-trees, and provide more preise pseudoode. In the pseudoode, W is a VEB-treenode, W[i] is the ith hild of W, hild(k, W) is the index of the hild of W that stores the key k, andaux(W) is the auxilliary VEB-tree stored at W.
8.1.1 SearchingTo do a next element searh for the key k in a VEB-tree, we �rst hek if k is less than the min valuestored at the root. If so, then we simply report the min value. Otherwise, we need to determine whihhild of the root stores the key k. This an be done in onstant time sine it is the i = bk/

p
Nth hildand the hildren are stored in an array. We then inspet the max value for the ith hild. If it is largerthan k, then we an be sure that the key k 0 we are looking for is in the subtree rooted at the ith hildand we reurse on the ith hild.1We only make this assumption so that N1/2i is an integer for all integers i < m. This allows us to avoid the need foroors, eilings, and speial ases. The modi�ations required when N is not of this form should be lear.

CHAPTER 8. BOUNDED UNIVERSES 52Otherwise, the key we are looking for is ontained in the jth hild of the root, where j is thesmallest value greater than i suh that the jth hild of the root ontains some key. In fat, the key k 0we are looking for is the min value the jth hild of the root. Therefore, we an use the auxilliary tree atthe root to �nd the value of j and then report the min value in onstant time.In both ases, the algorithm makes one reursive searh all and does O(1) work. The reursivesearh all is on a VEB-tree for a universe of size pN. Thus, the running time of the searh algorithmis given by the reurrene (8.1) and is O(log logN).Suessor(k, W)1: if k < min(W) then2: output min(W) fk is smaller than every elementg3: else if k > max(W) then4: output ∞ fk is larger than every elementg5: end if6: i← hild(k, W)7: if max(W[i]) > k then8: Suessor(k, W[i]) fk 0 is stored in W[i]g9: else10: j← Suessor(i, aux(W)) fk 0 is in �rst non-empty sibling of W[i]g11: output min(W[j])12: end if

8.1.2 InsertingTo insert the key k into a VEB-tree we proeed as follows. If the root of T is empty then we simply setthe min and max values at the root to be k. Otherwise, we hek if k is less than (respetively greaterthan) the min value (respetively max value) at the root. If so, we swap the values of k and the minvalue (respetively max value) before ontinuing. Next, we �nd the hild of the root that should ontainthe key k using the formula i = bk/
p

N. If the ith hild of the root ontains no elements then we insert
i into the root's auxilliary VEB-tree and insert k into the ith hild of the root. Otherwise (the ith hildalready ontains some element) we only insert k into the ith hild of the root.Observe that, beause we expliitly hek this ondition, inserting into an empty VEB-treetakes onstant time. This is very important, beause the VEB-tree algorithm may make two reursiveinsertion alls; one to insert k and one to insert i into the auxilliarly VEB-tree. However, in this ase,the reursive all to insert k takes only onstant time. Thus, no matter what happens, the running timeof the insertion algorithm satis�es the \rootish" reurrene (8.1) and therefore runs in O(log logn) time.Insert(k, W)1: if min(W) = max(W) = −1 then2: min(W)← max(W)← k ftree is emptyg3: else if min(W) = max(W) then4: min(W)← min{k,min(W)} ftree ontains 1 elementg5: max(W)← max{k,max(W)}6: else7: if k < min(W) then8: swap k↔ min(W) fk is the new min, insert the old ming

CHAPTER 8. BOUNDED UNIVERSES 539: else if k > max(W) then10: swap k↔ max(W) fk is the new max, insert the old maxg11: end if12: i← hild(k, W)13: Insert(k, W[i])14: if max(W[i]) = min(W[i]) = k then15: Insert(i, aux(W)) fW[i] just went from empty to non-emptyg16: end if17: end if

8.1.3 DeletingDeleting the key k from a VEB-tree is similar to insertion. If the tree ontains only the element k, it isstored as the min and max values of the root and we an delete it in onstant time. Otherwise, if k isequal to the min (respetively max) value at the root then we swap k and the min (respetively max)value at the root. We then reursively delete k from the hild of the root that ontains it and, if thishild beomes empty we delete the hild's index from the auxiliary VEB-tree.As with insertion, although there may be two reursive alls, only one of them takes more thanonstant time. Thus, the running time of the deletion algorithm is given by reurrene (8.1) and runsin O(log logn).Delete(k, W)1: if min(W) = max(W) = k then2: min(W)← max(W)← −1 f k is the last element g3: else if min(aux(W)) = −1 then4: if min(W) = k then5: min(W)← max(W)6: else7: max(W)← min(W)8: end if9: else if k = min(W) then10: j← min(aux(W))11: min(W)← min(W[j])12: k← min(W)13: else if k = max(W) then14: j← max(aux(W))15: max(W)← max(W[j])16: k← max(W)17: end if18: i← hild(k, W)19: Delete(k, W[i])20: if min(W[i]) = max(W[i]) = −1 then21: Delete(i, aux(W))22: end if

Theorem 23. Van Emde Boas trees support insertion, deletion, and suessor queries for elementsin the universe U = {0, . . . , N − 1} in O(log logN) time and require O(N) storage.

BIBLIOGRAPHY 54
8.2 Reducing Storage

8.3 Willard’s X- and Y-Fast TreesLu's notes go here.
8.4 Discussion and ReferencesThe Van Emde Boas tree (VEB-tree) was introdued by van Emde Boas [1, 2℄. The desription herewas onveyed to us by Mihael Bender. Sine then, several variants have been introdued, most withthe goal of reduing the storage. . .
Bibliography[1℄ P. van Emde Boas. An O(n logn) on-line algorithm for the insert-extrat min problem. TehnialReport TR-74-221, Department of Computer Siene, Cornell University, Deember 1974.[2℄ P. van Emde Boas, R. Kaas, and E. Zijlstra. Design and implementation of an eÆient priorityqueue. Mathematial Systems Theory, 10:99{127, 1977.

