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Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Set theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Countable sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Construction of the real numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Uncountable sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Cardinalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 The axiom of choice with some consequences . . . . . . . . . . . . . . . . . . . . . . 10
2.6 The Cauchy functional equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.7 Ordinal Numbers and Goodstein sequences . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Discrete Mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1 The Pigeonhole principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Binomial coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 The inclusion exclusion principle and derangements . . . . . . . . . . . . . . . . . 20
3.4 Trees and Catalan numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.5 Ramsey theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.6 Sperner’s lemma and Brouwers’s fix point theorem . . . . . . . . . . . . . . . . . 26
3.7 Euler walks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.1 Triangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Quadrilaterals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3 The golden ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.4 Lines in the plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.5 Construction with compass and ruler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.6 Polyhedra formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.7 Non-euclidian geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.1 Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.3 Intermediate value theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46



4 Contents

5.4 Mean value theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.5 Fundamental theorem of calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.6 The Archimedes’ constant π . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.7 The Euler number e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.8 The Gamma function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6 Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.1 Compactness and Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.2 Homömorphic Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.3 A Peano curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.4 Tychonoff’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.5 The Cantor set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.6 Baires’ category theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.7 Banachs’ fix point theorem and fractals . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7 Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.1 The Determinant and eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.2 Group theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.3 Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
7.4 Units, fields and the Euler function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.5 The fundamental theorem of algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.6 Roots of polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

8 Number theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
8.1 Prime numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
8.2 Diophantine equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
8.3 Partition of numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
8.4 Bernoulli numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
8.5 Irrational numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
8.6 Pisot numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
8.7 Dirichlets’ theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
8.8 Lioville numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

9 Probability theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
9.1 The birthday ”paradox” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
9.2 Bayes’ theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
9.3 Buffons’ needle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
9.4 Expected value, variance and the law of large numbers . . . . . . . . . . . . . . 97
9.5 Binomial and Poisson distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
9.6 Normal distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

10 Dynamical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
10.1Periodic orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
10.2Chaos and Shifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
10.3Conjugated dynamical systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105



Contents 5

10.4Julia sets and the Mandelbrot set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
10.5Recurrence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
10.6Birkhoffs’ ergodic theorem and normal numbers . . . . . . . . . . . . . . . . . . . . 109

11 Conjectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115





1

Introduction

ABSTRACT: We present 122 beautiful theorems from almost all areas of mathe-
matics with short proofs, assuming notations and basic results a graduate student
will know.

MSC 2000: 00-01

In this notes we present some beautiful theorems of mathematics for the enjoyment
of the reader. We include results in almost all areas of mathematics: set theory,
topology, geometry, analysis and function theory, number theory, algebra, discrete
mathematics, probability theory and dynamical systems. The total number of results
we include is 144, fifty of this results are contained in list ”The Hundred Greatest
Theorems of Mathematics” presented by Paul and Jack Abad in 1999. [1]
Also there is no satisfactory notion of a beautiful mathematical theorem, we think
that most well educated fellows, which are interested in mathematics, will agree that
all theorems we choose are in fact beautiful. We only include theorems for which we
are able to write down a short proof, which means one page at most. Of course our
choice of theorems is motivated by our subjective taste. So we excluded theorems
from the list not only because we have no short proof but also because the result
seems to us not this beautiful. To be more prices we do not know short proofs for
more than 30 theorem in the list of Paul and Jack Abad and we do not like around
20 theorem in the list so much. We were able include here more than 20 theorems
with short proofs that certainly belong to our Top 100, and are not contained in the
list.
Our approach is not self-contained, we include some but not all definitions that we
use and we presuppose some elementary results and definitions in geometry, calculus
and linear algebra. We think that all graduate students of mathematics or physics
and most second year undergraduate students will be familiar with all the material
we presuppose. Our proofs are not complectly formalized given main ideas and ar-
guments and not all technical details. In some instances we only sketch the way the
prove works. It is a good exercisers to students to fill in the details and perform
calculations left the the reader. .



2 1 Introduction

There are many beautiful theorems in mathematics for which we do not have a short
and perhaps not even a beautiful proof. Just think about the resent proofs of Fermat’s
last theorem [26, 24] , the Poincare conjecture [17, 18, 19, 12], the four color theorem
[3] or the classification of all finite simple groups, [27]. Such results are not at our
focus here. Our aim is to collect knowledge for a good educational background, not
discuss topics for specialists. For any mathematician the book may solve as a kind
of test, if he or she really has good knowledge of well know short proofs of beautiful
theorems. If not, we hope that our proofs are fairly easy to understand and to rec-
ognize and may thus increase present knowledge of the mathematical community. In
addition we include remarks on related results with references for further reading.
We have no historical predations here, nevertheless the reader will find information
in the footnotes who discovered a result. On the other hand the formulation and the
proof of the theorems we present is in general not original.
At the end of our notes the reader will find a list of ten conjectures for the evolution of
mathematics in the next millennium. Our list is quiet different from the millennium
problems of the Claymath institute. We think that our problems are mostly more
elementary and thus even harder to solve.

Jörg Neunhäuserer
Goslar, 2013



Standard Notations

We recall some standard notations in mathematics which are usually used in the
book.⋃

The union of sets⋂
The intersection of sets

|A| The cardinality of a set∑
The sum of numbers∏
The product of numbers

N The set of natural numbers
Z The set of integers
Q The set of rational numbers
A The set of algebraic numbers
R The set of real numbers
C The set of complex numbers
|a| The modulus of a number
sin The sinus function
cos The cosine function
tan The tangent function
cot The cotangent function
log The natural logarithm
e The Euler number
π The Archimedes constant
(xi) A sequence or family with index i
→ A limit of a sequence
lim Limits of sequences or functions
f ′ The derivative of a function∫
f The integral of a function





2

Set theory

2.1 Countable sets

We begin the chapter with the definition of countable and uncountable infinite sets.

Definition 2.1.1 A set A is infinite if there is a bijection of A to a proper subset
B ⊂ A1, it is countable infinite, if there is bijective map from A to N. An infinite set
is called uncountable if this is not the case. 2

If you use an axiomatic set theory you have to suppose the existence of N (or any
inductively ordered set) to make sense of this definition. Using the definition it is
easy to prove a general result, that holds for all countable sets.

Theorem 2.1. Finite products and countable unions of countable sets are countable.3

Proof. Let Ai for i = 1 . . . n be countable sets with counting maps ci. Consider the
map C :

∏n
i=1Ai 7→ N given by

C((a1, . . . , an)) =
n∏
i=1

p
ci(ai)
i ,

where pi are different primes. Since prime factorization is unique (see theorem 7.2)
this map is injective. But each infinite subset of the natural numbers is countable,
hence the product is countable as well. Now consider an infinite family of countable
sets Ai for i ∈ N with counting maps ci. We have

∞⋃
i=1

Ai =
∞⋃
i=1

{c−1i (n)|n ∈ N} = {c−1i (n)|(n, i) ∈ N2}.

This set is countable since N2 is countable. Q.E.D.

All students of mathematics are aware of following result, which shows that sets of
numbers, that seem to have a different size, have the same size in the set theoretical
sense.
1 This definition is due to the German mathematician Richard Dedekind (1831-1916)
2 This definition was introduced by German mathematician George Cantor (1845-1918).
3 The result is due to George Cantor (1845-1918).
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Theorem 2.2. The integers Z, the rationales Q and the algebraic numbers A are
countable.4

Proof. The integers are the union of positive and negative numbers, two countable
sets, hence they are countable. The map

f : Q 7→ Z2 f(p/q) = (p, q)

is injective and Z2 is countable, hence Q is countable as well. There are countable
many polynomials of degree n over Q since Qn is countable. Each polynomial has
finitely many roots, hence the roots of degree n are countable. A is countable as the
countable union of these roots. Q.E.D.

2.2 Construction of the real numbers

Now we give a beautiful and simple definition of real numbers, only using the rational
numbers Q.

Definition 2.2.1 A subset L ⊆ Q is a cut if we have

L 6= ∅, L 6= Q,

L has no largest element,

x ∈ L⇒ y ∈ L ∀y < x.

The set of real numbers R is the set of all cuts with order relation given by ⊆, addition
given by

L+M = {l +m|l ∈ L, m ∈M}

and multiplication given by

L ·M = {l ·m|l ∈ L, m ∈M l,m ≥ 0} ∪ {r ∈ Q|r < 0}

for positive real numbers K,M , which can be extended to negative numbers in the
natural way.5

To verify that R, given by this definition is an ordered field, is rather uninteresting,
see for instance [?] . But the following result is essential for real numbers:

Theorem 2.3. Every non-empty subset of R, that is bounded from above, has a least
upper bound.

4 Again this fact was observed by George Cantor (1845-1918).
5 This is the construction of the German mathematician Richard Dedekind (1831-1916)
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Proof. Let A ⊆ R be bounded by M ∈ R. For each L ∈ A we have L ⊆M . Let

L̃ =
⋃
L∈A

L.

Obviously L̃ is nonempty and a proper subset of Q. If L̃ would have a largest element
l, than l ∈ L for some L ∈ A and l would have to be the largest element of L, a
contradiction. If r ∈ L̃ and s ≤ r than r ∈ L for some L ∈ A and s ∈ L hence s ∈ L̃.
This means that L̃ is a cut; L̃ ∈ R. Moreover L ⊆ L̃ for all L ∈ A hence L̃ is an
upper bound on A. Also L̃ ⊆M . Since M is an arbitrary upper bound L̃ is the least
upper bound. Q.E.D.

By this construction we obtain the usual representation of real numbers.

Theorem 2.4. Every real number can be represented by a unique b-adic expansion
for b ≥ 2.

Proof. Given a real number as a cut F ⊆ Q let a0 = max{n ∈ N|n ∈ Q} and define
recursively

an = max{a ∈ {0, . . . , b− 1}|a0 +
n−1∑
i=1

aib
i + abn ∈ F}.

By this we get a representation a0.a1a2a3... of F , which has no tail of zeros. The other
way round, given such a representation, it describes a unique cut by

F =
⋃
n∈N

{q ∈ Q|q ≤ a0 +
n∑
i=1

aib
i}.

Q.E.D.

2.3 Uncountable sets

The following theorem represents a simple and nevertheless deep insight of mankind.

Theorem 2.5. The real numbers R are uncountable.6

Proof. If R is countable, then [0, 1] is countable as well. Hence there exists a map
C from N onto [0, 1] with

C(n) =
∞∑
i=1

ci(n)10−i,

6 Also due to Georg Cantor.
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where ci(n) ∈ {0, 1, . . . , 9} are the digits in decimal expansion. Now consider a real
number

x =
∞∑
i=1

c̄i10−i ∈ [0, 1]

with c̄i 6= ci(i). Obviously C(n) 6= x for all n ∈ N. Hence C is not onto. A contradic-
tion. Q.E.D.

The next result was quite surprising for mathematicians in the 19th century; in
the set theoretical sense there is no difference between euclidian spaces of different
dimension.

Theorem 2.6. There is a bijection between R and Rn.

Proof. For simplicity of notation we proof the result for n = 2. The general proof
uses the same idea. First note that the map f(x) = tan(x) is a bijection from
(−π/2, π/2) to R and a linear map from (−π/2, π/2) to (0, 1) is a bijection. Hence
it is enough if we find a bijection between (0, 1)2 and (0, 1). Represent a pair of real
numbers (a, b) ∈ (0, 1)2 in decimal expansion

(a, b) = 0.a1a2a3 . . . , 0.b1b2b3 . . .).

Map such a pair to
0.a1b1a2b2a3b3 . . . .

By uniqueness of decimal expansion, using the convention that the expansion has no
tail of zeros, this is a bijection. Q.E.D.

2.4 Cardinalities

Let us go one step further and define the set theoretical size of sets by there cardi-
nality.

Definition 2.4.1 Two sets A and B have the same cardinality if there exists a bi-
jection between them. This a an equivalence relation on sets and the equivalence class
of A is denoted by |A|.

The following theorem shows that there are infinitely many infinite cardinalities.

Theorem 2.7. A and the power set P (A) = {B|B ⊆ A} do not have the same
cardinality.7

Proof. Let f : A 7−→ P (A) be a function and

T := {x ∈ A|x 6∈ f(x)} ∈ P (A).

7 Another result of Georg Cantor (1845-1918).
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If f is surjective, there exists t ∈ A such that f(t) = T . If t ∈ T . we have by the
definition of T t 6∈ f(t) = T . On the other hand if t 6∈ T , we have t ∈ T = f(t) by
the definition. This is a contradiction. Q.E.D.

Definition 2.8. The cardinality of A is less or equal to the cardinality of B if there
is a injective map from A to B. We write |A| E |B| for this relation.

Now we will show that cardinalities are in fact ordered by E. Let us say what an
order is:

Definition 2.4.2 A binary relation ≤ is a partial order of a set A, if

a ≤ a

a ≤ b and b ≤ a⇒ a = b

a ≤ b and a ≤ c⇒ a ≤ c.

The relation ≤ is an order, if in addition

a ≤ b ∨ b ≤ a.

With this definition we have:

Theorem 2.9. The relation E defines an order on cardinalities. 8

The proof is simple but we think it was not easy to find.

Proof. Reflexibility and transitivity of the relation are obvious. We first show anti-
symmetry:
If there exists injections f : A 7−→ B and g : B 7−→ A, then there is a bijection. For
a set S ⊆ A let

F (S) := A\g(B\f(S))

and define

A0 :=
∞⋂
i=0

F i(A).

By the rule of De Morgan and the definition of F we have

F (
⋂

Ai) =
⋃

F (Ai)

and hence F (A0) = A0, which means g(B\f(A0)) = A\A0. The map, given by

φ(x) = { f(x) : x ∈ A0

g−1(x) : x 6∈ A0
,

8 This is attributed to Cantor and the German mathematicians Felix Bernstein (1878-1956). and Ernst
Schröder (1841-1902)
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is a bijection. It remains to show that the order is total:
There is an injective map from A to B or an injective map from B to A. To this end
let

F := {f : Ā 7−→ B̄|f is a bijection with Ā ⊆ A and B̄ ⊆ B}

For each chain C ⊆ F we have
⋃
C ∈ F . Hence by theorem 2.12 below there is an

maximal element (f : Ā 7−→ B̄) ∈ F . We show that A = Ā or B = B̄ for this function
f . Suppose neither. Then there exists a ∈ A\Ā and b ∈ B\B̄. But now f ∪ {(a, b)}
would be in F . This is a contradiction to maximality of F . Q.E.D.

As a consequence we have:

Theorem 2.10. R and P (N) have the same cardinality.

Proof. First we see that |P (N)| = |{0, 1}N| since the map f(A) = (ai) with ai = 1
for i ∈ A and ai = 0 for i 6∈ A is a bijection. Furthermore we have |R| = |{0, 1}N|
using binary expansions and anti-symmetry of E. Q.E.D.

The continuum hypotheses, that there is no set A ⊆ R such that neither |A| = N|
nor |A| = |R|, is independent of the other axioms of set theory, see [10, 6].

At the end of the section we present a result showing again how ”big” the continuum
is:

Theorem 2.11. The set of C(R,R) of continuous functions f : R 7−→ R has cardi-
nality |R|.

Proof. We have

|RQ| = |RN| = |{0, 1}N×N| = |{0, 1}N| = |R|

using |Q| = |N × N| = |N|. But a continuous function on R is determined by its
values on the rational numbers. Hence |C(R,R)| E |RQ| = |R|. On the other hand
the constant functions are continuous hence |C(R,R)|D |R|. Q.E.D.

2.5 The axiom of choice with some consequences

The following axiom of set theory is the foundation for most part of modern mathe-
matics:

Axiom of choice: For any family of sets (Ai)i∈I with index set I there is a function

f : I 7−→
⋃
i∈I

Ai
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with f(i) ∈ Ai for all i ∈ I.9

The axiom seems to be self-evident, its consequences are not at all obvious. We
will use the axiom to find strong results on well-ordered sets. Therefore a definition:

Definition 2.5.1 An order is a well-ordering, if every subset of A has a minimal
element.

With this definition we obtain the following beautiful and strong result:

Theorem 2.12. Every non-empty partially ordered set, in which every chain (i.e.
ordered subset) has an upper bound, contains at least one maximal element.10

Proof. Let A be non-empty and partially ordered. Assume A has no maximal el-
ement. Then especially the upper bound of of any chain is not maximal. We proof
that under this assumption there is an unbounded chain. This is a contradiction.
Let W be the set of all well-ordered chains in A, then by the axiom of choice there
is a function

c : W 7−→ A

with C(K) ∈ A\K and c(K) > K. Now we call a chain K in A a special chain if K
is well ordered and

∀x ∈ K : C(Kx) = x where Kx = {y ∈ A|y < x}.

We prove that for two special chain K,L either K = L or K = Lx or L = Kx for
some x ∈ A, this implies that the union of special chains is a special chain. Assume
that K 6= L and Kx 6= L for all x ∈ A. Since K is well ordered K\L has a minimal
element k. Since L is well ordered L\Kk has a minimal element l. Now Kk = Ll and
hence k = l, which prove our claim.
Let K̄ be the union of all special chains. This is a special chain and especially a chain
and hence bounded by some a ∈ A. By assumption a is not in A. Hence there is
another b ∈ A with b > a. Thus b 6∈ K̄. On the other hand b ∪ K̄ is a special chain.
Hence b ∪ K̄ ⊆ K which implies b ∈ K̄. A contradiction. Q.E.D.

One surprising application of Zorn’s lemma is the following

Theorem 2.13. Every set has a well ordering.11

Proof. Let C be the set of all well ordered subsets of a set with the partial order

(C1, <1) < (C2, <2) :⇔ C1 ⊆ C2 and <1⊆<2 .

Every ordered subset of C has an upper bound by the union of elements of the or-
dered set. Hence by Zorn’s lemma there is a maximum, say (M,<) of C. Assume
M 6= A. Then there is a x ∈ A\M . But M ∪ {x} with the definition M < x is well

9 The axiom was first formulated by the German mathematician Ernst Zermelo (1871-1953).
10 This was proved by the American-German mathematician Max Zorn (1906-1993).
11 This theorem is due to Zermelo.
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ordered again. A contradiction to maximality. Hence M = A is well ordered.Q.E.D.

The theorem is in fact very strange, if we try to imagine a well ordering of the
reals. Another nice application of Zorn’s lemma can be found in the foundation of
linear algebra. We assume some basic notions in this field to prove:

Theorem 2.14. Every vector space has a basis.

Proof. The set Ξ of all linear independent subsets of a vector space V is partially
ordered by inclusion ⊆. Let C be a chain in Ξ, then C =

⋃
C∈CC is an upper bound

of this chain in Ξ. By the Zorn’s lemma there is a maximal element B in Ξ. For
every v ∈ V is set B ∪ {v} is not linear independent, hence v is a linear combination
of elements in B, and B is a basis of V . Q.E.D.

All the consequences of the axiom of choice presented here are in fact equivalent
to the axiom, see [9]. At the end of the section we introduce another nice fundamen-
tal set theoretical concept.

Definition 2.5.2 A filter F on a set X is a subset of P (X) such that

X ∈ F, ∅ 6∈ F

A,B ∈ F ⇒ A ∩B ∈ F
A ∈ F,A ⊆ B ⇒ B ∈ F.

A filter F is maximal, if there is no other filter G on X with F ⊂ G and a filter is
an ultra filter, if either A ∈ F or X\A ∈ F for all A ⊆ X .

The existence of an ultrafilter is a further consequence of the axiom of choice.

Theorem 2.15. Every filter can be extended to an ultra filter.12

Let F be a filter on X and F be the set of all filters on X that contain F . F is
partially ordered by inclusion. If C is a chain in F, the set

⋃
C is upper bound of C

in F. Hence by Zorn’s lemma there is a maximal filter that contains F . It remains to
show that a maximal filter is an ultrafilter. Assume that a filter F is not ultra. Let
Y ⊆ X be such that neither Y ∈ F nor X\Y ∈ F . Let G = F ∪ {Y }. This set has
the intersection property and may obviously be extended to a filter. Hence F is not
maximal. Q.E.D.

2.6 The Cauchy functional equation

This section is devoted to a strange and remarkable consequence of the axiom of
choice. We define:
12 This theorem is due to Polish logician and mathematician Alfred Tarski (1901-1983).
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Definition 2.6.1 A function f : R 7−→ R is additive, if it satisfies the Cauchy
equation

f(x+ y) = f(x) + f(y)

for all x, y ∈ R

Assuming the notion of continuity it is nice to see that:

Theorem 2.16. Every continuous additive function is linear.13

Proof. By additivity of f we have

qf(p/q) = f(p) = pf(1)⇒ f(p/q) =
p

q
f(1)

or all p, q ∈ N. Moreover f(1) = f(0) + f(1) hence f(0) = 0 and

f(x) = f(0)− f(−x) = −f(−x).

We thus see that f is linear on Q and by continuity linear on R. Q.E.D.

In fact it is enough to assume that the function is Lebesgue measurable, which implies
continuity for additive functions, see [?]. On the other hand by the axiom of choice
we have the following theorem.

Theorem 2.17. There are uncountable many nonlinear additive functions.14

Proof. Consider the real numbers R as a vector space over the field of rational
numbers Q. By theorem 2.12 there is a basis B of this vector space. This means that
any x ∈ R has a unique representation of the form

x =
n∑
i=1

ribi

with {b1, . . . , bn} ⊆ B and ri(x) ∈ Q. Let f : B 7−→ R be an arbitrary map and
define a extension f : R 7−→ R by

f(x) :=
n∑
i=1

rif(bi).

On the one hand an obvious calculation shows that f is additive. On the other hand
f is linear if and only f is linear on B. But there are uncountable many functions
f : B 7−→ R that are not linear. Q.E.D.

13 This is due to the French mathematician August Lois Cauchy (1889-1857).
14 This was proved by the German mathematician Georg Hamel (1877-1954).
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2.7 Ordinal Numbers and Goodstein sequences

Definition 2.7.1 An ordinal number is a well order set α with x = {y ∈ α|y < x}
for all x ∈ α. We define an order on the ordinal numbers by α < β if α ∈ β.15

Theorem 2.18. The ordinals are well ordered by <.

Proof. Let A be a set of ordinals than min(A) =
⋂
A is well ordered since the ele-

ments of A are well ordered. Moreover A is minimal since min(A) ∈ α for all α ∈ A.
Q.E.D.

Definition 2.7.2 Construct ordinals by

α + 1 = α ∪ {α}

for each ordinal α and

β =
⋃
α∈A

α

for a countable set of ordinals A. Especially

0 = ∅, n+ 1 = n ∪ {n}, ω =
∞⋃
i=0

i, (n+ 1)ω =
∞⋃
i=0

nω + i

ωn+1 =
∞⋃
i=0

iωn, ωω =
∞⋃
i=0

ωi, . . . , ε, . . .

0 < 1 < 2 < · · · < ω < ω + 1 < ω + 2 < · · · < ω + ω

= 2ω < 2ω + 1 < · · · < 3ω < · · · < · · · < ωω

= ω2 < · · · < ω3 < · · · < ωω < · · · < ωω
ω
< · · ·ωωω... = ε · · ·

Fig. 2.1. Ordinal numbers

The theory of ordinals has an elementary and beautiful consequence.

Definition 2.7.3 Given a number N ∈ N we define the Goodstein sequence recur-
sively. G2(N) = N . If Gn(N) is given, write Gn(N) in hereditary base n notation.
Replace n by n+1 and subtract one to obtain Gn+1(N). Consider for example N = 3 :

G2 = 3 = 220

+ 20 → G3 = 330

+ 30 − 1 = 330 → G4 = 440 − 1 = 40 + 40 + 40

→ G5 = 50 + 50 → G6 = 60 → G7 = 0.

15 Ordinal numbers were introduced by Cantor. . The definition given here is due to a Hungarian-American
mathematician John von Neumann (1903-1957).
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Theorem 2.19. All Goodstein sequences eventually terminate with zero,

∀N ∈ N ∃n ∈ N : Gn(N) = 0.16

Proof. We construct a parallel sequence of ordinal numbers not smaller than a given
Goodstein sequence by recursion. If Gn(N) is given in hereditary base n expansion,
replace n by the smallest ordinal number ω. The ”base change” operation in the
construction of the Goodstein sequence does not change the ordinal number of the
parallel sequences, on the other hand subtracting one is decreasing this sequence.
Since the ordinals are well-ordered the parallel sequences terminates with zero and
so does the Goodstein sequence. Q.E.D.

It can be shown that it is not possible to prove the theorem of Goodstein without
using cardinal numbers, see [13].

16 Found by the English mathematician Reuben Goodstein (1912-1985).
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Discrete Mathematics

3.1 The Pigeonhole principle

The pigeonhole principle seems to be almost trivial, if you put n pigeons to k holes,
one of holes contains at least dn/ke pigeons. Here dxe is the smallest number bigger
than x. To put the result more formally we have:

Theorem 3.1. Let f : A 7−→ B be a map between two finite sets with |A| > |B| than
there exists an b ∈ B with

|f−1(b)| ≥ d|A|/|B|e,
where dxe is the smallest number bigger than x.

Proof. If not, we would have |f−1(b)| < |A|/|B| for all b ∈ B hence

|A| =
∑
b∈B

|f−1(b)| < |A|,

a contradiction. Q.E.D.

Also the principle is very simple, it is a strong tool to prove result in discrete math-
ematics.

Theorem 3.2. In any group of n people there are at least two persons having the
same number friends (assuming the relations of friendship is symmetric).

Proof. If there is a person with n− 1 friends then everyone is a friend of him, that
is, no one has 0 friend. This means that 0 and n − 1 can not be simultaneously the
numbers of friends of some people in the group. The pigeonhole principle tells us that
there are at least two people having the same number of friends. ut
Theorem 3.3. In any subset of M = {1, 2, . . . , 2m} with at least m + 1 elements
there are numbers a, b such that a divides b.

Proof. Let {a1, . . . , am+1} ⊆M and decompose ai = 2riqi, where the qi are odd num-
bers. There are only n odd numbers in M hence one qi appears in the decomposition
of two different numbers ai and aj. Now ai divides aj if ai < aj. Q.E.D.
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Theorem 3.4. A sequence of nm + 1 real numbers contains an ascending sequence
of length m+ 1 or a descending sequence of length n+ 1 or both.

Proof. For one of the numbers ai let f(ai) be the length of the longest ascending
subsequence starting with ai. If f(ai) > m, we have the result. Assume f(ai) ≤ m.
By the pigeonhole principle there exists an s ∈ {1, . . .m} and a set A such that

f(x) = s for x ∈ A = {aji |i = 1 . . . n+ 1}.

Consider two successive numbers aji and aji+1
in A. If aji ≤ aji+1

, we would have an
ascending sequence of length s+1 with starting point aji , which implies f(aji) = s+1.
This is a contradiction. Hence the numbers form a descending sequence of length n+1.
Q.E.D.

There are many other combinatorial applications of the Pigeonhole principle, see
[11]. We like to include here a number theoretical application:

Theorem 3.5. For any irrational number α the set {[nα]|n ∈ N} is dense in [0, 1],
where [.] denotes the fractional part of a number.

Proof. Given ε > 0 choose M ∈ N, such that 1/M < ε. By the pigeonhole prin-
ciple there must be n1, n2 ∈ {1, 2, ...,M + 1}, such that n1α and n2α are in the
same integer subdivision of size 1/M (there are only M such subdivisions between
consecutive integers). Hence there exits p, q ∈ N and k ∈ {0, 1, ...,M − 1} such that
n1α ∈ (p + k/M, p + (k + 1)/M) and n2α ∈ (q + k/M, q + (k + 1)/M).This implies
(n2−n1)α ∈ (p− q−1/M, p− q+1/M) and [nα] < 1/M < ε. We see that 0 is a limit
point of [nα]. Now for an arbitrary p ∈ (0, 1] choose M as above. If p ∈ (0, 1/M ] we
are done, if not we have p ∈ (j/M, (j+1)/M ]. Setting k := sup{r ∈ N|r[na] < j/M},
one obtains |[(k + 1)na]− p| < 1/M < ε. ut

3.2 Binomial coefficients

Binomial coefficients play a basic role in combinatorial counting. Here comes the
definition:

Definition 3.2.1 For n, k ∈ N with k ≤ n the binomial coefficient is defined by

(
n
k

) =
n!

k!(n− k)!
,

where n! = 1 · 2 · . . . · n is the factorial.

Theorem 3.6. The Binomial coefficients are given by the Pascal triangle.1

1 The theorem is attributed to Blaise Pascal (1623-1662).
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Fig. 3.1. Pascal triangle

Proof.

(
n+ 1
k

) =
(n+ 1)!

k!(n+ 1− k)!
=
n!(n+ 1− k) + n!k

k!(n+ 1− k)!
=

n!

k!(n− k)!
+

n!

(k − 1)!(n+ 1− k)!

= (
n
k

) + (
n

k − 1
)

Q.E.D.

As the first application we count coefficients in the expansion of the binomial.

Theorem 3.7.

(a+ b)n =
n∑
k=0

(
n
k

)akbn−k 2

Proof. We prove the theorem by induction. n = 1 is obvious. Assume the equation
for n ∈ N. We have

(a+ b)n+1 = (a+ b)(a+ b)n = (a+ b)
n∑
k=0

(
n
k

)akbn−k

=
n∑
k=0

(
n
k

)ak+1bn−k +
n∑
k=0

(
n
k

)akbn+1−k =
n+1∑
k=0

(
n

k − 1
)akbn+1−k +

n+1∑
k=0

(
n
k

)akbn+1−k

=
n+1∑
k=0

((
n

k − 1
) + (

n
k

))akbn+1−k =
n+1∑
k=0

(
n
k

)akbn+1−k = (a+ b)n+1.

This is the equation for n+ 1. Q.E.D.

2 This is due to the English physicist and mathematician Isaac Newton (1643-1727).
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The second application of Binomial coefficients can be found in elementary counting
tasks.

Theorem 3.8.

(1) There are (
n
k

) possibilities to take k Elements from n Elements without repetition

and ordering.

(2) There are k!(
n
k

) = n!
(n−k)! possibilities to take k Elements from n Elements without

repetition with ordering.

(3) There are (
n+ 1− k

k
) possibilities to take k Elements from n Elements with

repetition but without ordering.
(4) There are nk possibilities to take k Elements from n Elements with repetition and
ordering.

Proof. (1) Induction by n. n = 1 is obvious. Assume (1) for n and consider a set X

with n+ 1 elements. Fix one element x ∈ X. Then by (1) there are (
n
k

) possibilities

to choose a set with k elements from X without x and there are (
n

k − 1
) possibilities

to choose a set with k elements from X with one element being x. The Pascal trian-

gle gives (
n+ 1
k

) possibilities to choose a set with k elements form a set with n + 1

elements.
(2) There are k! possibilities to order a set with k elements. Hence (2) follows directly
from (1).
In (3) without loss of generality we want to choose k-elements 1 ≤ a1 ≤ . . . ≤ ak ≤ n
from {1, . . . , n}. With bj := aj + j − 1 we have 1 ≤ b1 < . . . < bk ≤ n + k − 1. By

(1) there are (
n+ 1− k

k
) possibilities to choose these bj, but the map between the

elements aj and elements bj is a bijection, so the result follows.
(4) is obvious by induction. Q.E.D.

3.3 The inclusion exclusion principle and derangements

As the pigeonhole principle above the inclusion exclusion principle is a strong tool in
combinatorics.

Theorem 3.9. Let A1, A2, . . . , An, be finite sets than

|
n⋃
k=1

Ak| =
n∑
k=1

(−1)k+1
∑

1≤i1<i2<...<ik<n

|Ai1 ∩ Ai2 ∩ . . . Aik |.
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Proof. Let A =
⋃n
k=1Ak and 1B be the indicator function of B ⊆ A. We show that

1A =
n∑
k=1

(−1)k+1
∑

|I|=k, I⊂{1,...,n}

1AI ,

where AI =
⋂
i∈I Ai. Summing the equation over all x ∈ A gives the result. By

expanding the following product using 1Ai1Aj = 1A{i,j} , we have

n∏
k=1

(1A − 1Ak) = 1A −
n∑
k=1

(−1)k+1
∑

|I|=k, I⊂{1,...,n}

1AI .

If x ∈ A, one factor in the product is zero, if x 6∈ A all are zero, hence the function
here is identical zero, which proves the claim. Q.E.D.

We apply the inclusion-exclusion principle to permutations.

Definition 3.3.1 A permutation of {1, . . . , n} which has no fix point is a derange-
ment.

Theorem 3.10. The number of derangements dn is given by

dn = n!(
n∑
k=0

(−1)k
1

k!
) ≈ n!/e.

Proof. Let Ak be the set of permutations that fix k. We have |Ai1 ∩Ai2 ∩ . . . Aik | =
(n− k)!. Hence by the inclusion exclusion principle

cn = n!− |
n⋃
k=1

Ak| = n!−
n∑
k=1

(−1)k+1
∑

1≤i1<i2<...<ik<n

(n− k)!

= n!−
n∑
k=1

(−1)k+1(
n
k

)(n− k)! = n!−
n∑
k=1

(−1)k+1n!

k!
= n!(

n∑
k=0

(−1)k
1

k!
).

The asymptotic formula follows from definition 5.7.1 of the Euler number e. Q.E.D.

3.4 Trees and Catalan numbers

In this section we have a look at graphs without loops. Therefore a definition.

Definition 3.4.1 A graph is a forest if it has no loops. A tree is a connected forest.
A binary tree is a rooted tree in which each vertex has at most two children.
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Fig. 3.2. Labeled trees

Theorem 3.11. There are nn−1 different binary trees with n labeled vertices.3.

Proof. We proof a more general result for forests. Let A = {1, . . . k} be a set of
vertices, and let Tn,k be the number of forest on 1, . . . , n that are rooted in A. Let
F be one of this forests. Assume the 1 ∈ A has i neighbors. If we delete 1 we get
a forest F

′
with roots in {2, . . . , k − 1} ∪ { neighbors of i} and there are Tn−1,k−1+n

such forests. The other way we construct a forest F by fixing i and than choose i
neighbors of 1 in {k + 1, . . . , n} and thus get the forest F

′
. Therefore we have the

recursion

Tn,k =
n−k∑
i=0

(
n− k
i

)Tn−1,k−1+i

with T0,0 := 1 and Tn,0 := 0. By induction we will prove that

Tn,k = knn−k−1.

This gives the result since Tn,1 = nn−1 is the number of tress with one root. Using the
formula for Tn,k in the first step and the assumption of the induction in the second
step we get:

Tn,k =
n−k∑
i=0

(
n− k
i

)Tn−1,k−1+i =
n−k∑
i=0

(
n− k
i

)(k − 1 + i)(n− 1)n−1−k−i

=
n−k∑
i=0

(
n− k
i

)(n− 1)i −
n−k∑
i=1

(
n− k
i

)i(n− 1)i−1

3 This is a result of the English mathematician Arthur Cayley (1821-1894).
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= nn−k − (n− k)
n−1−k∑
i=0

(
n− 1− k

i
)(n− 1)i

= nn−k − (n− k)nn−1−k = knn−k−1

This completes the induction. Q.E.D.

To determine the number of full binary trees we need a special sequence of num-
bers.

Definition 3.4.2 The Catalan numbers Cn are given by the recurrence relation

Cn+1 =
n∑
i=0

CiCn−i

with C0 = 1.4

The Catalan numbers may by calculated using Binomial coefficients.

Theorem 3.12.

Cn =
1

n+ 1
(
2n
n

)

Proof. Consider the generating function

c(x) =
∞∑
n=0

Cnx
n,

than

c(x)2 =
∞∑
k=0

(
k∑

m=0

CmCm−k)x
k =

∞∑
k=0

Ck+1x
k = xc(x) + 1

with the solution

c(x) =
1−
√

1− 4x

2x
.

The other solution has a pole at x = 0 which does not give the generating function.
By the (generalized) Binomial theorem we get by some simplification,

√
1− 4x = 1− 2

∞∑
n=1

1

n
(
2n− 2
n− 1

)xn = 1−
∞∑
n=1

Cn−1x
n,

hence

c(x) =
∞∑
n=0

1

n+ 1
(
2n
n

)xn.

Q.E.D.

4 This numbers where introduced by the Belgian mathematician Eugene Charles Catalan (1814 - 1894).
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Theorem 3.13. Cn is the number of full binary trees with n vertices.

Proof. Let Tn be the number of binary trees with n vertices. The numbers binary
trees, with n vertices and j left subtrees and n− 1− j right subtrees with respect to
the root, is TjTn−1−j. Summing up over all possible numbers of right and left subtrees
gives

Tn =
n−1∑
j=0

TjTn−1−j,

but this is the recursion for the Catalan numbers. Q.E.D.

There are more than fifty other combinatorial application of the Catalan numbers,
[23].

Fig. 3.3. Binary trees with four vertices

3.5 Ramsey theory

Now we come to graphs with colored edges. The following famous theorem is quite
simple to prove:

Theorem 3.14. For any (r, s) ∈ N2 there exists at least positive integer R(r, s) such
that for any complete graph on R(r, s) vertices, whose edges are colored red or blue,
there exists either a complete subgraph on r vertices which is entirely blue, or a
complete subgraph on s vertices which is entirely red. Moreover

R(r, s) ≤ (
r + s− 2
r − 1

).

5

5 This is a lemma of the British mathematician Frank Plumpton Ramsey (1903-1930).
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Proof. We prove the result by induction on r + s. Obviously R(r, 2) = r and
R(2, s) = s which starts the induction. We show

R(r, s) ≤ R(r − 1, s) +R(r, s− 1).

By this R(r, s) exists under the induction hypothesis that R(r− 1, s) and R(r, s− 1).
Consider a complete graph on R(r− 1, s) +R(r, s− 1) vertices. Pick a vertex v from
the graph, and partition the remaining vertices into two sets M and N , such that
for every vertex w, w ∈ M if (v, w) is blue, and w ∈ N if (v, w) is red. Because the
graph has R(r − 1, s) + R(r, s − 1) = |M | + |N | + 1 vertices, it follows that either
|M | > R(r − 1, s) or |N | > R(r, s − 1). In the former case, if M has a red complete
graph on s vertices, then so does the original graph and we are finished. Otherwise
M has a blue complete graph with r − 1 vertices and so M ∪ {v} has blue complete
graph on k vertices by definition of M . The latter case is analog. With the starting
values we get the upper bound on R(r, s) by the recursion 3.1 for binomial coeffi-
cients. Q.E.D.

The next result is a nice application of the Ramsey’s theorem.

Theorem 3.15. In any party of at least six people either at least three of them are
(pairwise) mutual strangers or at least three of them are (pairwise) mutual acquain-
tances.

Proof. Describe the party as a complete graph on 6 vertices where the edges are
colored red if the related people are mutual strangers and blue if not. With this we
just have to show R(3, 3) ≤ 6. Pick a vertex v. There are 5 edges incident to v at
least 3 of them must be the same color. Assume (without loss of generality) that
these vertices r, s, t are blue. If any of the edges (r, s), (r, t), (s, t) are also blue, we
have an entirely blue triangle. If not, then those three edges are all red and we have
an entirely red triangle. Q.E.D.

The following figure shows a 2-colored graph on 5 vertices without any complete
monochromatic graph on 3 vertices. Hence R(3, 3) = 6.
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Fig. 3.4. A 2-coloring of complete graph

3.6 Sperner’s lemma and Brouwers’s fix point theorem

In this section we color graphs with three colors.

Definition 3.6.1 A Sperner coloring of a triangulation T of triangle ABC is a 3-
coloring, such that A,B,C have different colors and the vertices of T on each edge
of triangle use only the two colors of the endpoints.

Theorem 3.16. Every Sperner colored triangulation contains a triangle whose ver-
tices have all different colors.6

Proof. Let q denote the number of triangles colored AAB or BAA and r be the
number of rainbow triangles, colored ABC. Consider edges in the subdivision whose
endpoints receive colors A and B. Let x denote the number of boundary edges colored
AB and y bd the number of interior edges colored AB (inside the triangle T ). We
now count in two different ways. First we count over the triangles of the subdivi-
sion: For each triangle of the first type, we get two edges colored AB, while for each
triangle of second type, we get exactly one such edge. Note that this way we count
internal edges of type AB twice, whereas boundary edges only once. We conclude
that 2q + r = x+ 2y. Now we count over the boundary of T : Edges colored AB can
be only inside the edge between two vertices of T colored A and B. Between vertices
colored A and B there must be an odd number of edges colored AB. Hence, x is odd.
This implies that r is also odd and especially not zero. Q.E.D.

These combinatorial result can be used to give a simple prove of Brouwers’s fix point
theorem:

Theorem 3.17. Every continues function of a disk into itself has a fixed point.7

6 This is a lemma of the German mathematician Emanuel Sperner (1905-1980).
7 This theorem was proved by the Dutch mathematician L.E.J. Brouwer (1881-1966)
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Proof. We prove the result here for a triangles instead of disks. (The original the-
orem follows from the fact that any disc is homömorphic to any triangle). Let Λ be
the triangle in R3 with vertices e1 = (1, 0, 0), e2 = (0, 1, 0) and e3 = (0, 0, 1), that is

Λ = {(a1, a2, a3) ∈ [0, 1]3|a1 + a2 + a3 = 1}.

Define a sequence of triangulations T1, T2, T3, . . . of Λ, such that δ(Tk) 7−→ 0, where
δ is the maximal length of an edge in a triangulation.
Now suppose that a continuous map f : Λ 7−→ Λ has no fixed point. Color vertices in
the following with the colors 1, 2, 3. For each v ∈ T , define the coloring of v to be the
minimum color i such that f(v)i < vi, that is, the minimum index i such that the i-th
coordinate of f(v)− v is negative. This is well-defined assuming that f has no fixed
point because we know that the sum of the coordinates of v and f(v) are the same.
We claim that the vertices e1, e2 and e3 are colored differently. Indeed, they maximize
a different coordinate and hence are first negative at this coordinate. Furthermore, a
vertex on the e1e2 edge has a3 = 0, so that f(v)−v has nonnegative third coordinate
and is hence colored 1 or 2. The same is true for the other coordinates.
Now applying Sperner’s lemma, for any triangulation Tk there is a triangle Λk whose
vertices have all different colors. Furthermore every sequence in a compact space has
a convergent subsequence, see section 6.1. So there is some subsequence of the trian-
gles Λk that converges to some point x. By the construction we obtain f(x)i = xi for
each coordinate, hence x is a fixed point. Q.E.D.

Using induction on the dimension it is possible to prove Sperner’s lemma and with
this the fix point theorem in higher dimensions [22].

3.7 Euler walks

Let us now take a walk on a graph.

Definition 3.7.1 An Euler walk is a closed path on a graph that uses each edge
exactly once.

The question under what conditions such a walk exists, was answered by Euler.

Theorem 3.18. An Euler walk on an finite connected graph exists if and only if the
degree of every vertex is even.8

Proof. We first proof the ”only if” part. Consider a closed Euler walk. We leave
every vertex on a different edge. So the degree of each vertex must be even, since it
is twice the number of times it has been visited. For the ”if” part we use induction
on the number of edges k. For k = 1 the result is obvious. Assume that we have the
result for all graphs with fewer than k edges. Now suppose G is a connected graph
with k edges such that the degree of each vertex is even. The degree of each vertex

8 Proved by the Swiss mathematician Leonard Euler (1707-1783).
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is at least two since the graph is connected. So the number of edges is at least the
number of vertices, so G is not a tree and hence has a cycle C. If we remove the
edges of C from G we obtain a graph G

′
with fewer than k edges and all vertices of

even degree. Now G2 does not have to be connected. So let H1, . . . , Hi be connected
components of G2. By induction hypotheses we have an Euler walk Wj on each Hj.
Moreover Hj has a vertex vj in common with C. We may assume Wj to start and
finish with vj. Now we construct an Euler walk on G in the following way. We walk
around C, every time we come to a vertex vj we follows the walk Wj and than con-
tinue around C. Q.E.D.

Corollary 3.19. An Euler walk with different starting and ending vertex exists if and
only if the degree of these vertices is odd.

Proof. Just divide resp. identify a starting point. Q.E.D.

We may apply the result to the bridges of Königsberg.

Fig. 3.5. The Bridges of Königsberg
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Geometry

4.1 Triangles

The most basic geometrical theorem on all triangles is:

Theorem 4.1. The sum of interior angles in a triangle is 180◦.

Proof. Consider a triangle ABC. The line AB is extended and the line BD is con-
structed so that it is parallel to line segment AC. If two parallel lines are cut by
a transversal, alternate interior angles are congruent and corresponding angles are
congruent, hence d = c and a = e. Now angles on a straight line add up to 180. Hence
a+ b+ c = 180◦ given the result. Q.E.D.

Fig. 4.1. Sum of angles in a triangle

Now we describe some nice ancient results on right triangles.

Theorem 4.2. A triangle inscribed in a a circle such that one side is a diameter has
a right angle opposite to this side.1

Proof. Split the triangle into two isosceles triangles by a line from center of the cir-
cle to point at the angle in question. The angle is spliced by the line into angles α and

1 This theorem is attributed to the Greek philosopher Thales of Milet (624-546 BC).
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β. Since base angles of equilateral triangles are equal we get α+ (α+ β) + β = 180◦

implying α + β = 90◦. Q.E.D.

Fig. 4.2. Theorem of Thales

Theorem 4.3. In a right triangle the altitude is the geometric mean of the two seg-
ments of the hypotenuse. 2

Proof. By considering angles we see that the triangles ACD and BCA are congurent
hence

|AC|
|CD|

=
|CB|
|AC|

given
|AC| =

√
|CD||CB|

Q.E.D.

Fig. 4.3. The altitude of a right triangle

Theorem 4.4. In any right triangle be have

a2 + b2 = c2

where c is the length of the hypotenuse and a and b are the length of the legs. 3

Proof. Construct a square with side length a+ b by four not overlapping copies of
the triangle with middle square of side length c. By calculating the area of this square
directly and as sum of the area of parts we have

2 The theorem can be found in the ”Elements” of Euklid (360-280 B.C.)
3 This theorem the attributed to ancient Greek mathematician Pythagoras (570-495 BC
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(a+ b)2 = 4(ab/2) + c2.

given the result. Q.E.D.

Fig. 4.4. Proof of the theorem of Pythagoras

To study arbitrary triangles we introduce the geometric cosine, compare with 5.7
for the analytic definition

Definition 4.1.1 Given a right triangle the cosine of an angle cos(α) is the ratio of
the length of the adjacent side to the length of the hypotenuse.

Theorem 4.5. In any triangle with side length a, b, c we have

c2 = a2 + b2 − 2ab cos γ

where the angle γ is opposite to side of length c. 4

Proof. Extend the line of length b by length d to get a right triangle with hight h.
Applying Pythagoras gives

(b+ d)2 + h2 = c2

and
d2 + h2 = a2

which yield
c2 = a2 + b2 + 2bd

On the other hand using the geometric definition of cos we have

cos γ = − cos(π − γ) = −d/a.

Q.E.D.

4 This theorem also goes back to Euklid (360-280 B.C.)
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Fig. 4.5. Proof of the low of cosine

Theorem 4.6. The area of a triangle with side length a, b, c is

A =
√
s(s− a)(s− b)(s− b)

with s = (a+ b+ c)/2.5.

Proof. By the low of cosine we have

cos γ =
a2 + b2 − c2

2ab

Hence

sin γ =
√

1− cos2 γ =

√
4a2b2 − (a2 + b2 − c2)2

2ab

The altitude ha of the triangle of the side of length a is given by b sin γ. Hence

A =
1

/
2aha =

1

2
ab sin γ =

1

4

√
4a2b2 − (a2 + b2 − c2)2

leading to the result. Q.E.D.

4.2 Quadrilaterals

Theorem 4.7. The sum of the angles in a quadrilateral is 360◦

Proof. Divide the quadrilateral into two triangles. The sum of interior angles in
each rectangle is 180◦ summing up to 360◦. Q.E.D.

We present here two beautiful results on cyclic quadrilateral (inscribed into a cir-
cle) with are easier to handel than arbitrary quadrilaterals.

Theorem 4.8. In a cyclic quadrilateral the product of the length of its diagonals is
equal to the sum of the products of the length of the pairs of opposite sides.6

5 This is attributed to the ancien mathematician Heron of Alexandria (10-70)
6 This result is attributed to the Greek astronomer and mathematician Ptolemy (90-168).
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Proof. On the diagonal BD locate a point M such that angles ACB and MCD
be equal. Considering angles we see that the triangles ABC and DMC are similar.
Thus we get

|CD|
|MD|

=
|AC|
|AB|

or |AB||CD| = |AC||MD|. Now, angles BCM and ACD are also equal; so triangles
BCM and ACD are similar which leads to

|BC|
|BM |

=
|AC|
|AD|

or |BC||AD| = |AC||BM |. Summing up the two identities we obtain

|AB||CD|+ |BC||AD| = |AC||MD|+ |AC||BM | = |AC||BD|

Q.E.D.

Fig. 4.6. A cyclic quadrilateral

Theorem 4.9. The area of a cyclic quadrilateral with side length a, b, c, d is given by

A =
√

(s− a)(s− b)(s− c)(s− d)

with s = (a+ b+ c+ d)/2. 7

7 This result is attributed to the Indian mathematician Brahmagupta (598-668)
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Proof. Dividing the quadrilateral into two triangles and using trigeometry for the
altitude of the triangles we get

A =
1

2
sin(α)(ab+ cd)

Multiplying by 4, sqauring and using sin2(α) = 1− cos2(α) gives

4A2 = (1− cos2(α))(ab+ cd)2

By the low of cosine

2 cos(α)(ab+ cd)2 = a2 + b2 − c2 − d2

hence

4A2 = (ab+ cd)2 − 1

4
(a2 + b2 − c2 − d2)2

leading to the result. Q.E.D.

Both theorems may be generalized to arbitrary quadrilateral, see [?]. The formu-
lation of the theorems and its proves is getting more involved with this. For the
shake of simplicity we decided to skip this.

4.3 The golden ratio

The golden ratio has fascinated mathematician, philosophers and artist for at least
2,500 years, here is the definition:

Definition 4.3.1
Two quantities a, b ∈ R with a > b are in the golden ration if

a+ b

a
=
a

b
=: φ

The golden ration φ is given by (
√

5 + 1)/2 ≈ 1.618 a solution of x2 − x− 1 = 0.8

8 Ancient mathematicians like Pythagoras (570-495 BC) and Euclid (360-280 B.C.) have know the golden
ratio.
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Fig. 4.7. The golden ratio

The golden ratio is related to the regular pentagon, a beautiful figure:

Theorem 4.10. In a regular pentagon the diagonals intersect in the golden ratio and
the ratio of diagonal length to side length is as well the golden ratio.

Proof. Denote the edges of the pentagon by A, B, C, D, E and let M be the the point
of intersection of the diagonals AC and BD. The triangles ACB and BCM are con-
gruent hence BC/MC=AC/BC. (This can be seen considering the angel sum of the
pentagon 3π. The angle BAE is 3/5π and the angle ABE is π/5. Hence AMB = 3/5π
as well). On the other hand AMDE is a parallelogram hence MA=DE=BC. (This can
be again seen by considering angels) This gives MA/MC = AC/MA = AC/BC = φ
since MA+MC = AC, proving the result. Q.E.D.

Fig. 4.8. The pentagon

Moreover the golden ratio is intimately related to the fibonacci sequences defined
now.

Definition 4.3.2 The Fibonacci sequence is given by fn+1 = fn + fn−1 with f0 = 0
and f1 = 1. 9

9 Named after the Italian mathematician Fibonacci (1180-1241)
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Theorem 4.11.

fn =
1√
5

(φn − (−φ)−n)

where φ is the golden ratio.10

Proof. Since xn+1 = xn + xn−1 for x = φ and x = −φ−1 the sequences

sn = c1φ
n + c2(−φ)−n

fulfill the fibonacci recursion. With s0 = 0 and s1 = 1 we get c1 = −c2 = 1√
5
. Q.E.D.

4.4 Lines in the plan

The study of configurations of lines in the plan is one basic subject of combinatorial
geometry. The following two lovely theorems form a basis of this field.

Theorem 4.12. Given a finite number of points in the plane, either all the points lie
in the same line; or there is a line which contains exactly two of the points. 11

Proof. We prove the theorem by contradiction. Suppose that we have a finite set
of points S not all collinear but with at least three points on each line.
Define a connecting line to be a line which contains at least two points in the col-
lection. Let (P, l) be the point and connecting line that are the smallest positive
distance apart among all point-line pairs. By the assumption, the connecting line l
goes through at least three points of S, so dropping a perpendicular from P to l there
must be at least two points on one side of the perpendicular. Call the point closer
to the perpendicular B, and the farther point C. Draw the line m connecting P to
C. Then the distance from B to m is smaller than the distance from P to l, since
the right triangle with hypotenuse BC is similar to and contained in the right trian-
gle with hypotenuse PC. Thus there cannot be a smallest positive distance between
point-line pairsevery point must be distance 0 from every line. In other words, every
point must lie on the same line if each connecting line has at least three points. Q.E.D.

Theorem 4.13. Any set of n ≥ 3 noncollinear points in the plane determines at
least n different connecting lines. Equality is attained if and only if all but one of the
points are collinear. 12

10 This formula is attributed to the French mathematician Jacque Binet (1786-1856), also it was know to
Euler and Bernoulli.

11 This theorem was conjectured by the English mathematician James Joseph Sylvester (1814-1897) and
first proved by the Hungarian mathematician Tibor Gallai (1912-1992) .

12 This was observed by the Hungarian mathematician Paul Erdos̈ (1913-1996)
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Fig. 4.9. Proof of the theorem of SylvesterGallai

Proof. We prove the first part of the theorem by induction. The result is obvious
for n = 3. If we delete one of the points that lie on an ordinary line, then the number
of connecting lines induced by the remaining point set will decrease by at least one.
Unless the remaining point set is collinear the result follows. However, in the latter
case, our set determines precisely n connecting lines. For the second part of the the-
orem just consider a near-pencil (a set of n − 1 collinear points together with one
additional point that is not on the same line as the other points). Q.E.D.

4.5 Construction with compass and ruler

Constructions with compass and ruler are a classical topic in geometry. A nice char-
acterization of constructible numbers is given by:

Theorem 4.14. We can construct a real number with compass and ruler from {0, 1}
if and only if it is in a field given by quadratic extensions of the rational numbers.

Proof. Given two points a, b on the line we construct a + b, a − b, ab, a/b by el-
ementary geometry. Hence we can construct the field of all rational numbers from
{0, 1}. Using the theorem of Thales and Pythagoras we see that we also can con-
structed

√
a given a hence we can construct all fields given by quadratic extensions

of the rationales. On the other hand the only way to construct points in the plane is
given by the intersection of two lines, of a line and a circle, or of two circles. Using
the equations for lines and circles, it is easy to show that coordinates of points at
which they intersect fulfill linear or quadratic equations. Hence all points on the line
that are constructible lie a filed given by quadratic extension of the rationales. Q.E.D.

The question which basic constructions are not possible with square and ruler re-
maind open for a long time. Now we have:

Theorem 4.15. Squaring the circle, doubling the cube and trisecting all angles is
impossible using compass and ruler.
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Fig. 4.10. Basic constructions with compass and ruler

Proof. If we square the circle we constructed
√
π. This is impossible since

√
π is

transcendental and hence not in a field given by quadratic extensions. Here we pre-
suppose the transcendence of π, see [15]. If we double the cube we construct 3

√
2.

This is impossible since 3
√

2 is an extension of degree three and hence not in a field
given by quadratic extensions. If we trisect the angle 60◦ we construct cos(20◦). The
minimal polynomial of this number is p(x) = x3 − 3x − 1 by trigonometry. Since
the polynomial is irreducible cos(20◦) is not in a field given by quadratic extensions.
Q.E.D.

4.6 Polyhedra formula

We will formulate and proof Euler’s polyhedra formula in graph theoretic language
since this prove is nice and short.

Theorem 4.16. For a connected planar graph G with vertices V , edges E and faces
F we have

|V | − |E|+ |F | = 2.
13

Proof. Let T be a spanning tree of G, this is a minimal subgraph containing all
edges. This graph has no loops.
Consider the dual graph G?. This is constructed by putting vertices V ? in each face
of F and connecting them by edges E? crossing the edges in E. Now consider the
edges T ? ⊆ E? in G? corresponding to edges E\T . The edges of T ? connect all faces
F , since T has no loops. Moreover T ? itself has no loops. If it had loops vertices inside
the loop would be separated from vertices outside the loop which contradicts T to
be a spanning tree. Hence T ? itself is a spanning tree of G?.
Now let E(T ) by the edges of T and E(T ?) be the edges of T ?. The number of
vertices of each tree is the number of edges of the tree plus one (the root!). Hence
E(T ) + 1 = |V | and E(T ?) + 1 = |F | and

|V |+ |F | = |E(T )|+ |E(T ?)|+ 2 = |E(T )|+ |E(E\T )|+ 2 = |E|+ 2.
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Q.E.D.

Using the Polyhedra formula we can characterize the platonic solids (regular con-
vex polyhedron with congruent faces).

Theorem 4.17. There are fife platonic solids.14

Fig. 4.11. The Platonic solids

Proof. Let n be the number of vertices and edges of a face and m the number of
edges adjacent to one vertex. In a platonic solid n and m are constant. Summing
over all faces gives n|F | edges where each edge is counted twice, hence n|F | = 2|E|.
Summing over all vertices gives m|V | edges where each again each edge is counted
twice. Hence m|V | = 2|E|. Using the Euler formula this gives

1

m
+

1

n
=

1

2
+

1

|E|

To construct a solid we necessary have m,n ≥ 3 leading to fife possible platonic
solids with (m,n) = (3, 3), (3, 4), (3, 5), (4, 3), (5, 3). All this solids are constructible,
see figure 4.1. Foies (m,n) = (3, 3) we get the tetrahedra with (V,E, F ) = (4, 6, 4), for
(m,n) = (3, 4) the cube with (V,E, F ) = (8, 12, 6), for (m,n) = (4, 3) the Octahedra
with (V,E, F ) = (6, 12, 8), for (m,n) = (3, 5) icosahedra with (V,E, F ) = (12, 30, 20)
and for (m,n) = (5, 3) the dodecahedral with (V,E, F ) = (20, 30, 12). Q.E.D.

14 Named after the ancient Greek philosopher Plato (428-348 BC).
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4.7 Non-euclidian geometry

Any axiomatic geometry based on an incidence axiom, an order axiom, a congruence
axiom a continuity axiom and a parallel axiom, [?]. The last axiom is independent of
the other and gives three different types of geometries.

Definition 4.7.1 A geometry is euclidian if for any line L and any point x not on
the line there is exactly one line parallel to P that meets x. A geometry is elliptic if
such a parallel does not exits, it is hyperbolic if there infinity many such parallels.

Theorem 4.18. There are models of all three types of geometries.

Proof. A model of the Euclidian geometry obviously is the plane R2.
Now consider the unit sphere S2 = {(x, y, z) ∈ R3|x2 + y2 + z2 = 1} and identify
antipodal points. This defines the set of all points of a geometry. A line line in this
geometry is given by a great circle in S2 where we again identify antipodal points. It
is obvious that this geometry is elliptic since any two great circles intersect in two
antipodal points.
To construct a hyperbolic geometry consider the upper half plan H = {(x, y) ∈
R2|y > 0}, this describes the set of all points of the geometry. The lines of the geom-
etry are given by vertical lines and semicircles in H which meet the axis orthogonally.
Given such a semicircle or a vertical line L and a point not on it there obviously
exists infinitely many semicircles that meet the point without intersecting L. Q.E.D.

These models may be generalized to n-dimensional geometries based on Rn, Sn+1

and Hn, see [?]. We include here figures describing a ecliptic and hyperbolic geome-
try.

Fig. 4.12. The spherical Model of elliptic geometry



4.7 Non-euclidian geometry 41

Fig. 4.13. The upper half plane model of hyperbolic geometry
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Analysis

5.1 Series

As a warm up to this chapter we present beautiful results on infinite series presup-
posing the notion of convergence and very basic results on limits, see for instance
[20].

Theorem 5.1. For q ∈ (0, 1) we have

∞∑
k=0

qk =
1

1− q
. 1

Proof. By induction we see that

n∑
k=0

qk =
1− qn+1

1− q
.

Taking the limit gives the result. Q.E.D.

Theorem 5.2. For the triangle numbers Tn = n(n+ 1)/2 we have

∞∑
n=1

1

Tn
= 2. 2

Proof.
∞∑
n=1

1

Tn
= 2

∞∑
n=1

1

n(n+ 1)
= 2

∞∑
n=1

(
1

n
− 1

(n+ 1)
) = 2.

1 This formula was know to the acient Greek mathematician, physicist, and inventer Archimeds (287-212
BC)

2 Attributed to the German philosopher and mathematician Gottfried Wilhelm von Leibniz (1646-1716)
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Theorem 5.3. Let

Hn :=
n∑
k=1

1

k

be the n-th harmonic number. The harmonic series Hn diverges3. On the other hand

lim
n7−→∞

Hn − log(n) = γ

where γ ≈ 0.57721 is Euler-Mascheroni constant. 4.

Proof. First note that

∞∑
n=1

1

n
= 1 +

∞∑
k=0

2k∑
n=1

1

2k + n
≥

∞∑
k=0

2k
1

2k+1
=
∞∑
k=0

1/2 =∞.

Furthermore using elementary properties of integration, see [20] we have

Hn − log(n) = Hn −
∫ n

1

1

x
dx ≥ Hn −

n−1∑
k=1

1

x
=

1

n
> 0

and

Hn+1−log(n+1) = Hn−log(n+1)+
1

n+ 1
= Hn−log(n)−

∫ n+1

n

1

x
dx+

1

n+ 1
≤ Hn−log(n).

This means that sequence Hn− log(n) is positive and monotone decreasing and hence
converges. Q.E.D.

Theorem 5.4. We have
∞∑
n=1

(−1)n−1
1

n
= log(2). 5

Proof. Considering formal power series we have

∂ log(x+ 1)

∂x
=

1

x+ 1
=
∞∑
n=0

(−1)nxn.

Integrating gives

log(x+ 1) =
∞∑
n=0

(−1)n
1

n+ 1
xn+1.

The converges of the series for x ∈ (0, 1] is guaranteed considering partial sums

3 This result is due to the french philosopher Nicole Oreseme (1323-1382)
4 Due to Leonard Euler (1707-1783) and Lorenzo Mascheroni (1750-1800)
5 Proved by the mathematician Nicholas Mercator (1620 -1687)
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P2k =
2k∑
n=0

(−1)2k
1

n+ 1
xn+1 P2k+1 =

2k+1∑
n=0

(−1)2k
1

n+ 1
xn+1

which are monotone and bounded and hence convergent. Since the difference P2k −
P2k+1 goes to zero Pk converges as well. Now setting x = 1 gives the result. Q.E.D.

5.2 Inequalities

The key tool in may analytic proofs are inequalities. We present three important
inequalities starting with the arithmetic and geometric mean.

Theorem 5.5. For positive real numbers ai for i = 1, . . . , n we have

√
a1a2a3 . . . an ≤

a1 + a2 + . . . an
n

. 6

Proof. Denote the inequality by I(n). Obviously I(2) is correct. We proof I(n) ⇒
I(n − 1) and I(n) ∧ I(2) ⇒ I(2n). The theorem follows by induction. For the first
implication let

A =
n−1∑
k=1

ak/(n− 1).

By the assumption we have,

A
n−1∏
k=1

ak ≤ (

∑n−1
k=1 ak + A

n
)n = An.

Hence
n−1∏
k=1

ak ≤ An−1.

To see the second implication consider

2n∏
k=1

ak =
n∏
k=1

ak

2n∏
k=n+1

ak ≤I(n) (
n∑
k=1

ak/n)n(
2n∑

k=n+1

ak/n)n

≤I(2) (

∑2n
k=1 ak/n

2
)2n = (

∑2n
k=1 ak/n

2n
)n.

Q.E.D.

The nexte inequalities concern the Euclidian structor of Rn we now introduce;

6 Also due to Cauchy (1789 - 1857).
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Definition 5.2.1 Define an inner product 〈., .〉 on Rn by

〈x, y〉 =
n∑
i=1

xiyi

This obviously is a positive definite bilinear and symmetric form. The number

||x|| =
√
〈x, x〉

is called the Euclidean norm on x ∈ Rn.

Theorem 5.6.

|〈x, y〉| ≤ ||x|| · ||y||.7

Proof. The inequality is trivial true if y = 0 thus we may assume 〈y, y〉 > 0.For a
number λ ∈ R we have

||x− λy|| = 〈x, x〉 − λ〈x, y〉 − λ〈y, x〉+ λ2〈y, y〉.

Setting λ = 〈x, y〉/〈y, y〉 we get

0 ≤ 〈x, x〉 − |〈x, y〉|2/〈y, y〉

which proves the inequality. Q.E.D.

Now we prove the triangle inequality, which shows that ||.|| is in fact a well-defined
norm.

Theorem 5.7.

||x+ y|| ≤ ||x||+ ||y||.

Proof.

||x+y||2 = 〈x+y, x+y〉 = ||x||2+||y||2+2|〈x, y〉| ≤ ||x||2+||y||2+2||x||·||y|| = (||x||+||y||)2

Taking the square root gives the result. Q.E.D.

5.3 Intermediate value theorem

We assume that the reader is familiar with the notation of continuity, compare [20]
and prove:

7 This is the inequality of the French mathematician August Lois Cauchy (1889-1857) and in the more
general setting due to the German mathematician Hermann Amandus Schwarz (1843-1921).
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Theorem 5.8. A continues function f : [a, b] 7−→ R takes all values between f(a)
and f(b).8

Proof. Assume without loss of generality f(a) < f(b) and choose a value η ∈
(f(a), f(b)). Consider g(x) = f(x) − γ. Then g(a) < 0 and g(b) > 0. The set
A = {x|g(x) < 0} is not empty and bounded so let ξ = sup(A). Choose a se-
quence xn ∈ A with xn 7−→ ξ. By continuity g(xn) 7−→ g(ξ) hence g(ξ) ≤ 0. Assume
g(ξ) < 0 then there exist x ∈ (ξ, b] with g(x) < 0. A contradiction to the definition
of ξ. Hence g(ξ) = f(ξ)− η = 0 and f(ξ) = η.

Alternative proof using topology, compare with the next section: The closed intervals
in R are the compact and connected sets. The image of a compact and connected
set under a continuous map is compact and connected. Hence f([a, b]) is an interval
containing all values between f(a) and f(b). Q.E.D.

Corollary 5.9. A continues function f : [a, b] 7−→ [a, b] has a fixed point x ∈ [a, b]
with f(x) = x.

The fix point theorem of Dutch mathematician Luitzen Brouwer (1981-1966) gen-
eralizes this to continues function of n-dimensional balls or simplices, compare with
section 3.6 where we gave a simple combinatorial proof.

5.4 Mean value theorems

First we state here the mean value theorem of differential and than the mean value
theorem of integral calculus where we presuppose the notion of a differentiable and
integrable real function.

Theorem 5.10. Let f : [a, b] 7−→ R be continues and differentiable in (a, b) than
there exits x ∈ (a, b) with

f
′
(x) =

f(a)− f(b)

a− b
,

for some x ∈ (a, b).9

Proof. Let

g(x) = f(x)− f(a)− f(b)

a− b
(x− a)

Note that g(a) = g(b) = f(a). If f is not constant g is not constant and hence a
maximum or minimum x of g occurs in (a, b). Now we proof that g

′
(x) = 0 leading

8 This was proofed by the Bohemian mathematician Bernardo Bolzano (1781-1848)
9 Proved by Cauchy (1789 - 1857)
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directly to the result. Assume x is a maximum then f(x) ≤ f(y) for all y in a small
neighborhood Bε(x) and hence

g(y)− g(x)

y − x
≥ 0 if y < x and

g(y)− g(x)

y − x
≥ 0 if y > x

Now consider the limit y goes to x. If x is a minimum the argument is analog. Q.E.D.

Theorem 5.11. If f : [a, b] 7−→ R be continues than there exists x ∈ [a, b] such that∫ b

a

f(t) dt = f(x)(b− a)

Proof. Since f is continues there are numbers m and M such that f(x) ∈ [m,M ]
for all x ∈ [a, b], hence

1

b− a

∫ b

a

f(t)dt ∈ [m,M ].

Furthermore the function f on [a, b] takes all values in [m,M ] by the intermediate
value theorem above. This implies the result. Q.E.D.

.

5.5 Fundamental theorem of calculus

In the heart of one dimensional analysis we find the fundamental theorem which every
high school pupil knows:

Theorem 5.12. Let f be integrable on [a, b] ⊆ R and let

F (x) =

∫ x

a

f(t)dt

than F is continues on [a, b] and differentiable on (a, b) with F
′
(x) = f(x).10

For all x ∈ (a, b) we have

F (x+ ε)− F (x) =

∫ x+ε

a

f(t)dt−
∫ x

a

f(t)dt =

∫ x+ε

x

f(t)dt

By the means value theorem of integral calculus there exists c(ε) ∈ [x, x + ε] such
that ∫ ε

x

f(t)dt = f(c(ε))ε

10 This goes back to Isaac Newton (1643-1727).
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Hence we have

F
′
(x) = lim

ε7−→0

F (x)− F (x+ ε)

ε
= lim

ε7−→0
f(c(ε)) = f(x).

Q.E.D.

Corollary 5.13. If f is continues and as a antiderivative g with g′ = f on an interval
[a, b] ⊆ R than ∫ b

a

f(x)dx = g(b)− g(a)

Proof. By our theorem F (x) = g(x) + c on [a, b], with x = a we have c = −f(a)
hence F (b) = g(b)− g(a). Q.E.D.

In fact this result can also be proved under the weaker assumption that f is in-
tegrable and has an antiderivative, see [20].

5.6 The Archimedes’ constant π

We first define Sinus and Cosine using power series to given an analytic definition of
π.

Definition 5.14. The Sinus and Cosine function are given by

sin(z) =
∞∑
k=0

(−1)n
1

(2n+ 1)!
z2n+1 cos(z) =

∞∑
k=0

(−1)n
1

(2n)!
z2n

for z ∈ C. The Archimedes’ constant is given by

π = min{x > 0| sin(x) = 0}.

To prove the converges of the powers series above is an exercise in complex analysis,
see [20]. Now we rediscover the geometric meaning of π.

Theorem 5.15. The area and the half of the circumference of unite circle is given
by π.11

Proof. The upper half of units circle line is given by the function f(x) =
√

1− x2
for x ∈ [−1, 1]. The area is

A =

∫ 1

−1

√
1− x2dx =

∫ arcsin(1)

arcsin(−1)
cos2(t)dt = [

sin(2t) + 2t

4
]
π/2
−π/2 = π/2.

11 Know to Archimedes (287-212 BC).
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Fig. 5.1. Archimedes approximation of π

The length is

l =

∫ 1

−1
(

√
1 + (

∂
√

1− x2
∂x

)2dx =

∫ 1

−1

1√
1− x2

dx =

∫ arcsin(1)

arcsin(−1)
1dt = π.

Q.E.D.

In the following the reader will find four really beautiful presentations of π.

Theorem 5.16.

2

π
=

√
2

2
·
√

2 +
√

2

2
·

√
2 +

√
2 +
√

2

2
· · · . 12

Proof. We first proof the Euler formula13

sin(x)

x
= cos

(x
2

)
· cos

(x
4

)
· cos

(x
8

)
· · ·

By the doubling formula of sinus sin(2x) = 2 sin(x) cos(x) (which you get from the
definition by a simple calculation) we have

sin(x) = 2n sin(x/2n)
n∏
i=1

cos(x/2n).

Furthermore it is easy to infer from the definition of sinus that:

lim
n7−→∞

2n sin(x/2n) = x

given the Euler formula. With x = π/2 we obtain

2

π
= cos

(π
4

)
· cos

(π
8

)
· cos

( π
16

)
· · · .

12 The formula is due to the French mathematican Franciscus Vieta (1540-1603).
13 Due to Leonard Euler (1707-1783).
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Now the result follows by the half-angle formula of cosine

2 cos(x/2) =
√

2 + 2 cos(x)

and cos(4/π) =
√

2/2. Q.E.D.

Theorem 5.17.

π

4
=
∞∑
k=1

(−1)n

2n+ 1
14

Proof.
∂ arctan(x)

∂x
=

1

x2 + 1
=
∞∑
n=0

(−1)nx2n

for x < 1. Integrating gives

arctan(x) =
∞∑
n=0

(−1)n
1

2n+ 1
x2n+1

for x < 1. Now note that both sides of the equation are continues in x = 1. Since
sin(π/4) = cos(π/4) tacking the limit gives the result. Q.E.D.

Theorem 5.18.

π2

6
=
∞∑
k=1

1

n2
15

Proof.

I =

∫ 1

0

∫ 1

0

1

1− xy
dxdy =

∞∑
n=0

∫ 1

0

∫ 1

0

xnyndxsy =
∞∑
n=0

∫ 1

0

xndx

∫ 1

0

yndy =
∞∑
k=1

1

n2

On the other hand we ge by substituting u = (x+ y)/2 and v = (x− y)/2

I = 4

∫ 1/2

0

∫ u

0

1

1− u2 + v2
dudv + 4

∫ 1/2

0

∫ u

0

1

1− u2 + v2
dudv

and with ∫
1

a2 + x2
dx =

1

a
arctanx/a

14 First proof by the German philospher and mathematics Gottfried Wilhelm Leibniz. (1646-1716)
15 This series was calculated by the Swiss mathematican Leonard Euler (1707-1783)
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I = 4

∫ 1/2

0

1√
1− u2

arctan(
u√

1− u2
)du+ 4

∫ 1

1/2

1√
1− u2

arctan(
1− u√
1− u2

)du

Now by substituting u = sinφ in the first integral and u = cosφ in the second integral
this simplifies to

I = 4

∫ π/6

0

φ

cosφ
d sinφ+ 4

∫ π/3

0

1/2φ

sinφ
d cosφ = 4

∫ π/6

0

φdφ+ 2

∫ π/3

0

φdφ =
π2

6
.

Q.E.D.

This theorem gives the the value ζ(2) of the Riemanian Zeta function, see chap-
ter six. With more effort using the Bernoulli numbers it also possible to calculate
ζ(2n) explicitly.

Theorem 5.19.

π

2
=
∞∏
k=1

4k2

4k2 − 1
16

Proof. By partitial integration we get the recursion

In :=

∫ π/2

0

sinn(x)dx =
n− 1

n

∫ π/2

0

sinn−2(x)

with staring values I0 = π/2 and I1 = 1. Hence

I2j =
π

2

j∏
k=1

2k − 1

2k
and I2j+1 =

j∏
k=1

2k

2k + 1

Since
sin2j+1(x) ≤ sin2j(x) ≤ sin2j−1(x)

we get by integrating

j∏
k=1

2k

2k + 1
≤ π

2

j∏
k=1

2k − 1

2k
≤

j−1∏
k=1

2k

2k + 1
.

Dividing by the right hand side and taking j 7−→ ∞ gives the result. Q.E.D.

5.7 The Euler number e

Definition 5.7.1 The Euler function is given by

ez := exp(z) =
∞∑
k=0

1

n!
zn
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for z ∈ C. The Euler number is

e = exp(1) =
∞∑
k=0

1

n!
.17

Using complex numbers in the definition we obtain Euler’s relation between the
exponential function and tintometric functions.

Theorem 5.20.

eiz = cos(z) + sin(z)i
18

Proof.

eiz =
∞∑
k=0

1

n!
inzn =

∞∑
k=0

1

(2n)!
i2nz2n +

∞∑
k=0

1

(2n+ 1)!
i2n+1z2n+1

=
∞∑
k=0

1

(2n)!
(−1)nz2n + (

∞∑
k=0

1

(2n+ 1)!
(−1)nz2n+1)i = cos(z) + sin(z)i

since i2 = −1. Q.E.D.

As a corollary we obtain the fairest formula of mathematics.

Corollary 5.21.

e2πi = 1,

and the following representation of tintometric functions

Corollary 5.22.

cos(z) =
eiz + e−iz

2
sin(z) =

eiz − e−iz

2i

Proof. Just past in the expression for eiz and e−iz on the rind hand side. Q.E.D.

Furthermore we obtain:

Corollary 5.23.

(cos(z) + sin(z)i)n = cos(nz) + sin(nz)i 19

Proof. Use the properties of the exponential function. Q.E.D.

There is another beautiful presentation of the exponential function, which may also
be used as its definition.
17 Introduced by by Euler (1707-1783)
19 This is the theorem of the French mathematician Abraham de Moivre (1667-1754)



54 5 Analysis

Theorem 5.24.

ez = lim
n7−→∞

(1 + z/n)n

Proof. Using the Binomial theorem

n∑
k=0

zk

k!
− (1 + z/n)n =

n∑
k=0

zk

k!
(1− n!

(n− k)!nk
) ≤ z2

2n
+

n∑
k=3

zk

k!
(1−

k−1∏
l=0

(1− l/n))

≤ z2

2n
+

n∑
k=3

zk

k!
(1− (1− k − 1

n
)k) ≤ z2

2n
+

n∑
k=3

zk

k!

k(k − 1)

n
=

1

n
(
z2

2
+

n−2∑
k=1

zk

k!
)

Now this upper estimate tends to zero with n 7−→ ∞. This implies the result. Q.E.D.

At the end of the section we include the sterling formula which relates the facto-
rials to the Euler number e.
Theorem 5.25.

lim
n→∞

n!√
2πn nne−n

= 1.20

Proof. Let

an =
n!√

n nne−n

By a simple calculation we have

log(
an
an+1

) = (n+
1

2
) log(1 +

1

n
)− 1

= (n+
1

2
)
∞∑
k=1

(−1)k+1 1

knk
− 1 =

1

12n2
+ terms of higher order.

Hence there is N > 0 such that for all n > N

0 < log(
an
an+1

) <
1

6n2
.

Now for M ≥ N we have

log(aN)− log(aM) ≤
M−1∑
n=N

log(
an
an+1

) ≤
M−1∑
n=N

1

6n2
≤ π2

36

using the Euler series above. This gives

aM ≥ exp(log aN −
π2

36
) := C > 0

20 The formula is due to the Scottish mathematician James Sterling (1692-1770).
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Thus we see that the sequence an is decreasing and bounded from below for n > N .
Thus an converge to α > 0. Let hn = an − α. We have

(α + hn)2

α + h2n
=

a2n
a2n

=

√√√√4
∞∏
k=1

4k2

4k2 − 1

Now the formula of Wallis, see theorem 5.19, gives

α = lim
n7−→∞

(α + hn)2

α + h2n
=
√

2π,

which completes the proof. Q.E.D.

5.8 The Gamma function

Related to the Sterling formula in the end of the last section we like to interpolate
the factorials by a analytic. Therefore a definition:

Definition 5.8.1 The Gamma function Γ : (0,∞) 7−→ R is given by

Γ (x) =

∫ ∞
0

tx−1e−tdt

21

The integral in this definition improper but the reader may easily check that lim-
its involved exists. Using complex analysis we might in addition show that Γ is
merophorphic with simple poles at negative integers [20]. Here we are interested in
the following nice property of Γ :

Theorem 5.26. The Gamma function fulfills the functional equation

Γ (x+ 1) = xΓ (x)

with Γ (1) = 1, especially Γ (n) = (n− 1)! for all n ∈ N

Proof. Obviously

Γ (1) =

∫ ∞
0

e−tdt = [−e−t]∞0 = 1

and integrating by parts yields

21 The gamma function was introduced by Euler (1707-1783)
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Fig. 5.2. The Gamma function

Γ (x+ 1) =

∫ ∞
0

txe−tdt = [−txe−t]∞0 + x

∫ ∞
0

tx−1e−tdt = xΓ (x).

Q.E.D.

Theorem 5.27. The Gamma function has the representation

Γ (x) = lim
n7−→∞

nxn!

x(x+ 1)(x+ 2) . . . (x+ n)
.22

Proof. Using theorem 5.24, interchanging limits and substituting we have

Γ (x) = lim
n7−→∞

∫ ∞
0

tx−1(1− t/n)ndt = lim
n 7−→∞

nx
∫ 1

0

tx−1(1− t)ndt

=: lim
n7−→∞

Γ (x, n)

Integrating Γ (x, n) by parts we find

Γ (x, 1) =
1

x(x+ 1)

22 This represtation is due to the German mathematician and physical scientist Carl Friedrich Gauß(1777-
1855).
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and

Γ (x, n+ 1) =
1

x
(

n

n− 1
)x+1Γ (x+ 1, n− 1),

yielding

Γ (x, n) =
nxn!

x(x+ 1)(x+ 2) . . . (x+ n)

Q.E.D.

There is another beautiful product presentation of γ using the EulerMascheroni con-
stant γ from the beginning of this chapter.

Theorem 5.28.

Γ (x) =
e−γx

x

∞∏
n=k

ex/k

(1 + x
k
)
23

Proof. Using the last theorem and theorem 5.3 we have

Γ (x) = lim
n7−→∞

nx

x(1 + x)(1 + x/2) . . . (1 + x/n)

= lim
n7−→∞

nx

x

n∏
k=1

(1 +
x

k
)−1

= lim
n 7−→∞

ex(log(n)−Hn+Hn)

x

n∏
k=1

(1 +
x

k
)−1

= lim
n7−→∞

ex(log(n)−Hn)

x

n∏
k=1

(1 +
x

k
)−1ex/k

=
e−γx

x

∞∏
k=1

(1 +
x

k
)−1ex/k.

Q.E.D.

23 This represtation is due to the German mathematician Karl Weierstrass (1815-1897)
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Topology

6.1 Compactness and Completeness

In this chapter we assume that the reader is familiar with very basic topology, namely
open and closed sets. We develop the notion of compactness and completeness here.

Definition 6.1.1 A metric space is compact if any open covers has a finite subcover;
it is totally bounded if it can be covered by finitely many open balls of a given radius
and it is complete if every Cauchy sequence has a limit in the space. Furthermore a
metric space is separable if there a countable dense set.

Theorem 6.1. A metric space X is compact if and only if it is complete and totally
bounded.

Proof. Assume that X is compact. The cover of X by all open balls of radius ε has
a finite subcover. Hence X is totally bounded. Now assume that X is not complete.
Than there is a Cauchy sequence (xn) that does not converge. The union of the
elements of the sequence is closed and the sets

On = X\
∞⋃
i=n

{xi}

form an open cover of X. This cover does not have a finite subcover since it is in-
creasing. A contradiction.
Now assume X is complete and totally bounded. We first proof that X is sequential
compact, that is every sequence (xn) has a convergent subsequence. Since X is totally
bounded there is a ball of radius 1 that contains a subsequence of (xn). By induction
we constructed nested subsequences lying in balls of radius 1/2n. Using the diagonal
process we get a Cauchy subsequence. Since X is complete this sequence converges.
Now we proof that a sequential compact space is separable. If not there exists an
ε > 0 such that to every countable set there is a point with distance greater than
ε to this set. By induction we get a sequence of point with distance grater ε. This
sequence does not contain a convergent subsequence.
Since X is separable every open cover contains a countable subcover.
Now we finish the proof. If X has a countable cover {Oi} without a finite subcover,
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take the union of the first n sets and choose a point xn out of this union. This sequence
has a convergent subsequence by completeness of X with limit in some Oi. But for
n large xn is not in Oi. Hence the sequence does not converge. A contradiction.Q.E.D.

Now we have a look at the spaces Rn and obtain two nice corollaries.

Corollary 6.2.
A subset K of Rn is compact if and only if K is closed and bonded.1

Proof. A closed subset of a complete metric space is complete and a bounded sub-
set of Rn is totally bounded. On the other hand a totaly bounded subset of Rn is
bounded and any complete set is closed. Thus this result is a corollary to the last
theorem. Q.E.D.

Corollary 6.3. A bounded sequence in Rn has a convergent subsequence.2

Proof. The sequence is contained in compact and hence bounded and complete ball.
This ball is sequential compact as show in the prove of 6.1. ut

6.2 Homömorphic Spaces

Topology is concerned with spaces of to bicontinous changes. Therefore the following
definition.

Definition 6.2.1 Two metric spaces are homömorphic if there exists a continues
bijection with continues inverse between them.

Theorem 6.4. R is not homömorphic to Rn for n ≥ 2.

Proof. First not that A = Rn\{0} is path connected for n ≥ 2; there are continu-
ous maps f : [0, 1] 7−→ A with f(0) = x and f(1) = y for all x, y ∈ A. Now assume
that h : Rn 7−→ R is a homömorphism. Then R\{h(0)} would be past connected
via the continuous maps h ◦ f : [0, 1] 7→ R\{h(0)} with h ◦ f(0) = h(x) = a and
h ◦ f(1) = h(y) = b for all a, b ∈ R\{h(0)}. Obviously this is a contradiction.Q.E.D.

We are sorry not to know a simple prove of the fact Rn is in general not homömorphic
to Rm for m 6= n. This can be shown using the machinery of algebraic topology, see
[?] for instance. The topological difference between the slat spaces and the spere is
simple to prove.

Theorem 6.5. There are no n,m ∈ N such that the sphere Sn is homömorphic to
Rm.
1 Found by the German mathematician Eduard Heine (1821-1881) and the French mathematician Emile

Borel (1871-1956) .
2 This is the theorem of Bolzano (1781-1848) and Weierstrass (1815-1897).
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Proof. Sn is compact, since it is closed and bounded in Rn+1. Now the image of a
compact space under a homömorphism is obviously compact. On the other hand Rm

is not compact, because it is not bunded. Q.E.D.

Now we consider the Hilbert cube [0, 1]∞3 with the product metric

d((xi, yi) =
∞∑
i=1

|xi − yi|2−i

and prove the following beautiful theorem:

Theorem 6.6. A compact separable metric spaces X is homömorphic to a subset of
the Hilbert cube [0, 1]∞.

Proof. With out less of generality we may assume that the diameter of X is less
than one by multiplying the metric with a constant factor if necessary. By separability
of X there is a dense sequence xn. Now define

F : X 7−→ [0, 1]∞ by F (x) = (d(x, xi))

Obviously this map is injective and continuous, hence a homem̈orphism to a subset
of the Hilbert cube. Q.E.D.

6.3 A Peano curve

It follows from the prove of theorem 6.4 in the last section that the unit interval
[0, 1] is not homömorphic to the unite square [0, 1]2. On the other hand we have the
following surprising result that shows that there are exits space filling curves.

Theorem 6.7. There is a continues surjection from [0, 1] to [0, 1]24.

Proof. Define a metric on [0, 1]2 by

d((x1, y1), (x2, y2) = max{|x1 − x2|, |y1 − y2|}

and a metric on the set of continues functions C([0, 1], [0, 1]2) by

d∞(f, g) = sup{d(f(t), g(t))|t ∈ [0, 1]}.

Using uniform convergence the reader will easily show that a Cauchy Sequence (fn)
in C([0, 1], [0, 1]2) converges to a continuous function. Hence the space is complete.
Now construct a sequence (fn) in C([0, 1], [0, 1]2) as show in figure 6.1. We will show

3 Introduced by the German mathematician David Hilbert (1826-1943)
4 Constructed by the Italian mathematician Giuseppe Peano (1858-1932)
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that this is a Cauchy sequence. Note that d∞(fn, fn+1) ≤ 2−n since fn(t) and fn+1(t)
are in the same subsquare of diameter 2−n for t ∈ [i/2n, (i+ 1)/2n]. Thus for m > n

d∞(fn, fm) ≤
m−1∑
i=n

2−i ≤
∞∑
i=n

2−i = 2−n+1.

By completeness there is a continuous function f ∈ C([0, 1], [0, 1]2) such that fn → f .
It remains to show that f is surjective. Fix x ∈ [0, 1]2. Given ε > 0 choose N sufficient
large such that 2−N < ε and d∞(fN , f) < ε/2. Then there exists t ∈ [0, 1] with
d(fN(t);x) ≤ 2−N . So

d(f(t), x) ≤ d(f(t), fN(t)) + d(fN(t), x) ≤ ε.

We have shown thus shown that x is in the closure of f([0, 1]), but this set is compact
hence x ∈ f([0, 1]). Q.E.D.

Fig. 6.1. Construction of the Peano curve
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6.4 Tychonoff’s theorem

In section 6.2 we have shown that any compactum can be embedded into the Hilbert
cube. The question if this space is itself compact is answered by the following theorem.

Theorem 6.8. If Xi for i ∈ I is a family of compact metric spaces than∏
i∈I

Xi

is compact. 5

We use the converges of filters (which were defined in section 2.5) to characterize
compactness.

Definition 6.4.1 A filter F on a metric space X converges to x ∈ X (F → x), if
any neighborhood of x is contained in the filter F .

Theorem 6.9. A metric space X is compact if and only if every ultrafilter on X is
convergent.

Proof. Let F be an ultrafilter. Consider {A|A ∈ F}. The intersection over finite
subcollections of this family is not empty. Hence by compactness there is an x ∈ X
with

x ∈
⋂
A∈F

A.

Let N be the by the system of all neighborhoods of x and B ∈ N than A ∩ B 6= ∅
for all A ∈ F . This implies N ⊆ F since F is an ultrafilter. Hence F → x.
On the other hand suppose O is an open cover of X with no finite subcover. Consider
B = {(X\O1)∩ . . .∩ (X\On)|Oi ∈ O}. By theorem 2.15 there exists an ultrafilter F
that contains B. By the assumption F → x ∈ X. So there exists O ∈ O with x ∈ O
and O ∈ F but X\O ∈ F as well. Hence F is not an ultrafilter. A contradiction.
Q.E.D.

Proof. of Theorem 6.7. Let F be a ultrafilter on X =
∏

i∈I Xi so Fi := priF is
an ultrafilter on Xi. Since Xi is compact Fi → xi for some xi ∈ X. From this it is
easy to see that F → (xi)i∈I ∈ X. Hence every ultrafilter in X converges and thus X
is compact. Q.E.D.

5 This theorem is due to the Russian mathematician Andrei Tychonoff (1906-1993)
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6.5 The Cantor set

We discus here uncountable of (in some topological sense) small sets.

Definition 6.5.1 The (middle-third) Cantor set is given by

C = {
∞∑
n=1

sn3−n|sn ∈ {0, 2}}

6

Theorem 6.10. C is uncountable, compact, totally disconnected and perfect.

Proof. Obviously C is uncountable since {0, 2}∞ is. We may write C in the following
way

C =
∞⋂
k=1

⋃
s1,s2,...,sk∈{0,2}

[
k∑

n=1

sn3−n,
k∑

n=1

sn3−n + 3−n]

We see that C is closed as the intersection of closed sets. Moreover C is obviously
bounded since C ⊆ [0, 1]. Hence C is compact by corollary 6.2. Furthermore the
length of C is given by

`(C) = lim
k 7−→∞

(2/3)k = 0

hence C contains no interval and thus is totally disconnected. Now consider the ε
interval

[
∞∑
n=1

sn3−n − ε,
∞∑
n=1

sn3−n + ε]

around a point in x ∈ C. If m is large enough the interval contains

{
m∑
n=1

sn3−n +
∞∑

n=m+1

tn3−n|tn ∈ {0, 2}}

hence x is an accumulation point of C and C is perfect. Q.E.D.

The following theorem shows the Cantor set is universal.

Theorem 6.11. Any compact, totally disconnected and perfect metric space is home-
omorphic to the Cantor set C.

Proof. In a totally disconnected metric space any point is contained inside a set
of arbitrarily small diameter which is both closed and open. So consider a cover of
the space by such sets of diameter smaller than one. Take a finite subcover. Since
any finite intersection of such sets is still both closed an open by taking all possible

6 The Cantor set Irish mathematician by Henry Smith (1826-1883) and introduced by Georg Cantor
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Fig. 6.2. Construction of the Cantor set

intersection we obtain a partition of the space into finitely many closed and open sets
of diameter smaller one. Since the space is perfect no element of this partition is a
point so a further division is possible. Proceeding this procedure we obtain a nested
sequence of finite partitions into closed and open sets of positive diameter less than
1/2n for n ∈ N. Mapping elements of each partition inside the nested sequence of
contracting intervals

[
k∑

n=1

sn3−n,
k∑

n=1

sn3−n + 3−n]

we construct a homeomorphism of the space onto C. Q.E.D.

6.6 Baires’ category theorem

We introduce her a notion of the size of a set in the topological sense.

Definition 6.6.1 A subset of a metric space is nonwhere dense if there is no neigh-
borhood on which the set is dense. A subset of a metric space is called of first category
or meager if it is the union of countable many nonwhere dense closed set. Otherwise
it is called of second category or fat.

Theorem 6.12. In a complete metric space a countable intersection of open and
dense sets is dense.7

7 This is due to French mathematician Rene Loise Baire (1974-1932)
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Proof. Let {Oi}i∈N be a family of open and dense subsets of a complete metric
space X. For an arbitrary open set B0 in X we choose inductively open balls Bi+1

for radius at most 1/i such that B̄i+1 ⊆ Bi ∩Oi+1. By this construction we have

∞⋂
i=1

Bi ⊆ B0 ∩
∞⋃
i=1

Oi.

The first intersection is not empty since the centers of the balls converges by com-
pleteness. Q.E.D.

Corollary 6.13. A complete metric space is of second category.

Now we prove that differential functions are exceptional in the space of continuous
functions.

Theorem 6.14. The set of somewhere differentiable functions D(I) on an interval
I is meager in the fat space C(I) of all continuous function on I with the supremum
norm.8

A beautiful example of a continuous and nowhere differentiable function is

f(x) =
∞∑
k=0

(1/2)k cos(2kπx)

see, [25].9

Fig. 6.3. The Weierstrass function

Proof. First note that C(I) is fat since it is a complete metric space. Now let

8 Proofed by the Polish mathematician Stefan Banach (18921945)
9 This type of functions were introduced by the German mathematician Karl Weierstrass (1815-1897).
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D(I) = {f ∈ C(I)|f is differentable for some x ∈ I}

and

An,m = {f ∈ C(I)|∃x ∈ I :
|f(t)− f(x)|
|t− x|

≤ n if |x− t| ≤ 1/m}

Note that if f ∈ D then f ∈ An,m for some n,m hence D(I) is the union of all
An,m. We now proof that all An,m are closed and non where dense. Consider a cauchy
sequence with fn 7−→ f in An,m. For each i there is an xi with

|fi(t)− f(xi)|
|t− x|

≤ n if |x− t| ≤ 1/m

By the theorem of Bolzano Weierstrass there is a convergent subsequence of xi with
limit x. Now

lim
i 7−→∞

|fi(t)− f(xi)|
|t− xi|

=
|f(t)− f(x)|
|t− x|

≤ n if |x− t| ≤ 1/m

Hence f ∈ An,m. So An,m is closed. Now we proof that An,m does not contain an open
ball Bε(f) and is thus nowhere dense. Consider a piecewise linear function p with
|p− f | < ε/2 and choose k > 2(M +n)/ε where M is a bound on the modulus of the
derivatives of p. There is a continues piecewise linear function φ(x) with |φ(x)| < 1
and φ′(x) = ±k where the function is differentiable. Let

g(x) = p(x) + ε/2φ(x)

On the one hand g ∈ Bε(x) by construction. On the other hand we show g 6∈ An,m
proving Bε(f) 6⊆ An,m. If g is differentiable in x then g′(x) = |p′(x) ± kε/2|. Since
p′(x) ≤ M and g′(x) > n there is l > m such that g is linear with slope greater l on
[x− 1/l, x+ 1/l]. Hence

|g(t)− g(x)|
|t− x|

> n if |x− t| ≤ 1/l < 1/m

giving g 6∈ An,m. Q.E.D.

6.7 Banachs’ fix point theorem and fractals

Theorem 6.15. Let X be a complete metric spaces and f : X 7−→ X be a contraction
than there is a unique fix point x̄ ∈ X with f(x̄) = x̄. Moreover for all x ∈ X we
have

lim
n7−→∞

fn(x) = x̄. 10

10 A result of the Polish mathematician Stefan Banach (1892- 1945).
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Proof. Let λ ∈ (0, 1) be the contraction constant. By induction we see that

d(fn(x), fn(y)) ≤ λnd(x, y).

Now (fn(x)) is a Cauchy sequence for all x ∈ X since

d(fm(x), fn(x)) ≤
m−n−1∑
k=0

d(fn+k+1(x), fn+k(x))

≤
m−n−1∑
k=0

λn+kd(f(x), x) ≤ λn

1− λ
d(f(x), x)→ 0

and does thus converge by completeness. Let x̄ be the limit. Since

d(x̄, f(x̄)) ≤ d(x̄, fn(x)) + d(fn(x), fn+1(x)) + d(fn+1(x), f(x̄))

≤ (1 + λ)d(x̄, fn(x)) + λnd(x, f(x))→ 0

x̄ is a fix point. Since

d(fn(x), x̄) ≤ λn

(1− λ)
d(f(x), x))

for all x the fix point is unique. Q.E.D.

The following application of the fix point theorem provides a basic construction in
fractal geometry, see [7].

Theorem 6.16. Let (X, d) be a complete metric spaces and Ti for i = 1, . . . n be
contractions on X than there is a unique compact attractor K set with

K =
n⋃
i=1

Ti(K).

Proof. Consider the space of all K of all compact subset of X. With the Hausdorff
metric

dH(A,B) = max{sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b) }

K becomes a complete metric space, since X is complete metric. Now consider the
operator

O(K) =
n⋃
i=1

Ti(K)

on K. This a contraction since Ti are contractions. Now the fixpoint theorem gives
the result. Q.E.D.

Example 6.17. On R2 consider the contractions

T1x =

(
1/2 0
0 1/2

)
x T2x =

(
1/2 0
0 1/2

)
x+

(
1/2
0

)
T3x =

(
1/2 0
0 1/2

)
x+

(
1/4√
3/4

)
than the attractor for these maps is the Sierpinski triangle.11

11 Named afte Polish mathematician Waclaw Franciszek Sierpin’ski (1882-1969).
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Fig. 6.4. The Sierpin’ski triangle given by three contractions

At the end of this section we like to remark that the fix point theorem may also be
used to prove the existence of solution of differential equations, see [2] for further
reading.
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Algebra

7.1 The Determinant and eigenvalues

Let us begin this chapter with a few beautiful results from linear algebra. We assume
the reader to be familiar with basic concepts, like real vector spaces, in this field. We
first introduce the determinant of a matrix.

Definition 7.1.1 The determinant of a matrix A ∈ R(n,n) is given by

det(A) :=
∑
π

sgn(π)
n∏
i=1

aiπ(i)

where the sum is taken over all permutations π of {1, . . . , n}. sgn(π) is the sign given
by

sgn(π) =
∏

1≤k,l≤n

π(k)− π(l)

k − l
∈ {1,−1}.

The following theorem is rather technical to prove nevertheless it is simple and fun-
damental.
Theorem 7.1.

det(AB) = det(A) det(B)

Proof. Let A = (aij), B = (bij) and C = AB = (cij). Then cij =
∑

k aikbkj. Therefor

det(AB) =
∑
π

∑
k1,...,kn

sgn(π)a1k1bk1π(1) · · · anknbknπ(n)

If ki = kj for i 6= j corresponding terms in the sum cancel due to the sign. Hence the
sum is taken over all permutations σ with σ(i) = ki. Hence

det(AB) =
∑
π

∑
σ

sgn(π)a1σ(1)bσ(1)π(1) · · · anσnbσ(n)π(n)

=π=τρ
∑
τ,ρ∈Sn

sgn(τρ)a1σ(1)bσ(1)τρ(1) · · · anσnbσ(n)τρ(n)
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=
∑
τ,ρ∈Sn

sgn(ρ)a1ρ(1) · · · anρ(n)sgn(τ)b1τ(1) · · · bnτ(n) = det(A) det(B)

Q.E.D.

Theorem 7.2. The determinant is multilinear and alternating with det(En) = 1 for
the unit matrix En. Moreover the determinant is unique with these properties.

We have to show that det(A) is linear in each collum of the matrix A. The maps
(a1, . . . , an) 7→

∏n
i=1 aiπ(i) are obviously linear and the sum of linear maps is linear

hence det is linear. Now let ai = aj for i 6= j. Let τij be the transposition of i and j.
By the definition of the sign we have sgn(τπ)) = −sgn(π). Pasting this into the defi-
nition the determinant is alternating. det(En) = 1 is obvious. Now let D be another
multilinear, alternating form with D(En) = 1 and consider the alternating multli-
naere form D − det. By assumption (D − det)(En) = 0, which implies D − det = 0
using linearity. Hence D = det. Q.E.D.

Corollary 7.3. The (signed) volume of the parallelotop spanned by the vectors a1, . . . , an ∈
Rn is given by det(a1 . . . an).

Proof. We naturally expect a volume to be multilinear, alternating with det(En) = 1
and the determinant is unique with these properties. Q.E.D.

Corollary 7.4. A matrix A ∈ Rn×n is invertible if and only if det(A) 6= 0.

Proof. If a matrix A is invertible we have det(A) det(A−1) = det(En) = 1 which
implies det(A) 6= 0. On the other hand if two columns in A are identical det(A) = 0,
since det the alternating and linear. Now, if A is not invertible one column is a linear
combination of the others. Using linearity we obtain det(A) = 0. Q.E.D.

Now we have a look at Eigenvalues

Definition 7.1.2 λ ∈ R is an eigenvalue of a matrix A ∈ R(n,n) if there is a eigen-
vector v 6= 0 such that

Av = λv.

We may find eigenvalues using the determinant.

Theorem 7.5. λ is an eigenvalue of A if and only if det(A− λEn) = 0.

Proof. det(A− λEn) = 0 if an only if the matrix A− λEn is not invertible. This is
the case if and only if there is a vector v 6= 0 such that (A− λEn)v = 0 which means
Av = λv.

Corollary 7.6. If Ξ(x) = det(A − λEnx) has n different real roots the matrix A is
diagonalliseable.
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Proof. Under the assumption we have n different eigenvalues with n linear indepen-
dent eigenvectors. With respect to this basis A obviously has diagonal form. Q.E.D.

7.2 Group theory

On of the basic algebraic structures is given by a group:

Definition 7.2.1 A group is a set with an inner operation that is associative and
has an unique neutral element e and inverse elements. The order of a group is its
cardinality. The symmetric group Sn contains all permutation of the set {1, . . . , n}.
The inner operation in this groups is the composition.

The first beautiful theorem in group theory concerns the order of finite groups.

Theorem 7.7. For a finite group G the order of each subgroup H divides the order
the G.1

Proof. If two coset sets aH := {ah|h ∈ H} and bH := {bh|h ∈ H} are not disjoint
we have ah1 = bh2 for some h1, h2 ∈ H. This implies b−1a ∈ H and b−1aH = H
hence aH = bH. We have thus shown that the set of coset sets G/H = {gH|g ∈ G}
forms a partition of G. Since |gH| = |H| this implies |G| = |G/H| · |H|. Q.E.D.

Now we have a look at maps which pressers the group structure.

Definition 7.2.2 A group homomorphism f : G1 7−→ G2 fulfills f(gḡ) = f(g)f(ḡ)
for all g, ḡ ∈ G. K(f) = {g ∈ G1|f(g) = e} is the kernel and I(f) the image of the
homomorphism. A bijective homomorphic is called isomorphism. If two groups are
isomorphic we write G1

∼= G2.

The following nice result shows that the symmetric groups is universal.

Theorem 7.8. A group G of order n is isomorphic to a subgroup of the symmetric
group Sn.2

Proof. For g ∈ G consider the map pg : G 7−→ G given by pg(x) = gx. This
is obvious a permutation of G. Now consider the set H := {pg|g ∈ G}. Since
pg1 ◦ p−1g2

= pg1g
−1
2
∈ H this is a subgroup of the group of all permutation S(G)

of G. On the other hand by pg1g2 = pg1pg2 the group H is homomorphic to G.Q.E.D.

To state the main result about the structure of homomorphisms we need the fol-
lowing definition

Definition 7.2.3 A subgroup N of a group G is normal if aN = Na for all a ∈ G

With this we have:
1 Found by the Italian mathematician Joseph-Louis de Lagrange (1736-1813).
2 This is a result of the English mathematician Arthur Cayley (1821-1894) .
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Theorem 7.9. 1. Isomorphism theorem: If f : G1 7−→ G2 is a group homomorphism
than

G1/K(f) ∼= I(f).

2. Isomorphism theorem: Let S be a subgroup and N be a normal subgroup of a group
G than

S/(S ∩N) ∼= SN/N.

3. Isomorphism theorem: Let H ⊆ K ⊆ G be normal subgroups of G than

(G/K)/(H/K) ∼= G/H.

Proof. 1. The map f̄ given by f̄(gK(f)) = f(g) for all g ∈ G1 is well defined cause
K(f) is a normal subgroup. It is obvious that f̄ is an homomorphism and surjective.
Moreover K(f̄) = {gK|f̄(gK) = 1} = K which is the neutral element in G1/K(f),
implying that f̄ is surjective.
2. Define a homomorphism φ from S to SN/N by φ(s) = sN . We have φ(S) = SN/N
and Kernal(φ) = S ∩N . Thus the result follows form the first isomorphism theorem.
3. Let p and q be the natural homomorphism form G to G/H and G to G/K. Let
φ be the homomorphic from G/K to G/H with φ ◦ q = p. Since p is surjective φ is
surjective. The kernel of φ is K(p)/K = H/K. Thus the result follows form the first
isomorphism theorem. Q.E.D.

The last theorem may be generalized to other algebraic structures like vector spaces
or rings, which we introduce in the next section.

7.3 Rings

Definition 7.3.1 A commutative group (G,+) with an associative and distributive
multiplication is called a ring.

The integers Z with addition and multiplication is a well known ring. With the
Euclidean algorithm described now the integers form a so called Euclidian ring.

Definition 7.3.2 Given two integers a, b ∈ Z with |a| > |b| the Euclidean algorithm
computes recursively quotients qk ∈ Z and reminders rk ∈ Z with |rk+1| < |rk| such
that

rk−2 = qkrk−1 + rk

where r0 = a and rk = b.

Theorem 7.10. The Euclidian algorithm terminates with rN = 0 for some N and
rN−1 is the greatest common divisor of a and b.3

3 Due to Eulcid.
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Proof. The algorithm terminates, since |rk+1| < |rk|. Obviously rN−1 divides rN−2.
Since it divides both it also divides rN−3. By backward recursion rN−1 divides a and
b and is hence a common divisor. Now let c be an arbitrary common divisor of a and
b; a = mc and b = nc. Now r0 = a− q0b = (m− q0n)c which means c divides r0 and
by recursion c divides rN−1 hence rN−1 is the greatest common divisor. Q.E.D.

Now we introduces the ring of concurrence classes.

Definition 7.3.3 Two integers a, b are called congruent modulo m (or a=b mod m
for short) if there is an integer r such that a− b = rm. A concurrence class a modulo
m (or a mod m for short) is the set a + mZ containig all integeres congruent to a.
The set of all concurrence classes Zm = Z/mZ = {0, 1, . . . ,m− 1} forms a ring with
respect to addition and multiplication of integers.

We prove here the following beautiful reminder theorem:

Theorem 7.11. Let mi i = 1 . . . n be coprime integers. Than for integers ai for
i = 1 . . . n there is a unique solution x ∈ Zm with m = m1m2 . . .mn of the equations

x = ai mod mi

for i = 1 . . . n.4

Proof. Note that mi and m/mi are coprime. Using the euclidian algorithm we find
numbers ti and si such that

timi + si(m/mi) = 1

for i = 1, . . . n. Define

x =
n∑
i=1

aisi(m/mi)

Since si(m/mi) = 1 modulo mi and si(m/mi) = 0 modulo mj for j 6= i, the number
x fulfils the congruences. Q.E.D.

The prove we provided her shows that the remainder theorem in fact holds in all
Euclidian rings.

7.4 Units, fields and the Euler function

Definition 7.4.1 In a ring R we multiplicative identity element 1 an element a is
invertible (or a unit) if there exits b ∈ R such that ba = ab = 1. If all a ∈ R with
a 6= 0 are a units R is a field.

Of course there are no units beside 1 in Z. Q, R and C are well known to be number
fields. In the ring of concurrences classes Zm, introduced in the last section, the
question for units is more exciting. In fact we have:

4 Attributed to the Chinese mathematician Sun Tzu (∼ 300).
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Theorem 7.12. a ∈ Zm is unit if and only if a and m are coprime. Zm is a field if
an only if p is a prime number.

Proof. Assume ab = 1 modulo m where a and m are not coprime. We have

ab = 1 +mr

for some r ∈ Z and there is exists t ∈ N with t 6= 1 which divides m and a. But than
t divedes 1. A contradiction.
On the other hand if a and m are coprime us the Euclidean algorithm (backwards)
to obtain b, r ∈ Z such that

ab+ tr = 1.

This implies ab = 1 modulo m. The fist statement implies the second since p is prime
if and only if all a 6= p are coprime to p. Q.E.D.

Now we introduce the Euler function.

Definition 7.4.2 For m ∈ N the Euler function φ(m) counts the number of coprimes
of m. By the last theorem this is the number of units in Zm.

The Euler function is given by the following beautiful formula.

Theorem 7.13.

φ(m) = m
∏
p|m

(1− 1

p
) 5

Proof. Obviously if p is prime φ(p) = p − 1. Moreover there are pn−1 numbers
between 1 and pn dividable by p namely the numbers 1p, 2p, 3p, 4p, . . . , pn−1p. Hence

φ(pn) = pn − pn−1 = pn(1− 1

p
).

We now show that φ is multiplicative for coprime numbers p and q. Let c be a coprime
to pq with reminders of division p̄ and q̄:

c = p̄ mod p c = q̄ mod q (?)

Obviously p̄ is coprime to p and q̄ is coprime q. Assume now that p̄ and q̄ are given.
Than by the Chinese reminder theorem the there is a unique c such that the equations
(?) holds. Hence φ(pq) = φ(p)φ(q). The theorem now follows from prime factorization
of m. Q.E.D.

Another remarkable property of the Euler function we like to prove is:

5 A formula know to Euler.
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Theorem 7.14. If a and m are coprime than

aφ(m) = 1 mod m. 6

Proof. Consider the group Z×m of all multiplicative invertible elements in Zm. An
element b ∈ Zm is in Z×m if b and m are coprime. Hence |Z×m| = φ(m). Now consider
the subgroup A = {a, a2, a3, . . . , a|A|} of Z×m generated by a. Note that a|A| = 1 in
Zm. By the theorem of Lagrange |A| divides φ(m). Hence we have in Zm

aφ(m) = ak|A| = (a|A|)k = 1.

Q.E.D.

Corollary 7.15. If p is prime

ap−1 = 1 mod p 7

7.5 The fundamental theorem of algebra

Theorem 7.16. Any non-constant polynomial p with complex coefficient has a com-
plex root.8

Proof. We show that there is a c ∈ C with p(c) = 0. The set K = {z||z| < R}
is compact hence f(z) = |p(z)| has a minimum c ∈ K. Is R large enough we have
|p(z)| ≥ |p(c)| for all z 6∈ K hence |p(c)| ≤ |p(z)| forall z ∈ Z. Assume p(c) 6= 0
Consider h(z) = p(z+ c)/p(c). We show that there exists an u with |h(u)| < 1. Than
|p(c+ u)| < |p(u)| which is a contradiction. h is of the form

h(z) = 1 + bzk + zkg(z)

where g is a polynomial with g(0) = 0. Choose d with dk = −1/b than

|h(td)| ≤ 1− tk + tk|dkg(dt)|.

Since g is continuous we have

h(td) ≤ 1− 1/2tk

if t is small enough. This completes the proof. Q.E.D.

6 This was proved by Euler
7 Known to Pierre de Fermat (1608-1665).
8 First proved by the German mathematician Johann Carl Friedrich Gauß(1646-1716)
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Theorem 7.17. Any complex polynomial p of degree n may by written in the form

p(z) = C
n∏
i=1

(z − zi)

with C, zi ∈ C.

Proof. If p(z0) = 0 we have Q.E.D.

p(z) = p(z)− p(z0) =
n∑
k=1

ai(x
k − xk0) = (x− x0)

n∑
k=1

ai
xk − xk0
x− x0

Furthermore
xk − xk0
x− x0

=
k−1∑
i=0

xixk−1−i0

hence f(x) = (x − x0)g(x) where g has degree n − 1. Now the result follows by in-
duction using the existence theorem. Q.E.D.

7.6 Roots of polynomial

Solving quadratic equation is taught in school. Nevertheless we think that the p− q-
formula is a beautiful result with a simple prove:

Theorem 7.18.

z2 + pz + q = 0

has the roots

z1,2 = −p
2
±
√
p2

4
− q9

Proof.

(z +
p

2
)2 = z2 + pz +

p2

4
=
p2

4
− q

Take the roots and subtract p/2. Q.E.D.

Any cubic equation ax3 + bx2 + cx + d = 0 may be reduced to an equation of the
type z3 + px + q = 0 diving by a and substituting x = z − b/3a. The solution of
these equations are given by a formula which is as beautiful as the p− q-formula for
quadratic equations.

9 The formula was first intrdouced by the Indian mathematician Brahmagupta(598-668).
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Theorem 7.19.

z3 + px+ q = 0

has the roots

z1,2,3 =
3

√
−q

2
+

√
q2

4
− q3

27
+

3

√
−q

2
+

√
q2

4
− q3

27
10

where the two square roots are chosen to be the same, and the two cube roots are
chosen such that their product is −p/3.

Proof. Choose variables u, v such that u+ v = z. Substituting gives

u3 + v3 + (3uv + p)(u+ v) + q = 0

Choose u, v such that 3uv + p = 0. Note that by this choice uv = −p/3. We obtain

u6 + qu3 − p3

27
= 0

v6 + qv3 − p3

27
= 0.

These are quadratic equation in u3 and v3 with solutions

u3 = −q
2

+

√
q2

4
+
q3

27

v3 = −q
2

+

√
q2

4
+
q3

27
,

given the formula stated in the theorem. Q.E.D.

We do not understand why the p − q-formula for the cubic equation is not taught
is school. Now we have a look at the quartic equation ax3 + bx2 + cx + dx + e = 0.
Diving the equation by a and substituting. x = z− b/4a we obtain a equation of the
form z4 + pz2 + qz + r = 0 which may by solved using the following theorem.

Theorem 7.20.

z4 + pz2 + qz + r = 0

has the roots

z1 =
1

2
(
√
−θ1 +

√
−θ2 +

√
−θ3)

z2 =
1

2
(
√
−θ1 −

√
−θ2 −

√
−θ3)

10 This is the formula of the Italian Gerolamo Cardano (1501-1576) .
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z3 =
1

2
(−
√
−θ1 +

√
−θ2 −

√
−θ3)

z4 =
1

2
(−
√
−θ1 −

√
−θ2 +

√
−θ3)

where θ1, θ2, θ3 are the roots of the resolvent

z3 − 2pz + (p2 − 4r)z + q2 = 0.11

Proof. First note that z1 + z2 + z3 + z4 = 0 since

4∏
i=1

(z − zi) = z4 + pz2 + qz + r. (?)

Let θ1 = (z1 + z2)
2 = (z3 + z4)

2, θ2 = (z1 + z3)
2 = (z2 + z4)

2 θ3 = (z1 + z4)
2 =

(z2 + z3)
2. Solving this system for z1,2,3,4 we get the formulas stated in the theorem.

It remains to show that θ1, θ2, θ3 are the roots of the resolvent. Using (?) we get by
some computation

−2p = θ1 + θ2 + θ3

p2 − 4r = θ1θ2 + θ1θ3 + θ2θ3

q2 = θ1θ2θ3.

Hence
3∏
i=1

(z − θi) = z3 − 2pz + (p2 − 4r)z + q2.

Q.E.D.

It was proved by Able12that equations of degree fife or higher can in general not
be solved by radicals. The prove of this result need to much perpetration or is to
long (with some messy calculations) to present it here. Using the Galois theory13 it
is even possible to decide whether equations are solvable by radicals, see [14].

11 The first solution of quartic equations is attributed the the Italian mathematician Lodovico Ferrari (1522-
1565). The approach used here is due to the Italian mathematician Joseph-Louis de Lagrange (1736-1813)

12 The Norwegian mathematician Niels Henrik Abel (1802-1829)
13 Which goes back to the French mathematician Evariste Galois (1811-1832)
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Number theory

8.1 Prime numbers

Theorem 8.1. There are infinitely many prime numbers.1

Proof. Assume that there are finitely many primes P = {p1, . . . , pn}. The number

N =
N∏
i=1

pi + 1 > max{pi|i = 1, . . . n}

has a prime divisor p. p ∈ P implies p|1. A contradiction. Q.E.D.

Theorem 8.2. Every natural number n ≥ 2 can be uniquely, up to ordering of fac-
tors, represented as the product of primes.2

Proof. We first prove existences than uniqueness by contradiction. Assume that n
is the smallest number that is not a product of primes. Than n = ab with a and b
smaller than n. a and b are products of primes so n is, a contradiction. Now let s be
the smallest number that can be written in two ways s = p1 · . . . · pn = q1 · . . . · qm.
Than p1 divides q1 · . . . · qm hence p1 = qj for some j by the property of primes. Now
s/p1 has two factorization and is smaller than s, a contradiction. Q.E.D.

Theorem 8.3. ∑
p prime

1

p
=∞ 3

Proof. Assume the contrary. Then there is an k such that

1 This was proved by ancient Greek mathematician Euclid (360-280 B.C.).
2 The fundamental theorem of arithmetics is also due to Euclid .
3 A result of Euler (1707-1883).
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∞∑
i=k+1

1

pi
< 1/2

Given N ∈ N let Ns be the number of n ≤ N that only have prim factors in
{p1, . . . , pk} and let Nb = N − Na the number of n ≤ N that have prime factors
bigger that pk. First we estimate

Nb ≤
∞∑

i=k+1

bN
pi
c < N/2

Furthermore we write every number n ≤ N that only has small prime factors
in the form n = anb

n
n where an is square free. There are 2k different possibili-

ties for an and less then
√
N possibilities for bn. Hence and Ns ≤ 2k

√
N and

N = Nb + Na < 2k
√
N + N/2. This is a contradiction for N large enough, for

instance N = 22k+2. Q.E.D.

Theorem 8.4. If p is prime if and only if (p− 1)! + 1 is a multiple of p.4

Proof. If p is prime than 2, . . . , p− 2 are relatively prime to p. All of these integers
have unique distinct multiplicative inverse modulo p since Zp is a field with respect
to multiplication. If we group these numbers with their inverses into pairs we get

1 · 2 · 3 · . . . · (p− 2) = 1 mod p

. Multiplying by (p− 1) gives

1 · 2 · 3 · . . . · (p− 1) = −1 mod p,

which proves the if part of the result. On the other hand if p is not a prime the
greatest common divisor of (p− 1)! and p is bigger than one. Hence (p− 1)! + 1 can
not be a multiple of p. Q.E.D.

Theorem 8.5. Every prime number of the form n = 4m + 1 is the sum of two
squares.5

Proof. Consider

S := {(x, y, z) ∈ Z3|4xy + z2 = p x > 0 y > 0}

and the map
f : S 7−→ S f(x, y, z) = (y, x,−z).

4 This is a result of the Italian mathematician Joseph-Louis Lagrange (1736-1813).
5 Another result of the of Lagrange (1736-1813)
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First note that S is finite. f is an involution and it has no fix points since 4xy 6= p. If
T is the subset of S with z > 0 we have f(T ) = S\T hence as well f(U) = S\U for

U := {(x, y, z) ∈ S|(x− y) + z > 0}.

This implies that U and T have the same cardinality. Now consider

g : U 7−→ U f(x, y, z) = (x− y + z, y, 2y − z).

A simple calculation shows that g is well defined and an involution with unique fixed
point (p−1

2
, 1, 1). Hence the cardinality of U is odd. At the end consider

h : T 7−→ T f(x, y, z) = (y, x, z).

h is an involution of a set with odd cardinality at has thus a fixpoint (x, y, z) with

p = 4x2 + z2 = (2x)2 + z2.

Q.E.D.

Definition 8.1.1 A prime number is a Mersenne prime if it is of the form M(n) =
2n − 1. A natural number is perfect if it is the sum of its proper divisors.

Theorem 8.6. All even perfect numbers are given by 2n−1M(n) where M(n) is a
Mersenne prime.6

Proof. Let σ be the sum of all divisors of a number. Assume p = M(n) = 2n − 1
is prime and N = 2n−1(2n − 1). We have to show that σ(N) = 2N . σ is obviously
multiplicative and σ(2n − 1) = p+ 1 hence

σ(N) = σ(2n−1)σ(2n − 1) = (2n − 1)(p+ 1) = (2n−1 − 1)2n = 2N.

Now assume that N is an even perfect number with N = 2n−1m for m odd. We have
σ(N) = 2n−1σ(m) and since n is perfect σ(N) = 2nm hence 2nm = (2n−1)σ(m) and
form this

σ(m) = m+
m

2n − 1
.

Since both σ(m) and m are integers, d = m/(2n − 1) has to be an integer. Thus d
itself divides m. But

σ(m) = m+
m

2n− 1
= m+ d

is the sum of all of the divisors of m. Certainly 1 divides m, so we are forced to
conclude that d = 1; if this were not the case, then we would have a contradiction.
Therefore, m = 2n− 1, and in particular, m has no other positive divisors than one
and itself, so 2n− 1 is a prime. Q.E.D.

6 Due to Euler .
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Theorem 8.7. For all s ∈ C with real part bigger than one we have:

ζ(s) :=
∞∑
n=1

n−s =
∏

p prime

1

1− p−s
7

Proof. Every integer n be be uniquely written as

n =
∏

p prime

pcp(n).

Hence

∞∑
n=1

ns =
∞∑
n=1

∏
p prime

p−scp(n) =
∏

p prime

∞∑
cp=0

p−scp =
∏

p prime

1

1− p−s

Q.E.D.

The function ζ(s) for s ∈ C is called the Riemanian zeta function. It is related
to the number π(n) of primes smaller than n. In fact if the Riemanian hypothesis
that all no trivial zeros of ζ have real part 1/2 is true, we get

|π(x)− Li(x)| ≤ c
√
x log(x).

for some constant c > 0 where

Li(x) =

∫ x

2

dt

log t
∼ x

log(x)
.

Without a proof of this conjecture we the have following weaker estimate on the
number of primes

|π(x)− Li(x)| ≤ cxe−a
√

log(x),

for some constant a, c > 0, see for instance [16].

8.2 Diophantine equations

Theorem 8.8. All Pythagorean triples (a, b, c) ∈ N3 fulfilling

a2 + b2 = c2

are (up to exchanging a and b) given by

(n(
u2 − v2

2
), nuv, n(

u2 + v2

2
)

where n ∈ N and u > v are odd numbers.8

7 The function was introduced by the German mathematican Bernhard Riemann (1826-1866).
8 A result by the ancient Greek mathematician Euclid (360-280 B.C.)
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Proof. A simple calculation shows that the triples given in our theorem are
pythagorean. We have to show that all triples are given in this way. A pythagorean
triple (a, b, c) is called primitive if a, b, c do not have a common factor and b is even.
Obviously if we found all primitive triples than all triples are given by (na, nb, nc) or
(nb, na, nc) with n ∈ N. Let (a, b, c) be a primitive triple than b2 = (c+ a)(c− a) and
(c+ a) and (c− a) do not have a common factor. Hence c+ a and c− a are them self
squares c+ a = u2 and c− a = v2. Solving the system gives c = u2+v2

2
, a = u2−v2

2
and

b = u+ v. Q.E.D.

Theorem 8.9. There are no triples (a, b, c) ∈ N3 such that

a4 + b4 = c4

Proof. We show that if there is a triple with x4 + y4 = z2 than there is a triple
with u4 +v4 = w2 with w < z. The result than follows from the contradiction coming
from the infinite descendent. Without loss of generality we may assume that x, y, z
are coprime. By the last theorem there are relative prime numbers m,n such that

x2 = 2mn

y2 = m2 − n2

z = m2 + n2.

Since n2+y2 = m2 the triple (n, y,m) is coprime pythagorean. Again we have relative
prime numbers s, t such that

n = 2rs

y = r2 − s2

m = r2 + s2.

Now we have

m
n

2
=

2nm

4
= (

y

2
)2

Since m and n/2 are relatively prime they hence have to be both squares. Similarly,

rs =
2rs

2
= n/2

is a squares, so r and s are squares. So set r = u2, s = v2 and m = w2. Substitution
into m = r2 + s2 gives u4 + v4 = w2. We have

w4 < w4 + n2 = m2 + n2 = z

hence w < z which completes the proof. Q.E.D.
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Today we now know that the conjecture of Fermat 9 is true, there are no (a, b, c) ∈ N3

such that
an + bn = cn

for n > 2, [26, 24].

8.3 Partition of numbers

Definition 8.3.1 Let p(n) be the number of ways expressing n as the sum of integers
less or equal to n disregarding order.

Theorem 8.10.

∞∑
n=0

p(n)xn =
∞∏
k=1

1

1− xk

Proof.
∞∏
k=1

1

1− xk
=
∞∏
k=1

∞∑
i=0

xki

= (1 + x1 + x1+1 + x1+1+1 + x1+1+1+1 + . . .)
(1 + x2 + x2+2 + x2+2+2 + x2+2+2+2 + . . .)
(1 + x3 + x3+3 + x3+3+3 + x3+3+3+3 + . . .)

. . .

=
∞∑
n=0

p(n)xn

since each product leading to the monomial xn corresponds to a possible sum expres-
sion of n. Q.E.D.

Theorem 8.11.

∞∏
n=1

(1− xn) =
∞∑

k=−∞

(−1)kxw(k)

where w(k) = k(3k − 1)/2 are the (generalized) pentagonal numbers.10

Proof. In the product we obtain the sum of terms (−1)sxn1+...ns . The total coeffi-
cient f(n) of xn will be f(n) = e(n)− d(n) where e(n) is the number of partitions of
n with even s and d(n) is the number of partings with odd s. Let P (n) be the set of
pairs (s, g) where s is a natural number and g is a decreasing mapping on {1, . . . s}
such that
9 Conjectured by the French mathematician Pierre de Fermat (1608-1665)

10 Another result by Euler.
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x∈{1,...,s}

g(x) = n.

We obviously we have |P (n)| = f(n). Define E(n) and D(n) in the same way such
that such that |E(n)| = e(n) and |D(n)| = d(n). Suppose (s, g) ∈ P (n) where n is not
a (generalized) Pentagonal number. Since g is decreasing, there is a unique integer
k ∈ {1, . . . s} such that g(j) = g(1)− j + 1 for j ∈ {1, . . . k} and g(j) < g(1)− j + 1
for j ∈ {k + 1, . . . , s}. If g(s) ≤ k define ḡ on {1, . . . , s− 1} by

ḡ(x) =

{
g(x) + 1 if x ∈ {1, . . . , g(s)}

g(x) if x ∈ {g(s) + 1, . . . , s− 1}

}
If g(s) > k define ḡ on {1, . . . , s+ 1} by

ḡ(x) =


g(x)− 1 if x ∈ {1, . . . , k}
g(x) if x ∈ {k + 1, . . . , s}

k if x = s+ 1.


In both cases ḡ is decreasing with ∑

x∈{1,...,s+1}

ḡ(x) = n.

The mapping takes an element having odd s to an element having even s , and vice
versa. We have thus constructed a bijection from E(n) to D(n) implying f(n) = 0.
Now if n = m(3m + 1)/2 is a pentagonal number our mapping is a bijection ex-
cluding the single element (m, g) with g(x) = 2m + 1 − x resp. g(x) = 2m − x if
n = m(3m− 1)/2 leading to f(n) = 1 if m is even and fn = −1 if n is odd. Q.E.D.

Theorem 8.12. p(n) is given by the recursion

p(n) =
∞∑
k=1

(−1)k+1p(n− w(k)) + p(n− w(−k))

with p(0) = 1 and p(n) = 0 for n < 0.11

We have

(
∞∑
k=0

p(k)xk)(1 +
∞∑
n=1

(−1)n(xw(n) + xw(−n)) = 1

Using the Cauchy product this gives

∞∑
k=1

p(k)xk +
∞∑
n=1

(−1)n(xw(n) +xw(−n))+
∞∑
k=1

k∑
j=1

(−1)jp(k− j)xk−j(xw(j))+xw(−j)) = 0

Now collecting coefficients of xn gives the result. Q.E.D.

11 This was also know to Euler
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8.4 Bernoulli numbers

Definition 8.4.1 The Bernoulli numbers Bn are defined as the Taylor coefficient of

f(z) =
z

ez − 1
=
∞∑
n=0

Bn

n!
zn 12

Theorem 8.13. The Bernoulli numbers are given by the recursion

m∑
n=0

(
m+ 1
n

)Bn = 0

with B0 = 1, especially

B1 = −1/2 B2 = 1/6 B4 = −1/30 and B2n+1 = 0

for all n ≥ 1.

Proof.

f(z) = (
∞∑
k=0

zk

(k + 1)!
)−1

hence

1 = (
∞∑
k=0

zk

(k + 1)!
)(
∞∑
n=0

Bn

n!
zn)

=
∞∑
m=0

m∑
n=0

Bn

n!(m− n+ 1)!
zm

=
∞∑
m=0

[
m∑
n=0

(
m+ 1
n

Bn)]
zm

(m+ 1)!

given the recursion by comparing coefficients. A direct calculation gives B1, B2, B4.
To see that B2n+1 = 0 just note that the function

x cosh(x/2)

2 sinh(x/2)
= f(x) + x/2 = 1 +

∞∑
n=2

Bn
xn

n!

is odd. Q.E.D.

Theorem 8.14. For all l, n ∈ N

fl(n) =
n∑
k=1

kl =
1

l + 1

l∑
m=0

(
l + 1
m

)Bm(n+ 1)l+1−m 13

12 Inroduced by Jakob Bernoulli (1654-1704)
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Proof. Using the geometric series and the definition of ex we get

n∑
k=0

ekx =
e(n+1)x − 1

x

x

ex − 1

= (
∞∑
k=0

(n+ 1)k+1

(k + 1)!
xk)(

∞∑
n=0

Bn

n!
xn)

=
∞∑
l=0

(
1

l + 1

l∑
m=0

(
l + 1
m

)Bm(n+ 1)l+1−m)
xl

l!
.

On the other hand using the definition of ex directly

n∑
k=0

ekx =
n∑
k=0

∞∑
l=0

(kx)l

l!
=
∞∑
l=0

fl(n)

l!
xl

giving the result by comparing coefficients. Q.E.D.

8.5 Irrational numbers

Theorem 8.15. The roots of unitary integer polynomials

P (x) =
n−1∑
k=0

akx
k + xn with ai ∈ Z

are either integers or irrational numbers.

Proof. If x = p/q, with p and q relative prime, is a root of P (x) we have

0 = qnP (p/q) =
n−1∑
k=0

akq
n−kpk + pn

Hence q divides pn which implies q = ±1. Q.E.D.

Corollary 8.16. If p is a prime n
√
p is irrational.14

Proof. If n
√
p is an integer p is not prime. Q.E.D.

14 This was know to Pythagoras (570-495 BC)
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Theorem 8.17. The Euler constant e is irrational.

Proof. If we had e = a/b with a, b ∈ N than

N = n!(e−
n∑
k=0

1

k!
)

would we a natural number for all n ≥ b. On the other hand we have

N = n!(
∞∑
k=0

1

k!
−

n∑
k=0

1

k!
) =

∞∑
k=n+1

n!

k!
<

∞∑
k=0

(
1

n+ 1
)k = 1/n

A contradiction. Q.E.D.

Theorem 8.18. π is irrational.15

Proof. We show a stronger result: π2 is irrational. Assume that π2 = a/b and let

F (x) = bn(
n∑
k=0

(−1)kπ2n−2kf
(2k)(x))

with f(x) = x2(1−x)2/2. Since f (k)(0) = (−1)(k)fk(0) are internes by our assumption
F (0) and F (1) are integers. Differentiation gives

F
′
(x) sin(πx)− πF (x) cos(πx)]

′
= (F

′′
(x) + π2F (x)) sin(πx)

= bnπ2n+2f(x) sin(πx) = π2anf(x) sin(πx)

Therefore

N := π

∫ 1

0

anf(x) sin(πx) = F (0) + F (1)

is an positive integer. On the other hand we have f(x) < 1/n! for x ∈ (0, 1) hence
0 < N < πan/n! < 1 for n big enough. This is a contradiction. Q.E.D.

It was proved by Hermite16 that e and by Lindemann17 that π are transcenden-
tal, see [8] and [15]. We can not include these results here, because we do not have a
proof which is short enough.

15 Proved by Swiss mathematian Johann Heinrich Lambert (1728-1777).
16 The French mathematician Charles Hermite (1822-1901).
17 The German mathematician Carl Louis Ferdinand von Lindemann (1852-1939).
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8.6 Pisot numbers

Definition 8.6.1 A Pisot number α = α1 > 1 is the root of an unitary integer
minimal polynomial P of degree d ≥ 2 such that all other roots α2, α3, . . . , αd of P
have modulus strictly less than 1.18

Theorem 8.19.

||αn||N = min
k∈N
|αn − k| ≤ (d− 1)Θn

with Θ = max{|αi||i = 2, . . . n}.19

Proof. We prove that for all n ≥ 1

sn =
d∑
i=1

αni ∈ Z

holds, which directly implies the result. We have

P (x) =
d∏
i=1

(x− αi) =
d−1∑
k=0

akx
k + xd ak ∈ Z.

Taking the logarithmic derivative gives

d∏
i=1

1

(x− αi)
=

∑d−1
k=1 akkx

k−1 + dxd−1∑d−1
k=0 akx

k + xd
.

Substituting 1/x for x and multiplying by 1/x and using geometric series for the first
therm gives

∞∑
n=0

snx
n =

∑d−1
k=1 ad−k+1(d− k + 1)xk−1 + a0x

d−1∑d−1
k=0 ad−kx

k + a0xd

Comparing coefficients implies sn ∈ Z. Q.E.D.

Example 8.20. Examples of Pisot numbers are given by the real solutions of

xn − xn−1 − . . .− x− 1 = 0

for n ≥ 2. Especially the golden means φ is a Pisot numbers and we have

φ20 = 15126.99993.

18 Introduced by the French mathematician Charles Pisot (1910-1984).
19 Proved by Pisot.
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8.7 Dirichlets’ theorem

Theorem 8.21. For any irrational number α there are infinitely many q, p ∈ Z such
that

|a− p

q
| < 1

q2
. 20

Proof. Let {x} denote the fractional part and [x] the integer part of a number x.
For N ≥ 1 consider the numbers {iα} ∈ [0, 1] for i = 1 . . . N + 1. If we divide [0, 1]
into N disjoint intervals of length 1/N two of these numbers {iα} and {jα}, with
0 ≤ i < j ≤ N + 1, must lie in the same interval. Hence

0 ≤ α(i− j)− ([αi]− [αj]) = {iα} − {jα} ≤ 1

N
.

With p = i− j and q = [αi]− [αj] we have

|a− p

q
| ≤ 1

Nq
≤ 1

q2
.

By choosing N successively larger we find this way infinity many approximates.
Q.E.D.

8.8 Lioville numbers

Theorem 8.22. For an irrational algebraic number α ∈ R with minimal polynomial
of degree n there is a constant c > 0 such that

|α− p

q
| ≥ c

qn

for all p, q ∈ Z.22

Proof. Let

f(x) =
n∑
i=0

aix
i

be the minimal polynomial of α. Since f is minimal we have

f(x) = g(x)(x− α) with g(α) 6= 0

Hence by continuity there exits ρ > 0 such that g(x) 6= 0 for all x ∈ [α− ρ, α + ρ].
Let c = min{ρ,M−1} where M = max{|g(x)||x ∈ [α−ρ, α+ρ]}. Given p, q ∈ Z there
are two different cases. Either we directly have

20 This is the Theorem of the German mathematian Johann Peter Gustav Lejeune Dirichlet (1805-1859).21

22 This was proved by the French mathematician Joseph Liouville (1809-1882)
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|α− p

q
| ≥ ρ ≥ c

qn
or |α− p

q
| < ρ

implying g(p/q) 6= 0, but this gives

|α− p

q
| = |f(p/q)

g(p/q)
| = |

∑n
i=0 aip

iqn−i|
|qng(p/q)|

≥ 1

qnM
≥ c

qn
.

Q.E.D.

Definition 8.8.1 A number α ∈ R is called a Lioville number if for n > 0 there are
p, q ∈ Z with

|α− p

q
| < 1

qn
.

For instance

λ =
∞∑
k=0

1

2j!

is a Lioville number.

Theorem 8.23. All Lioville numbers are transcendental.

Proof. First we show that Lioville numbers are irrational. Assume α = c/d is ratio-
nal and 2n−1 > d then for all p, q ∈ Z

|α− p

q
| ≥ | c

d
− p

q
| ≥ 1

qd
>

1

2n−1q
≥ 1

qn

hence α is not Lioville. Now assume α is an irrational algebraic Lioville number.
Choose the constant c > 0 from Theorem 5.1 and r with 2r > 1/c. Since α is Lioville
there are p, q

|α− p

q
| < 1

qn+r
≤ 1

2rqn
≤ c

qn

a contradiction to the theorem of Lioville. Q.E.D.
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Probability theory

9.1 The birthday ”paradox”

Definition 9.1.1 A finite probability space X with probability P is Laplace if for all
events A ⊆ X

P (A) =
|A|
|B|

.1

Theorem 9.1. The probability that from n people at least two have the same birthday
is

1− 365!

(365− n!)365n

assuming that the birthdays are equidistributed on 365 days. Especially p(23) ≈ 0.57
p(50) ≈ 0.97 and p(100) ≈ 0.99999.

Proof. There are 365n possibilities for n people to have their birthday. There are
365 · 364 · . . . · (365− n+ 1) possibilities for n people to have not the same birthday.
Since we assume that the birthdays are equidistributed the experiment is Laplace and
the probability for n people not to have the same birthday is (365!/((365− n!)365n).
Considering the complement gives the result. Q.E.D.

9.2 Bayes’ theorem

Definition 9.2.1 Let P be a probability and A,B be two events than the condition
probability A under the condition B is defined as,

P (A|B) :=
P (A ∩B)

P (B)
.

1 Introduced by the French mathematician Pierre-Simon Laplace (1749-1827).
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Theorem 9.2. If {Bi|i = 1 . . . n} is a partition of a probability space we have

P (Bi|A) =
P (A|Bi)P (Bi)∑
P (A|Bj)P (Bj)

. 2

Proof. First we have the result on total probability

P (A) = P (
⋃

(Bi ∩ A)) =
∑

P (Bi ∩ A) =
∑

P (A|Bi)P (Bi)

Furthermore

P (Bi|A) =
P (A ∩Bi)

P (A)
=
P (A|Bi)P (Bi)

P (A)

given the result pasting in the total probability P (A). Q.E.D.

9.3 Buffons’ needle

Theorem 9.3. If a needle of length l the thrown on paper lined parallel, where the
distance of the lines is d > l, the probability P that the needle intersects a line is

P =
2l

πd
.3

Fig. 9.1. Buffons’ needle

Proof. We assume that the needle has an angle α ∈ [0, 2π] relative to the lines, the
case of negative angles gives the same probability by symmetry. The height of this

2 This is the result of the English mathematician Thomas Bayes (1702-1761).
3 Prooved by the French mathematician Joseph Emile Barbier (1839-1889)



9.4 Expected value, variance and the law of large numbers 97

needle is l sin(α) hence the probability that it intersects a line is P (α) = l sin(α)/d.
Since the angles are equidistributed by the construction of experiment we get p as
the mean value over the angles

P =

∫ π/2
0

P (α)dα

π/2
=

2l

πd

∫ π/2

0

sin(α)dα =
2l

πd
.

Q.E.D.

9.4 Expected value, variance and the law of large numbers

Definition 9.4.1 A discrete random variable X is a map from a probability with a
probability P to the natural numbers. The probability that the random variable attends
the value n ∈ N is

P (X = n) = P ({w ∈ Omega|X(w) = n)

The expected value is given by

E(X) =
∑
n∈N

nP (X = n)

and the variance is given by

V (X) =
∑
n∈N

(n− E(X))2P (X = n)

For a continuous random variable taking values in R we define he expected value is
given by

E(X) =

∫
P (X = x)xdx

and

V (X) =

∫
(x− E(X))2P (X = x)dx

Obviously is expectation value is linear and V (aX) = a2V (X). Furthermore for
independent random variables X and Y the variance is additive V (X+Y ) = V (X)+
V (Y ). Now we are prepared to prove prove an important inequality in probability
theory.

Theorem 9.4. Let X be a random variable with finite expected value E(X) and finite
variance V (X). For any ε > 0 we have

P (|X − E(X)| ≥ ε) ≤ V (X)

ε2
.4

4 This inequality is due to the Russian mathematicain Lvovich Chebyshev (1821-1894).
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Proof. We prove the result for discrete random variables. The prove for continues
random variables is along the same line using integration instead of summation.
Let m(x) = P (X = x) be the distribution function of X. We have

P (|X − E(X)| ≥ ε) =
∑

|x−E(X)|≥ε

m(x).

Furthermore using the variance of X we obtain

V (X) =
∑
x∈N

(x− E(X))2m(x) ≥
∑

|x−E(X)|≥ε

(x− E(X))2m(x)

≥
∑

|x−E(X)|≥ε

ε2m(x) = ε2P (|X − E(X)| ≥ ε).

given the result. Q.E.D.

With this theorem we get a short prove for the law of large numbers.

Theorem 9.5. Let (Xi) be independent and identically distributed random variables
with expected values E(Xi) = µ < ∞ and variance V (Xi) = σ2 < ∞. For Sn =
X1 + . . .+Xn we have

lim
n7−→∞

P (|Sn
n
− µ| > ε) = 05

Proof. By the the linearity of the expectation value we have E(Sn/n) = E(Sn)/n =
nµ/n = µ and by the properties of the variance we have V (Sn/n) = V (Sn)/n2 =
nσ2/n2 = σ2/n. Hence the last theorem gives

P (|Sn
n
− µ| > ε) ≤ σ2

nε2

for all ε > 0. For fixed ε > 0 we obtain the result. Q.E.D.

9.5 Binomial and Poisson distribution

Definition 9.5.1 For n ∈ N and p ∈ (0, 1) is Binomial distribution Xn,p on {0, . . . n}
is given by

P (Xn,p = k) = (
n
k

)pk(1− p)n−k.

For λ > 0 the Poisson distribution Xλ on N is given by

P (Xλ = k) =
λke−λ

k!
5 This was proved by the Swiss mathematician Jacob Bernoulli
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It is no difficult to see that the expected value and the variance of these random
variables is given by E(Xn,p) = np, V (Xn,p) = np(1 − p) and E(Xλ) = V (Xλ) = λ.
We prove here that the Poisson distribution approximates the Binomial distribution
in the following sense:

Theorem 9.6. If limn 7−→∞ npn = λ with pn ∈ (0, 1) the Binomial distribution Xn,pn

approaches the Poisson distribution Xλ, in the following sense

lim
n7−→∞

P (Xn,pn = k) = P (Xλ = k)

for all k > 0.

Proof. Let λn = npn. We have

P (Xn,pn = k) = (
n
k

)(
λn
n

)k(1− λn
n

)n−k

=
1

k!

n!

(n− k)!nk
λkn(1 +

−λn
n

)n)(1− λn
n

)−k

Now consider the limit n 7−→ ∞. The first factor is constant and the second factor
goes to one. By theorem the third factor converges to e−λ since limn7−→∞ λn = λ by
assumption. The last factor goes to one since limn7−→∞ λn/n = 0. All in all the limit

is given by λke−λ

k!
which is the distribution of Xλ. Q.E.D.

9.6 Normal distribution

Theorem 9.7.

f(x) =
1√

2πσ2
e−

x−µ2

2σ2

it the distribution of a random variable Nµ,σ2 with expectation value E(Xµ,ρ) = µ and
Variance V ar(Xµ,ρ) = σ2.6

Proof.

(

∫ ∞
−∞

f(x)dx)2 =
1

2πσ2

∫ ∞
−∞

∫ ∞
−∞

e−
(x−µ)2+(y−µ)2

2σ2 dxdy

=
1

2πσ2

∫ ∞
−∞

∫ ∞
−∞

e−
x̄2+ȳ2

2σ2 dx̄dȳ =
1

2πσ2

∫ ∞
0

∫ 2π

0

re−
r2

2σ2 dθdr

=

∫ 2π

0

1

2π
dθ

∫ ∞
0

re−
r2

2σ2 dr

σ2
= 1,

6 The normal distribution was introduced by Carl Friedrich Gauß(1646-1716).
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Fig. 9.2. The normal distribution

using the substitution x̄ = x − µ ȳ = y − µ and polar coordinates afterwards. This
proves that f is the density of a probability distribution. Moreover we have:

E(Nµ,ρ) =

∫ ∞
−∞

xf(x) =
1√

2πσ2

∫ ∞
−∞

xe−
x−µ2

2σ2 dx =
1√

2πσ2

∫ ∞
−∞

(µ+ x̄)e−
x2

2σ2 dx = µ

V ar(Nµ,ρ) =

∫ ∞
−∞

(x− µ)2f(x)dx =
1

σ
√

2π

+∞∫
−∞

(x− µ)2
(
e−

(x−µ)2

2σ2

)
dx = σ2.

Q.E.D.

Definition 9.6.1 A sequence (Xi) of random variables converges in distribution to
X if

lim
i 7−→∞

P (Xi ≤ x) = P (X ≤ x)

for all points of continuity of the commutative distribution function F (X) = P (X ≤
x).

Theorem 9.8. Let (Xi) be a sequence of independent, identical distributed random
variables with E(Xi) = µ <∞ and 0 < V (Xi) = σ2 <∞. The mean random variable

1

n

n∑
i=1

Xi

is asymptotically distributed as the normal distribution N(µ, σ/n). 7

7 First proved by the French mathematician Pierre-Simon de Laplace (1749-1827).
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Proof. We prove that the standardized random variable

Zn =
X1 + . . . Xn − nµ

σ
√
n

=
n∑
i=1

Yi√
n
,

where Yi = (Xi−µ)/σ with mean zero and variant one converges in distribution to the
standard normal distribution N(0, 1). The result than follows by back transformation
of the standardization.
The characteristic function of a standardized random variable Y with mean zero and
variance 1 is given by

φY (t) = E(eitY ) = 1− t2

n
+ therms of higher order

using power series for the exponential. Hence the characteristic function of Zn is

φZn(t) = E(eitZn) =
n∏
i=1

E(e
it Yn√

n ) = (1− t2

2n
+ therms of higher order)n

using multiplicativity of the expectation value. Taking the limit gives

lim
n7−→∞

φZn(t) = e−t
2/2 = φN(1,0)(t)

It remains to show that convergence of the characteristic function implies convergence
in distribution. Suppose that a sequence of random variables Xn has characteristic
functions πn(t) 7→ φ(t) for each t and φ is a continuous function at 0. Than for all
ε > 0 there exists a c < ∞ such that P [|Xn| > c] ≤ ε for all n. Hence the sequence
of random variables Xn is tight in the sense that any subsequence of it contains a
further subsequence which converges in distribution to a proper cumulative distri-
bution function. φ(t) is the characteristic function of this limit, since converges in
distribution obviously implies converges of the characteristic function. Thus, since
every subsequence has the same limit, Xn converges in distribution to X. Q.E.D.

Corollary 9.9. The Binomial distribution Xn,p can be approximated by the normal
distribution N(np, np(1− p)).

Corollary 9.10. The sum of n independent Poisson random variables Xλ/n can be
approximated by a normal distribution N(λ, λ)
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Dynamical Systems

10.1 Periodic orbits

Theorem 10.1. If f : [a, b] 7−→ [a, b] is continues and has a periodic orbit of period
three than its has periodic orbits all periods.1

Proof. Without loss of generality assume p = f 3(p) < f(p) < f 2(p). Let k ≥ 2 be
an integer. Define inductively In = [f(a), f 2(a)] for n = 0, . . . k− 2 and In = [p, f(p)]
for n = k−1 and In+k = In (if k = 1 chose In = [p, f(p)] for all n). Now by induction
there are compact intervals Qn such that fn(Qn) = In and Qn+1 ⊆ Qn. Notice that
Qk ⊆ Q0 = I0 and Fk(Qk) = Q0 = I0. Now by the intermediate value theorem the
continues map G = F k has a fixed point pk ∈ Qk. pk can not have period less than k.
Otherwise F k−1(pk) = b which contradicts F k+1(pk) ∈ [f(a), f 2(a)] by construction.
Hence pk is a periodic point of period k for F . Q.E.D.

In fact Sharkosky [21] proved earlier much more than this: Consider the order

3 � 5 � 7 � 9 � 11 � 13 � 15 � ... � 2 · 3 � 2 · 5 � ·7 � 2 · 9 � ...

� 22 · 3 � 22 · 5 � 22 · 7 � 22 · 9 � ... � 23 · 3 � ... � 25 � 24 � 23 � 22 � 2 � 1

If f has a periodic orbit of period t it has periodic orbits of all periods s � t. The
proof is not short enough to include it.

10.2 Chaos and Shifts

In the following definition we mathematically formalize the meaning of the term
”chaos”.

Definition 10.2.1 Let (X, d) be a metric space and let T : X 7−→ X be a continuous
transformation. The system (X,T ) is transitive if there is a dense orbit (fn(x)). A
system is chaotic if it is transitive and perotic orbits of f are dense in X. The system
is sensitive if there is a constant C such that

1 This was proved in 1975 by Li and Yorke under the title ”Period three implies chaos”
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lim sup
n7−→∞

d(fn(x), fn(y)) > C

for all x ∈ X and a least one y in each neighborhood of x.

The reason why we do not need to suppose sensitivity in the definition of chaos is
the following result:

Theorem 10.2. A chaotic system (on an infinite space) is sensitive.

Proof. Considers two periodic orbits which have a distance at least D > 0 from
each other. Note that for for all x ∈ X there hence is a periodic orbit which distance
at least D/2 from x. We will prove sensitivity for C = D/8.
Fix an arbitrary point x ∈ X and a neighborhood N of this point. Since periodic
points are dense there is such a point in N ∩BC(x) with period lets say n and there
is periodic point q with distance at least 4C from x. The set

V :=
n⋂
i=0

f−i(BC(f i(q)))

is open and not empty since q ∈ V , Since f is transitive there exists a y ∈ U such
that fk(y) ∈ V . Now choose j such that 1 ≤ nj − k ≤ n. By construction we have

fnj(y) = fnk−k(fk(y)) ∈ fnk−k(V ) ⊆ BC(fnj−k(q)))

Since p is periodic of period n we obtain

d(fnj(p), fnj(y)) = d(p, fnj(y)) ≥ d(x, fnj−k(q))− d(fnj−k(q), fnj(y))− d(p, x)

≥ 4C − C − C = 2C

Thus by the triangle inequality either d(fnj(x), fnj(p)) ≥ C or d(fnj(x), fnj(y)) > C.
In either case of found a point in N whose njth iterate is more than a distance C > 0
from this iterate of x. Q.E.D.

We found this beautiful theorem with a short prove in resent paper [4].

A model of a chaotic dynamical system is given by the shift map on a sequences
space, which we now introduce.

Definition 10.2.2 For a > 1 consider the sequence space Σ = {1, . . . , a}Z (or the
one sided sequences space Σ = {1, . . . , a}N) with the metric

d((sk), (tk)) =
∞∑
n=0

|sk − tk|2−|k|

The shift map σ on the sequence space is given by σ((sk) = (sk+1).
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It is easy to see that the space Σ with the metric d is a Cantor set (compare with
section 6.5) and that σ is a continuous function. The following beautiful theorem is
an important result in chaotic dynamic:

Theorem 10.3. The system (Σ, σ) is chaotic.

Proof. Consider a sequence (dk) ∈ Σ which has every block with digits from {1, . . . , a}
as its tail; first a block of length 1, than a2 block of length 2 and so on. Now choose
an arbitrary open set O in Σ be the definition of the metric there is a cylinder set
[s1, . . . , sn] ⊆ O. We will find the block s1, . . . , sn in (dk). Hence σm(dk) ∈ O for some
m. We thus see that {σm(dk)|m ≥ 0} is dense in Σ and the system is transitive.
Furthermore a sequence build by the repetition of a block (s1, . . . , sn) is periodic
which respect to σ and is contained in the cylinder set [s1, . . . , sn]. Hence periodic
orbits are dense. ut

10.3 Conjugated dynamical systems

Definition 10.3.1 A dynamical systems (Y, g) is semi-conjugated to (X, f) if there
is a continuous surjection π : X 7−→ Y such that π ◦ f = g ◦ π. The systems are
conjugated if if π is an homömorphis.

Theorem 10.4. If (Y, g) is semi-conjugates to a chaotic system (X, f), it is chaotic.

Proof. Let P be the set of periodic points which is dense in X and D = (fn(x))
be a dense orbit in X. Be continuity of the surjection π the sets π(P ) and π(D) are
dense Y . IF π(x) ∈ π(P ) and x has period n we have gn(π(x)) = π(fn(x)) = π(x).
Hence the points in π(P ) are periodic the respect to g and dense in Y . Moreover we
have π(D) = (π(fn(x))) = gn(π(x)) which means that the orbit of π(x) is dense in
Y . utWe present examples of systems in dimension one, two and three which are
conjugated to a shift and hence chaotic.

Definition 10.3.2 The continuous map f : [0, 1] 7−→ [0, 1] given by

t(x) = 1− 2|x− 1

2
|

is called the tent maps

Definition 10.3.3 Let f be a continuous (or smooth if you like) map on R2 which
acts on [0, 1]2 as

f(x, y) = { (1/3x, 3y) if y ≤ 1/3
(−1/3x+ 1,−3y + 3) if y ≥ 2/3
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Fig. 10.1. The tent map

Fig. 10.2. Construction of the horseshoe

A map of this type is called a linear horseshoe with invariant set

Λ =
∞⋂

n=−∞

fn([0, 1]2)

Definition 10.3.4 Let T2 = D × S = {(x, y, z)|x2 + y2 ≤ 1, t ∈ [0, 1)} be the full
torus and h be the map on T2 be given by

h(x, y, z) = (
1

10
x+

1

2
sin(2πz),

1

10
y +

1

2
cos(2πz), 2z)
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and consider the set

Ψ =
∞⋂

n=−0

hn(T2)

The dynamical system (Ψ, h) is called a Solenoid.

Fig. 10.3. Construction of the Soleonoid

Theorem 10.5. The dynamical systems ([0, 1], t), (Λ, f) and (Ψ, h) are (semi-) con-
jugated to a shift and hence chaotic.

Proof. Let I0 = [0, 1/2] and I2 = [1/2, 1] and consider the map πt : {1, 2}N0 7−→ [0, 1]
given by

πtf ((sk)) =
∞⋂
k=0

f−k(Isk)

Note that
⋂m
k=0 f

−k(Isk) is a nested sequence of intervals of length 1/2m+1, hence the
map is well defined and continuous. It is onto since these intervals cover [0, 1] if we
consider all in (sk) ∈ {1, 2}m+1. Moreover we have πt((sk+1)) = f(πf (sk))) given the
result.

Decompose [0, 1]2 = Q1 ∪Q2
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Decompose T2 = T1 ∪ T2 = D2 × [0, 1/2) ∪ D2 × [1/2, 1). Let πh : {1, 2}Z 7−→ T2

be given by

πh((sk)) =
∞⋂

k=−∞

h−k(Tsk)

Note that
⋂∞
k=0 h

−k(Tsk) is a disc D2 × {z((sk))} where z as a map of the sequence
space is continuous and surjective. We have intersections of discs choosing one disc
at each ‘level’ to correspond to a backward sequence for Q.E.D.

10.4 Julia sets and the Mandelbrot set

Definition 10.4.1 For c ∈ C consider the map fc(z) = z2 + c on the complex plan.
The Julia set Jc is the boundary of the filled Julia set; that is, those points z ∈ C
whose orbits under iterations of fc remain bounded.
The Madelbrot set is given by

M = {c ∈ C|Jc is connected}

It is possible to show that Jc is a Cantor set if it is not connected, compare with
section. This the case for all c ∈ C that are not in the Madelbrot set. We here on
a simple and beautiful cauterization of the Mandelbot set, which allows numerical
appropriations of this set.

Theorem 10.6.

M = {c ∈ C|fnc (0) is bounded}

Here we need a lemma before we prove the result.

Lemma 10.7.

10.5 Recurrence

Definition 10.5.1 In a metric space X the Borel σ algebra B is the smallest sigma-
Algebra which contains all open and closes sets. A set function µ : B 7−→ [0, 1] which
is σ-additive and fulfills µ(X) = 1 and µ(X\B) = 1 − µ(B) is a Borel probability
measure. A function is T : X 7−→ X is measurable if T−1(B) ∈ B for all B ∈ B and
a measure µ is invariant if µ ◦ T−1 = µ.

Theorem 10.8. Let X be a metric space T : X 7−→ X be a measurable transforma-
tion and µ a invariant Borel probability measure measure. Let A be a Borel set with
µ(A) > 0, then for almost all x ∈ A the orbit {T n(x)|n ≥ 0} returns to A infinitely
often.2

2 Proved by the French mathematician Jules Henri Poincare (1854-1912)
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Proof. Let F = {x ∈ A|T n(x) 6∈ A ∀n ≥ 1}. Obviously it is enough if we show
that µ(F ) = 0. First we prove that T−n(F ) ∩ T−m(F ) = ∅ for n > m. If there is an
x ∈ T−n(F ) ∩ T−m(F ) then x ∈ Tm(F ) ⊆ A and x ∈ T n(F ) = T n−m(Tm(x)) ⊆ A.
This is a contradiction to the definition of A. Hence the sets T−n(F ) are disjoint for
n ≥ 1 and by σ-additivity and invariance of µ we get

∞∑
n=1

µ(F ) =
∞∑
n=1

µ(T−n(F )) = µ(
∞⋃
n=1

T−n(F )) ≤ µ(X)

Since µ is finite this implies µ(F ) = 0. Q.E.D.

10.6 Birkhoffs’ ergodic theorem and normal numbers

The prove Birkhoffs’ ergodic theorem we use a lemma which may be consider as an
ergodic theorem itself.

Lemma 10.9. Let X be a metric space T : X 7−→ X be a measurable transformation
and µ be an invariant Borel probability measure measure and let f be integrable with
respect to µ. Let

sn(x) =
n∑
i=0

f(T i(x))

and A = {x| sup sn(x) > 0}. Than
∫
A
fdµ ≥ 0.

Proof. Let Sn(x) = max{s0(x), . . . , sn(x)}, S?n(x) = max{Sn(x), 0} and An =
{x|Sn(x) > 0}. Now we have

Sn+1 = S?n ◦ T + f

hence ∫
An

f =

∫
An

Sn+1 − S?n ◦ T ≥
∫
An

Sn − S?n ◦ T

=

∫
An

S?n − S?n ◦ T =

∫
X

S?n − S?n ◦ T = 0

since we integrate with respect to measure T invariant measure. Since A =
⋃
An the

result follows. Q.E.D.

Theorem 10.10. Let X be a metric space T : X 7−→ X be a measurable transforma-
tion and µ an ergodic Borel probability measure measure and let f be integrable with
respect to µ than

lim
n7−→∞

1

n+ 1

n∑
i=0

f(T i(x)) =

∫
f dµ

for µ-almost all x. 3

3 This is the ergodic theorem of the American mathematician George David Birkhoff (1884-1944)
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Proof. Let an(x) = sn(x)/(n+ 1). If an does not converge almost surely we have

lim inf an(x) < b < a < lim sup an

on a set E of positive measure. Since E is invariant we can assume E = X and by
rescaling the function f we may assume a = 1 and b = −1. By the last theorem∫
f ≥ 0. Now replacing f with −f we get inf f ≤ 0. The same argument works for

all f + c with 0 < c < 1 implying
∫
c = 0. This is a contradiction. We conclude that

an(x) converges to a function F (x) for almost all x. Note that F is T invariant and
integrable since ||an||1 ≤ ||f ||1. Moreover by ergodicity of µ we get

∫
F =

∫
f given

the result. Q.E.D.

Definition 10.6.1 A real number x ∈ (0, 1] is normal in base b ≥ 2 if it has a
b-expansion

x =
∞∑
k=1

xkb
k

with

lim
n7−→∞

|{k|xk = i k = 1 . . . n}|
n

=
1

b

for all i = 0, . . . b− 1.

Corollary 10.11. All most all numbers in R are normal to all bases.4

Proof. Fix a base b ≥ 2. Consider the transformation T : [0, 1) 7−→ [0, 1) given
by Tx = x modulo b. The Lebesgue measure ` is ergodic with respect to T . By the
ergodic theorem we have

lim
n7−→∞

|{k|T kx ∈ [i/b, (i+ 1)/b) k = 1 . . . n}|
n

= `([i/b, (i+ 1)/b)) =
1

b

but T kx ∈ [i/b, (i+ 1)/b) if and only if xk = i. Q.E.D.

4 The result was first proved by Felix Edouard Justin Emile Borel (1871-1956)
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Conjectures

At the end we state ten conjectures we would like the reader to prove.

Conjecture 1 There are infinitely many twin primes.

Conjecture 2 Every even number is the sum of two primes.

Conjecture 3 Between two square numbers there always is a prime number.

Conjecture 4 The Riemanian hypothesis is true.

Conjecture 5 Natural numbers can not be factorized in polynomial time.

Conjecture 6 There are infinity many even and no odd perfect numbers.

Conjecture 7 The Euler-Mascheroni constant γ and the Catlan constant C are ir-
rational (and transcendent).

Conjecture 8 All irrational algebraic numbers are normal

Conjecture 9 The numbers e and π are normal.

Conjecture 10 The map f(n) = n/2 for n even and f(n) = 3n+1 for n odd iterates
all natural numbers to one.
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